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Privacy-Preserving Sentiment Analysis on Twitter

Felix Vogel1, Lucas Lange2

Abstract: Sentiment analysis is a crucial tool to evaluate customer opinion on products and services.
However, analyzing social media data raises concerns about privacy violations since users may share
sensitive information in their posts. In this work, we propose a privacy-preserving approach for
sentiment analysis on Twitter data using Differential Privacy (DP). We first implement a non-private
baseline model and assess the impact of various settings and preprocessing methods. We then extend
this approach with DP under multiple privacy parameters 𝜀 = {0.1, 1, 10} and finally evaluate the
usability of the resulting private models. Our results show that DP models can maintain high accuracy
for the studied task. We contribute to the development of privacy-preserving machine learning for
customer opinion analysis and provide insights into trade-offs between privacy and utility. The
proposed approach helps protect sensitive information while still allowing for valuable insights to be
gained from social media data.

Keywords: Differential Privacy; Sentiment Analysis; Preprocessing; Twitter; Privacy-Preserving
Machine Learning

1 Introduction

In a world where customer opinions about products are predominantly shared through social
media posts, sentiment analysis is a popular research area that aims to automatically identify
and extract subjective information from text data. Social media platforms such as Twitter
have become important sources of user-generated content that can be analyzed for sentiment
[Ne12]. However, analyzing social media data raises concerns about privacy violations
since users may share sensitive information in their posts [MSK11]. Other than on Twitter
itself, users only have limited options for deleting their data from machine learning models.
According to the EU GDPR however, there should be a ‘right to be forgotten’ [EC16].
Through implementing privacy-preserving machine learning strategies we want to minimize
memorization by keeping the model increasingly agnostic to individual user data.

Differential Privacy (DP) [Dw06] is a framework for protecting sensitive information
while still allowing useful insights to be gained from data. DP adds noise to the output
of an algorithm in order to prevent an attacker from inferring sensitive information about
individual users. Using this framework, individual user data can be processed while giving a
provable privacy guarantee for each data point. A reliable privacy promise when processing
their data could improve trust when asking customers to share personal feedback.
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We are the first to evaluate an approach for preserving privacy in sentiment analysis on
Twitter using DP. We first implement a non-private sentiment analysis as a baseline model
and compare different preprocessing methods to find the best strategy. We then apply DP
using different privacy levels of 𝜀 = {0.1, 1, 10}. Finally, we evaluate the usability of the
resulting model under the influence of such privacy preservation.

In the upcoming Sect. 2 we try to create a common ground regarding the fundamental
concepts for this work. Sect. 3 then provides an overview of closely related works in the
field of sentiment analysis. Our applied methods and experiments are summarized in Sect. 4,
with the following Sect. 5 presenting their results. We finally give conclusive thoughts and a
brief outlook into possible future ventures in Sect. 6.

2 Background

In this section we provide basic understanding for different ideas this work is building on.

2.1 Sentiment Analysis

Sentiment analysis is a subfield of natural language processing that aims to automatically
identify the emotional tone of a piece of text, such as a review, tweet, or news article
[Ca17]. The task involves classifying the text as positive, negative, or neutral, based on the
underlying sentiment expressed by the author. Sentiment analysis can be performed using a
variety of techniques, including rule-based methods, machine learning algorithms, and deep
learning models. The field has numerous applications, such as social media monitoring,
brand reputation management, and market research, and has received increasing attention in
recent years due to the growing importance of understanding and leveraging user-generated
content. However, the accuracy of sentiment analysis models can be affected by various
factors, such as the quality of the training data, the complexity of the language, and the
presence of sarcasm or irony.

2.2 Differential Privacy

The concept of DP [Dw06] is a mathematical definition of privacy that ensures that the
inclusion or exclusion of any individual’s data in a dataset does not significantly change the
output of statistical queries on that dataset. The framework is based on the idea of adding
noise to the queries to protect individual privacy while preserving the utility of the dataset
for analysis.

