
1Andreas Thor: NewSQL, SQL on Hadoop

NewSQL, SQL on Hadoop

Prof. Dr. Andreas Thor
Hochschule für Telekommunikation Leipzig (HfTL)

thor@hft-leipzig.de

2nd International ScaDS Summer School on Big Data, July 12, 2016

2Andreas Thor: NewSQL, SQL on Hadoop

Agenda

• SQL on Hadoop

– Motivation: Why MR is not enough?

– Hadoop-based Frameworks

– Translating SQL to MapReduce, Optimizing data flows

• NewSQL

– Motivation: RDBMS and the Cloud

– Types of NewSQL systems

– In-Memory Databases, Data Partitioning

• No complete overview of all tools

• Focus on ideas / techniques

3Andreas Thor: NewSQL, SQL on Hadoop

Data analysis / Queries on Big Data

• Simple aggregations, ad-hoc analyses

– Number of clicks / page views per day / month

– How many foto uploads on New Year’s Eve 2015? How many tweets during the

EURO 2016 final?

• Preprocessing for Data Mining

– Identify user groups / types

– Find suspicious / frequent patterns in UGC (user generated content)

• If your data is in Hadoop

– … use the query capabilities of your NoSQL store!

– … write a MapReduce / Spark program to analyze it!

• Really?

4Andreas Thor: NewSQL, SQL on Hadoop

Data Analysis: Access Frequency Skew

• Empirical analysis from companies reveals access frequency skew

– Zipf-like distribution: Few files account for a very high number of accesses

– ~90% of all files accessed only once

Chen et. al: Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. VLDB 2012

5Andreas Thor: NewSQL, SQL on Hadoop

SQL-based Data Analysis

• Copy to Relational Database / Data Warehouse?

– Development overhead for rarely used files

– Import is inefficient

• High-level language for Hadoop-based data analyses

– Data analysts do not need to be able to program MapReduce, Spark etc.

– Efficient re-use of scripts / workflows for similar analysis tasks

• SQL interface for Hadoop needed

– SQL is declarative, concise

– People know SQL

– Interface with existing analysis software

– Can be combined with MapReduce / Spark

6Andreas Thor: NewSQL, SQL on Hadoop

Hadoop Ecosystem (simplified)

HDFS

Hadoop Yarn

MapReduce, Spark, Tez

SQL Graph
Machine

Learning
…

Data Storage

Cluster Management

Execution Engine

Data Type /

Algorithm

7Andreas Thor: NewSQL, SQL on Hadoop

Processing Frameworks for Hadoop

Mark Grover: Processing frameworks for Hadoop, 2015

radar.oreilly.com/2015/02/processing-frameworks-for-hadoop.html

8Andreas Thor: NewSQL, SQL on Hadoop

Hadoop-based Data Analysis Frameworks

Quelle: Chen et. al: Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. VLDB 2012

9Andreas Thor: NewSQL, SQL on Hadoop

Apache Hive

• Data Warehouse Infrastructure on Hadoop

– Hive 2.1 (June 2016) for Hadoop 2.x

• “Hive = MapReduce + SQL”

– SQL is simple to use

– MapReduce provides scalability and fault tolerance

• HiveQL = SQL-like query language

– Extendible with MapReduce scripts and user-defined functions (e.g., in Python)

10Andreas Thor: NewSQL, SQL on Hadoop

Hive: Metastore

• Mapping files to logical tables

– Flexible (de)serialization of tables (CSV, XML, JSON)

• Table corresponds to HDFS directory: /clicks

– Subdirectories for partitioning (based on attributes): /clicks/d=20160710

– Bucketing: Split files into parts

• Advantage: Direct data access, i.e., no transformation / loading into

relational format

• Disadvantage: No pre-processing (e.g., indexing)

Partitions

(multiple levels)

HDFS Files

(split into hash buckets)

Table

Clicks

d=20160710

d=20160711

11Andreas Thor: NewSQL, SQL on Hadoop

Hive: Workflow

Abadi et. al: SQL-on-Hadoop Tutorial. VLDB 2015

1. User issues SQL query

2. Hive parses and plans query

3. Query converted to MapReduce

4. MapReduce run by Hadoop

12Andreas Thor: NewSQL, SQL on Hadoop

Hive: Query

SELECT g1.x, g1.avg, g2.cnt

FROM (

SELECT a.x, AVG(a.y) AS avg

FROM a

GROUP BY a.x) g1

JOIN (

SELECT b.x, COUNT(b.y) AS cnt

FROM b

GROUP BY b.x) g2

ON (g1.x = g2.x)