Formally, an algorithm A training on a set S is called (𝜀,𝛿)-differentially-private, if for all
datasets D and D’ that differ by exactly one record:

𝑃𝑟 [𝐴(𝐷) ∈ 𝑆] ≤ 𝑒𝜀𝑃𝑟 [𝐴(𝐷′) ∈ 𝑆] + 𝛿 (1)
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The 𝜀-parameter measures the level of privacy protection provided by the mechanism. It
thus determines the amount of random noise that is added to the output of queries on the
dataset to protect individual privacy. The smaller the value of 𝜀, the stronger the privacy
protection, but also the greater the amount of noise.

2.3 Differentially Private Stochastic Gradient Descent

Differentially Private Stochastic Gradient Descent (DP-SGD) [Ab16] is a variant of
the stochastic gradient descent optimization algorithm that provides differential privacy
guarantees. DP-SGD works by adding controlled noise to the gradients computed on each
mini-batch of data during the training process. The amount of noise added is controlled
by a privacy parameter 𝜀, which determines the strength of privacy protection. Tuning the
privacy parameter can be challenging, and careful selection and calibration of the noise
level are required to achieve the desired privacy-utility trade-off.

3 Related Work

Main point of reference for our baseline is the work by Go et al. [GBH09], which also
introduced our used sentiment140 Twitter dataset. In addition to the data, they also proposed
preprocessing techniques and evaluated different non-private machine learning models for
sentiment analysis. Their Support Vector Machine (SVM) model performed best in the
unigrams setting and achieved 82.2% accuracy. The other tested models are Multinomial
Naive Bayes (MNB) and Logistic Regression (LR)3, which achieved 81.3% and 80.5%,
respectively. In terms of the many possible preprocessing steps and their combinations
involved when working with text data, Alam; Yao [AY19] suggest that methods should also
be evaluated separately.

Regarding privacy in sentiment analysis on social media, existing work by Alatrista-Salas
et al. [ACN19] proposes an approach utilizing bloom filters, which in contrast to DP do not
impose noise on the data. Accordingly, there is only a minimal performance hit. Bloom
filters alone however, are shown to be prone to targeted cryptanalysis attacks on word
frequencies [Ch18]. In addition, bloom filters just provide ambiguity regarding direct data
reconstruction attacks but do not result in a private prediction model, leaving room for e.g.
membership inference attacks and other threats when publishing the model [BBL12; Sh17].
Recent approaches even propose a combination of bloom filters and DP [RVD22].

Our work contributes to the development of privacy-preserving sentiment analysis models
in multiple ways. For our baseline we further study other preprocessing options for the
provided twitter dataset and take into account separate evaluations for each. Regarding

3 Go et al. [GBH09] call their LR model a Maximum Entropy model (MaxEnt) but both are exactly the same
techniques under different names.
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privacy, we take a different approach than bloom filters by instead applying DP on multiple
privacy levels and assess the resulting performance loss compared to non-private training.

4 Experimental Setup

In the following, we present our general methodology and provide details on the conducted
experiments along with their implementation. Reference code is available from our GitHub
repository: https://github.com/felix2246/dp-sent-analysis-twitter.

4.1 Methodology

In a first step we implement for a non-private baseline model for reference. To achieve
that, we evaluate the sentiment analysis model results regarding different preprocessing
methods and provide several candidates of machine learning methods for our task, namely
Multinomial Naive Bayes (MNB), Support Vector Machine (SVM) and Logistic Regression
(LR). We evaluate the performance of each model using the accuracy metric also seen in
related work presented in Sect. 3. Through this process we find the best combination of
preprocessing and machine learning approach.

For our DP experiments, we take our fine-tuned LR baseline model setting and create a
private model by employing the DP-SGD algorithm during the training process. We choose
the LR algorithm for our private approach because it supports SGD which can be extended
to instead use DP-SGD. We then assess the impact of training for different privacy levels
of 𝜀 = {0.1, 1, 10} on model results. The additional level of 𝜀 = ∞ corresponds to the
non-private baseline, where no privatization is guaranteed using DP. An 𝜀 ≤ 1 is commonly
seen as a strong privacy guarantee [Ca19; Na21]. By evaluating DP levels a magnitude
higher and lower than 𝜀 = 1, we want to gain better insights into the relation between
performance and privacy for this task [La23].

4.2 Environment

The primary hardware used in this study is equipped with 16 GB RAM and an NVIDIA
GeForce RTX 2070 GPU. In order to perform more complex calculations, we additionally
use server-side GPU resources in the form of a NVIDIA GeForce GTX 2080Ti. The
experiments are run in Jupyter notebooks. We use popular machine learning libraries
for Python, namely TensorFlow4, Keras5 and scikit-learn6. To implement DP, we resort

4 Available at https://github.com/tensorflow/tensorflow
5 Available at https://github.com/keras-team/keras
6 Available at https://github.com/scikit-learn/scikit-learn
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to TensorFlow Privacy7 which expands the core library with DP mechanisms and the
functionalities to track privacy budgets. To ensure reproducible results during preprocessing
and training process, we define a fixed random seed with a set value of 42. Consequently,
the described environment and the details in the following sections can be used to recreate
our results.

4.3 Data and Preprocessing

We utilize the automatically created sentiment140 dataset introduced by Go et al. [GBH09],
which consists of 1.6 million tweets gathered from the Twitter API with only minimal
data preparation. The tweets provide an even split into the positive and negative sentiment
classes. The dataset also provides separate data in a predefined test set. We additionally
create a validation set for our model training that consists of 10% of the original training
data. After removing retweets and duplicate tweets from the training data, we preprocess the
data using different combinations of approaches and later compare their influence on model
performance. Following the idea of Alam; Yao [AY19], we also evaluate our preprocessing
methods separately. Therefore, we define preprocessing rows containing multiple techniques,
that build upon each other. We include yet untested combinations and in total propose the
following rows:

• Row 1: lowercase + remove punctuation + remove words with less than two letters.

• Row 2: row 1 + replace usernames and URLs with keywords + transform repeated
letters. This row is equal to the preprocessing of Go et al. [GBH09].

• Row 3: row 2 + remove stop words.

• Row 4: row 2 + transform word contractions (don’t, can’t, etc.).

• Row 5: row 3 + row 4.

Row 3 and row 4 are an exception in the sense, that they are not building on each other, which
is done to evaluate stop word removal and word contractions separately. This separation is
mainly needed due to the stop word list already containing some resolved word contractions,
which might mask the actual influence of such transformations. In Sect. 5.1, we test each
single row in experiments on the dataset.

4.4 Vectorization

Since machine learning algorithms cannot use raw text as input, it is transformed into
vectors. Therefore, we convert the given text to a bag-of-words-model (BOW). There are

7 Available at https://github.com/tensorflow/privacy
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different possibilities for defining the value representation inside the word vectors which are
given as metrics. These include the binary metric regarding a word’s existence in the text,
where for each word the binary value 0 (does not exist) or 1 (exists) is set. Furthermore, the
count metric is given where the occurrence of the word is quantified. Within the BOW it can
happen, that words, although they occur frequently, do not have a higher information content
compared to rarer words. Therefore we use the tf-idf value, a measure of word appearance
with document-based offset, as a third metric to normalize differing word frequencies.

For the conversion of the available corpora into a vector model, we use the TfidfVectorizer
and CountVectorizer from the scikit-learn library. The set of features was limited to 5,000
and an unigram model was applied, so that each word occurring in the corpus is treated
as a single feature. The associated classes for our training data points are stored as a
one-dimensional vector where the index of the respective class corresponds to the index
(line) of the associated document in the BOW.