ORDER BY g1.avg

g1 g2

JOIN

ORDER

13Andreas Thor: NewSQL, SQL on Hadoop

Hive: Query Optimization

• Query optimization employs ideas

from database research

– Logical (rule-based) transformations

– Cost-based optimizations

• Projection / selection pushdown

– Remove unnecessary attributes /

records as early as possible

• Adaptive implementations, e.g.,

joins

– Based on statistics (e.g., number of

records, min-max values)

http://de.slideshare.net/ragho/hive-user-meeting-august-2009-facebook

14Andreas Thor: NewSQL, SQL on Hadoop

{“_id”:”1”, "name":"fish.jpg",”time":”17:46","user":"bob“,"camera":"nikon",

"info":{"width":100,"height":200,"size":12345},"tags":["tuna","shark"]}

{“_id”:”2”, "name":"trees.jpg",“time":”17:57”,"user":"john”,"camera":"canon",

"info":{"width":30,"height":250,"size":32091},"tags":["oak"]}

....

Semi-structured JSON data vs. relational data

• JSON data (collection of objects)

• Relational: Nested table with multi-valued attributes
id name time user camera info tags

width height size

1 fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark]

2 trees.jpg 17:57 john canon 30 250 32091 [oak]

3 snow.png 17:56 john canon 64 64 1253 [tahoe, powder]

4 hawaii.png 17:59 john nikon 128 64 92834 [maui, tuna]

5 hawaii.gif 17:58 bob canon 320 128 49287 [maui]

6 island.gif 17:43 zztop nikon 640 480 50398 [maui]

Source: http://labs.mudynamics.com/wp-content/uploads/2009/04/icouch.html

15Andreas Thor: NewSQL, SQL on Hadoop

map

function (doc) {

if (doc.user ==“john”) {

emit(doc.camera,

doc.info.size); }

}

SQL to MapReduce:

Example

{id:1,user:bob ...}

{id:2,user:john ...}

{id:3,user:john ...}

{id:4,user:john ...}

{id:5,user:bob ...}

{id:6,user:zztop...}

m
ap

re
du

ce

key value

canon 32091

canon 1253

nikon 92834

(canon,16672)

(nikon,92835)

reduce

function (key, values) {

sum = 0;

foreach (v:values) sum += v;

return sum/values.length;

}

key values

canon [32091, 1253]

nikon [92834]

sh
uf

fle
 +

 s
or

t

SELECT camera, AVG(info.size)

FROM Pictures

WHERE user=“john”

GROUP BY camera

16Andreas Thor: NewSQL, SQL on Hadoop

SQL to MapReduce

SQL MapReduce

Selection
WHERE user = ‘John‘

Filter in map function
if (user==‘John‘) { emit (…); }

Projection
SELECT camera, size

Map output value
emit (…, {camera, size});

Grouping
GROUP BY camera

Map output key = grouping attribute(s)
emit (camera, …);

Aggregation
SELECT AVG (size)

Computation in reduce function
average ([size1, size2, …]);

Nested Queries
FROM (SELECT … FROM …) AS T

Sequence of MapReduce programs

Output of MR1 (inner query)= input to MR2 (outer q.)

Sorting
ORDER BY camera

Map output key = sorting attribute(s)

Requires single reducer or range partitioner

Join
FROM R JOIN S ON (R.b=S.b)

-- see next slides --

17Andreas Thor: NewSQL, SQL on Hadoop

Repartition Join (for Equi Join)

a b

a1 3

a2 3

a3 3

a4 2

a5 3

a6 2

a7 2

a8 2

b c

1 c1
2 c2
3 c3
4 c4

(3, R:a1)

(3, R:a2)

(3, R:a3)

(2, R:a4)

(3, R:a5)

(2, R:a6)

(2, R:a7)

(2, R:a8)

(1, S:c1)

(2, S:c2)

(3, S:c3)

(4, S:c4)

a b c

a4 2 c2
a6 2 c2
a7 2 c2
a8 2 c2
a1 3 c3
a2 3 c3
a3 3 c3
a5 3 c3

m
ap

sh
uf

fle
 +

 s
or

t

re
du

ce

• Naïve approach

– Map output: key = join attribute, value = relation + tuple (relevant attributes)

– reduce: all pairs from different relations

R

S

(1, [S:c1])

(2, [R:a4, S:c2,

R:a6, R:a7,

R:a8])

(3, [R:a1, R:a2,

R:a3, S:c3,

R:a5])

(4, [S:c4])

18Andreas Thor: NewSQL, SQL on Hadoop

Repartition Join: Extended Key

• Reducer needs to buffer all values per key

– No specific order of reduce values in list; sequential access to list only

• Key extension (+ adjusted grouping and sorting comparators)

– Extend map output key by relation name; group by attribute only

– Sorting so that keys of small relation (S) are before keys of large relation (R)