4.5 None-Private Baseline

Our preprocessing results in five vectorized datasets (one for each row) and each one is
accompanied by the three vectorization metrics of existence, count, and tf-idf value. For
our non/private baseline approach, we test the three different machine learning algorithms
MNB, SVM, and LR. This leads to a total of 45 possible combinations and therefore 45
baseline experiments.

SVM and MNB are implemented in scikit-learn. LR is realized using a shallow sigmoid
neural network model according to Liquet et al. [LMN22], utilizing Keras and TensorFlow.
For LR we further use the SGD optimizer. We determine the most suitable learning rate of
1e-3 by testing different starting values in a cyclical approach [Sm17] and besides decay the
learning rate on plateaus [Yo19]. At the same time, an epoch count of 58 and batch size of
16 were best in our experiments.

4.6 Privacy-Preserving Approach

To create a privacy-preserving model and to estimate the impact on performance, the
baseline LR is extended to use DP-SGD training. Since LR with the preprocessing row 3
and the count metric shows the highest accuracy as presented in Sect. 5.1, the DP model
is implemented building on this foundation. We again train for 58 epochs, using a batch
size of 16, and with the same learning rate of 1e-3. With our training dataset containing
𝑁 = 1, 421, 664 entries, we set 𝛿 = 1𝑒 − 7 according to 𝛿 ≪ 1

𝑁
[Dw06]. To obtain different

𝜀 values in experiments, the noise level is modified according to these dataset statistics.
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5 Results

5.1 None-Private Baseline

(a) MNB (b) SVM (c) LR

Fig. 1: Change in accuracy (%) for each algorithm in relation to used preprocessing rows and metrics.

Tab. 1: Test accuracy (%) of the baseline models regarding the different available vectorization metrics,
preprocessing rows, and machine learning algorithms. Row 2 conforms to the preprocessing by Go
et al. [GBH09]. The algorithms are Multinomial Naive Bayes (MNB), Support Vector Machine (SVM)
and Logistic Regression (LR).

vectorization preprocessing algorithm
metric MNB SVM LR

binary

row 1 78.55 80.22 79.94
row 2 78.55 80.78 80.22
row 3 81.34 79.94 80.50
row 4 79.11 80.78 79.94
row 5 80.50 79.39 78.83

count

row 1 79.11 80.78 80.78
row 2 79.39 80.78 80.22
row 3 81.89 81.06 80.78
row 4 78.55 79.94 79.94
row 5 81.06 79.67 79.67

tf-idf

row 1 79.11 79.11 79.11
row 2 80.22 79.11 79.94
row 3 81.34 79.94 79.67
row 4 79.11 78.83 78.83
row 5 81.34 80.50 79.67

This section provides an evaluation of our non-private models with respect to the prepro-
cessing and vectorization metrics. In terms of learning algorithms, we further evaluate
MNB, SVM, and LR. The used preprocessing rows and vectorization metrics have been
defined in Sect. 4.3. While Tab. 1 provides a tabular overview of the resulting accuracies,
we also provide graphical support in Fig. 1.



8 Felix Vogel, Lucas Lange

Regarding vectorization metrics, tf-idf produced the overall worst performance, while the
count metric showed the best results for all tested algorithms. We also find a winner in
terms of preprocessing rows, where row 3 takes the lead across all tested models. Row 3
mainly introduced the removal of stop words and some word contractions. The negative
influence of row 4 (and row 5) shows that the transformation of word contractions can not
be seen as favorable and we therefore conclude stop words to be the primary factor for
row 3. Our assumption is that the transformation in a unigram model leads to the loss of
context of individual words, which is represented in the word contractions by splitting into
multiple features. For example, the model normally treats don’t as a single feature, but after
the conversion do and not are treated as separate features. From that, the direct relationship
between these two words is no longer apparent to the model. The ubiquitous performance
differences between the rows mark the importance of choosing the correct preprocessing
and vectorization methods.