 Reduce buffering for S keys only

• Example
Naïve
(2, R:a4)

(2, S:c2)

(2, R:a6)

(2, R:a7)

(2, R:a8)

Extended Key
(2:S, c2)

(2, S:c9)

(2:R, a4)

(2:R, a6)

(2:R, a7)

(2:R, a8)

(2:S, c9)

19Andreas Thor: NewSQL, SQL on Hadoop

Broadcast Join

• Repartition Join: Large map output

– All tuples are sorted between map and

reduce  high network traffic

• Common scenario: |R| >> |S|

– Example: Logfile⋈ User

• Join computation in the map phase;

no reduce phase

– Use small relation (S) as

additional map input

• Data transfer

– Small relation is sent to all n nodes  n|S|

– No transfer of R: map task consumes local map partition

– Repartition-Join: |R|+|S|

a b

a1 3

a2 3

a3 3

a4 2

a5 3

a6 2

a7 2

a8 2

b c

1 c1
2 c2
3 c3
4 c4

m
ap

R

S

a b c

a1 3 c3
a2 3 c3
a3 3 c3
a4 2 c2
a5 3 c3
a6 2 c2
a7 2 c2
a8 2 c2

20Andreas Thor: NewSQL, SQL on Hadoop

Evaluation

#record

(Relation S)

Repartition

(ext. Key)

Broad-

cast

0.3 ∙ 106 145 GB 6 GB

10 ∙ 106 145 GB 195 GB

300 ∙ 106 151 GB 6240 GB

• Prefer broadcast for small S

• Repartitioning: Benefit of

extended key

Data size sent through the network

Blanas et al.: A Comparison of Join Algorithms for Log Processing in MapReduce. SIGMOD 2010

21Andreas Thor: NewSQL, SQL on Hadoop

SQL on Hadoop

Apache Hive Apache Spark SQL Apache Drill

Operation Mode Batch Procedural Interactive

Scenario Data-Warehouse-like

queries

ETL processing

Complex Data Analysis

Algorithms (e.g.,

Machine Learning)

Interactive Data

Discovery

(Exploration)

Latency high medium low

Language HiveQL (SQL-like) Mix Spark code (Java /

Scale) with SQL

ANSI SQL

Data Sources Hadoop Hadoop, Hive Tables,

JDBC

Hadoop, NoSQL

(joining different data

sources)

Schema Relational,

Pre-defined

Relational,

Pre-defined

JSON, On-the-fly

(„schema-free“)

Translates into MapReduce & Spark Spark --

22Andreas Thor: NewSQL, SQL on Hadoop

From SQL on Hadoop to NewSQL

Shared Nothing Cluster

N
e
w
S
Q
L

23Andreas Thor: NewSQL, SQL on Hadoop

NewSQL: Definition

• “… delivers the scalability and flexibility promised by NoSQL while

retaining the support for SQL queries and/or ACID, or to improve

performance for appropriate workloads.” (451 group)

• NewSQL: An Alternative to NoSQL and Old SQL for New OLTP Apps

(by Michael Stonebraker)

– SQL as the primary interface

– ACID support for transactions

– Non-locking concurrency control

– High per-node performance

– Scalable, shared nothing architecture

Matt Asslet, 451 Group, 2011: https://www.451research.com/report-short?entityId=66963

Michael Stonebraker, 2011: http://cacm.acm.org/blogs/blog-cacm/109710

24Andreas Thor: NewSQL, SQL on Hadoop

RBDMS Design Principles

• RBDMS developed for shared-memory and (later) shared-disk

architectures

– Cloud / Data Center: Shared Nothing

• RDBMS store data on hard-drive disks; main memory for caching only

– Cloud / Data Center: large amount of main memory affordable; solid state disks

• RDBMS implement Recovery using disk-based Logfiles

– Cloud / Data Center: Fast recovery via data copying through the network possible

• RDBMS support Multi-Threading (on a single core)

– T2 can be started if T1 is still waiting for data (from disk)  long transactions should

not block short transactions  low latency

– Cloud / Data Center: Multi core nodes, large main memory

Amazon EC2 price history

for 1TB main memory

25Andreas Thor: NewSQL, SQL on Hadoop

RDBMS Overhead

• “Removing those overheads and running the database in main memory

would yield orders of magnitude improvements in database performance”

Harizopoulos, S. et. al., “OLTP: Through the Looking Glass and What We Found There,” SIGMOD, June 2008.

29%

20%28%

11%

12%

Buffer Management

• Mapping records to pages for

block-wise storage on disk

→ Not needed anymore for In-

Memory-Databases

Logging

• Write & read log files (write-

ahead logging)

• ReDo Recovery (after outage),

UnDo Recovery (after

transaction failures)

→ ReDo by “Copy from Replica”

possible; avoid UnDo cases

Locking & Latching

• Concurrency control

(locking protocols), deadlock handling

• Short-term locks in multi-threading (latching)

→ Reduce overhead for Isolated Execution

(e.g., no multi-threading)

Useful work

• Retrieve / update data

Index Management

26Andreas Thor: NewSQL, SQL on Hadoop

HStore: Overview

• Distributed, row-store-based, main memory relational database

– Cluster of nodes (shared-nothing); multiple sites per node

– Site = single-threaded daemon on a single CPU  no latching

– Row-store (B-Tree) in main memory  no buffer management

• Transactions

– No ad-hoc SQL queries; pre-defined stored Procedures (SP) only

– Classification of transactions (e.g., “single / multi partition”, “two phase”)

– Global ordering of transactions  strong consistency

– ACID

– Direct data access / transfer (no ODBC)

• Recovery

– Replica-based recovery  no logging needed

• VoltDB (commercial)  HStore (open source / research prototype)

27Andreas Thor: NewSQL, SQL on Hadoop

HStore: Site Architecture

Jones, Abadi, and Madden, "Low overhead concurrency control for partitioned main memory databases,“ SIGMOD 2010

28Andreas Thor: NewSQL, SQL on Hadoop

OLTP transaction in Web Applications

• Focus of web applications: Scalability, scalability, scalability

– Limited flexibility on transactions is ok

• Observations: Transactions …

– … often touch data of current user only

– … modify few records only

– … are known a-priori, i.e., no ad-hoc queries needed

– … are comparatively simple

29Andreas Thor: NewSQL, SQL on Hadoop

Data Partitioning: Tree Schema

• Most schemas (for web applications) are “tree schemas”

– One (or more) root tables (e.g., warehouse)

– Other tables have (multiple) one-to-may relationships to root table

Andy Pavlo: NewSQL, 2012

30Andreas Thor: NewSQL, SQL on Hadoop

Horizontal Partitioning

• Horizontal partitioning of the root table

– Child tables are partitioned accordingly

– Replication of unrelated tables

Goal: Single-Partition

Transactions

31Andreas Thor: NewSQL, SQL on Hadoop

HStore: Infrastructure

32Andreas Thor: NewSQL, SQL on Hadoop

Single Partition Transactions

• Client sends single partition transaction to (node of) primary partition

– Primary forwards to Secondary (Backup)

– Execute transactions by node_id + timestamp (nodes are time-synchronized)

• Independent, parallel execution on all partitions

– Each nodes achieve the same result (commit oder abort)

– Primary sends back result to client after receiving “acknowledge” from all

secondaries Strong Consistency

– If node fails  copy partition replica  No ReDo logging

• Transactions are executed sequentially on every node (single-thread)

 No Concurrency Control

• “Two phase” transaction

– Format: “read(s), check for consistency, write(s)”

–  No UnDo logging necessary

x=read(a)

y=read(b)

y ≥ 100 ?

write(a, x+100)

write(b, y-100)

33Andreas Thor: NewSQL, SQL on Hadoop

Multi Partition Transactions

• Multi Partition Transaction are controlled by a central Coordinator

– Multiple coordinators possible but preserving global order of transactions

• Execution

– Divide Multi Partition Transaction in fragments that are sent to all partitions

– UnDo buffer for undoing transactions in case of failures (e.g., consistency violations)

• Two-Phase Commit Protocol

– Coordination protocol to achieve global result (commit / abort) in distributed

environment

34Andreas Thor: NewSQL, SQL on Hadoop

NewSQL: Overview

New Architectures New SQL Engines Middleware

Type Developed “from

scratch”

“Plugin” to existing

RDBMS (e.g., MySQL)

Additional layer on top

of RDBMS

Examples H-Store / VoltDB

Google Spanner

MemSQL

NuoDB

Clustrix

…

MySQL Cluster

ScaleDB

Tokutek

…

Schooner MySQL

ScaleArc

ScaleBase

dbShards

…

Characteristics Designed for in-

memory (or flash) as

primary data store

Reuse components

from RDBMS

framework

Transparent clustering/

sharding for scalability

35Andreas Thor: NewSQL, SQL on Hadoop

Summary

• SQL on Hadoop: „Add SQL to NoSQL“

– Frameworks leveraging (parts of) the Hadoop infrastructure

– SQL-like queries on (semi-)structured data (files) and NoSQL (OLAP)

– Techniques: SQL-to-MR-translation, Query optimization, Metadata

• NewSQL: „Add Scalability to RDBMS“

– New type of RDBMS in a shared-nothing cluster

– SQL and ACID transactions (OLTP)

– Techniques: In-Memory, Data Partitioning, Pre-defined SQL statements