Talking about algorithms, the MNB takes the crown in our baseline evaluation reaching
81.89% accuracy. Comparing our results to the original work by Go et al. [GBH09], our
MNB and LR models (81.9%, 80.8%) slightly outperform their counterparts in the unigram
setting (81.3%, 80.5%). Our SVM (81.1%) on the other hand, is not able to reach the same
level (82.2%). The difference in SVM performance could be explained by the fact that Go
et al. [GBH09] used a different implementation, namely ”SVMlight”. Our addition of stop
word removal to the existing methods from related work in Go et al. [GBH09] showed to be
a general improvement.

5.2 Privacy-Preserving Approach

Tab. 2: Baseline and private models com-
pared on test accuracy (%), while using
preprocessing row 3 and count metric.

𝜀 accuracy

∞ 80.78
10 78.27
1 77.99

0.1 76.04
Fig. 2: Learning curves regarding accuracy (%) on
the validation data over the epochs for the models
with different 𝜀 privacy levels. We use preprocess-
ing row 3 and count metric.
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Our results presented in Tab. 2 confirm the expected utility-privacy trade-off between strong
𝜀-guarantees and accuracy mentioned in Sect. 2.3. This reduction in performance is due to
the added noise on the gradients during model training, which makes it harder to find the
minimum of the loss function and leads to a sub-optimal adjustment of model weights.

Fig. 2 showcases the training process of our compared models by plotting their learning
curves. We first note the similarity in accuracy for 𝜀 = 10 and 𝜀 = 1, with the strong level of
𝜀 = 1 giving almost the same results as the substantial weaker guarantee. We also notice,
that the diminishment of the accuracy curves between non-private model and the models
for 𝜀 = {10, 1} is roughly the same as the the one between 𝜀 = {10, 1} and 𝜀 = 0.1. Thus,
the negative effects on performance are more significant when first introducing DP into the
training process and again when going to very strict privacy guarantees of 𝜀 = 0.1.

Taking a closer look at the training curves of the private models in Fig. 2, we note the
similarity in training processes for 𝜀 = 10 and 𝜀 = 1. While both curves do not seem to
reach a plateau after our set 58 epochs, extending the epoch count would also increase 𝜀

and therefore the necessary noise. Increasing the performance of a DP model by extending
the training duration is therefore accompanied by a negative trade-off that needs additional
consideration. At 𝜀 = 0.1, the model reaches an early lower plateau, highlighting how the
higher noise (negatively) influences the training process.

Focusing again on Tab. 2, the resulting accuracy loss of our private models compared
to the non-private baseline at 𝜀 = ∞ lies in the range of 2.5–4.7%. This shows that
our private results are staying close to the non-private baseline, even when training for
strong privacy of 𝜀 ≤ 1. Taking into account the provided DP guarantees, our approach
can offer viable classifications even under strict user privacy considerations. The related
privacy-preserving work by Alatrista-Salas et al. [ACN19] using bloom filters shows an
even smaller performance loss of 1–3%. However, as layed out in Sect. 3, DP is the superior
method when seeking a secure and reliable privatization. Our results show that DP models
can maintain high accuracy while preserving privacy in sentiment analysis on Twitter data.

6 Conclusion

In this work, we propose a front-to-back approach for preserving privacy in sentiment
analysis on Twitter using DP. We first perform an extensive evaluation of preprocessing
methods and test different learning algorithms to find strong performing non-private baseline
models. Our results when including different DP levels then shows that we can maintain high
accuracy in our task while limiting threats for individual users’ data. Our solution can thus
give provable privacy protection for sensitive information, which could be a deciding factor
for data sharing by users. At the same time, our private models still enable a reliable analysis
of the given data. We believe that our work has meaningful implications for researchers and
practitioners working in the field of sentiment analysis searching for a usable balance in the
trade-off between privacy and utility, especially for social media data.
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Future work should explore the real world impact of DP against attacks in practical
scenarios to confirm its effectiveness. Further research might also investigate the impact
of different DP parameters on other machine learning models for sentiment analysis like
recent transformer-based architectures [Na20].
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