NewSQL, SQL on Hadoop

Prof. Dr. Andreas Thor

Hochschule fur Telekommunikation Leipzig (HfTL)
thor@hft-leipzig.de

2"d International ScaDS Summer School on Big Data, July 12, 2016

, @&

Andreas Thor: NewSQL, SQL on Hadoop

Agenda

 SQL on Hadoop

— Motivation: Why MR is not enough?
— Hadoop-based Frameworks
— Translating SQL to MapReduce, Optimizing data flows

« NewSQL
— Motivation: RDBMS and the Cloud
— Types of NewSQL systems
— In-Memory Databases, Data Partitioning

* No complete overview of all tools
 Focus on ideas / techniques

Andreas Thor: NewSQL, SQL on Hadoop

Data analysis / Queries on Big Data

« Simple aggregations, ad-hoc analyses
— Number of clicks / page views per day / month

— How many foto uploads on New Year's Eve 20157 How many tweets during the
EURO 2016 final?

» Preprocessing for Data Mining

— ldentify user groups / types
— Find suspicious / frequent patterns in UGC (user generated content)

* If your data is in Hadoop
— ... use the query capabilities of your NoSQL store!
— ... write a MapReduce / Spark program to analyze it!

* Really?

Andreas Thor: NewSQL, SQL on Hadoop

Data Analysis: Access Frequency Skew

 Empirical analysis from companies reveals access frequency skew
— Zipf-like distribution: Few files account for a very high number of accesses
— ~90% of all files accessed only once

, 100,000 —CC-b
e o 10,000 ---CC-c
=2 1000 —CC-d
o L
- 100 ---CC-e
= 10 —FB-2010
= L 1
z et | |

1 100 10,000 1,000,000

File rank by decreasing read frequency

Chen et. al: Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. VLDB 2012
Andreas Thor: NewSQL, SQL on Hadoop 4

SQL-based Data Analysis

 Copy to Relational Database / Data Warehouse?
— Development overhead for rarely used files
— Import is inefficient

* High-level language for Hadoop-based data analyses
— Data analysts do not need to be able to program MapReduce, Spark etc.
— Efficient re-use of scripts / workflows for similar analysis tasks

« SQL interface for Hadoop needed
— SQL is declarative, concise
— People know SQL
— Interface with existing analysis software
— Can be combined with MapReduce / Spark

Andreas Thor: NewSQL, SQL on Hadoop

Hadoop Ecosystem (simplified)

e 1 I I
Algorithm Graph Learning

Execution Engine MapReduce, Spark, Tez

Cluster Management Hadoop Yarn

Data Storage HDFS

Andreas Thor: NewSQL, SQL on Hadoop 6 .

Processing Frameworks for Hadoop

|
|

Hive (in beta)

=
S
olé'
— | %A | = X
= 308 &
Al
wl
-

SR RN

General purpose Abstraction
execution engines engines
w Storage
managers
'saL Real-time
— :
engines frameworks

Mark Grover: Processing frameworks for Hadoop, 2015
radar.oreilly.com/2015/02/processing-frameworks-for-hadoop.html
Andreas Thor: NewSQL, SQL on Hadoop

1 Graph

. processing
engines

i Machine

“ Learning
engines

, (@)

Hadoop-based Data Analysis Frameworks

1.0

0.8

0.6

0.4

Fraction of jobs

0.2

0.0

[others] |

th
[others] [?the:] insert (others] [op;rs]
— select [others] iteminguiry
se%tlrch [0.18] select
select select ' v— . T importjob
ajax [0.30] edw snapshot queryresult
from snapshot eawsequence
insert twitch flow Sywr
[0.13] i 0.13] [0.25]
oozie | €dwsequence
piglatin [0.72] [ﬂDW] iolati
ad [0.56] 0.13 piglatin .
[0.44] o [0.46] nsert
piglatin [0.37]
[0.23]
T 1
FB-2009 CC-a CC-b CC-c CC-d CC-e
Hive Pig Oozie Native Hadoop

Quelle: Chen et. al: Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. VLDB 2012
Andreas Thor: NewSQL, SQL on Hadoop

8

Apache Hive ﬂ'
 Data Warehouse Infrastructure on Hadoop S

~ Hive 2.1 (June 2016) for Hadoop 2.x i
« “Hive = MapReduce + SQL”

— SQL is simple to use

— MapReduce provides scalability and fault tolerance
 HiveQL = SQL-like query language

— Extendible with MapReduce scripts and user-defined functions (e.qg., in Python)

Andreas Thor: NewSQL, SQL on Hadoop

Hive: Metastore

 Mapping files to logical tables
— Flexible (de)serialization of tables (CSV, XML, JSON)

d=20160710 =& L
Clicks <
I- d=20160711 & L

Table Partitions HDFS Files
(multiple levels) (split into hash buckets)

 Table corresponds to HDFS directory: /clicks
— Subdirectories for partitioning (based on attributes): /c1licks/d=20160710
— Bucketing: Split files into parts

 Advantage: Direct data access, i.e., no transformation / loading into
relational format

* Disadvantage: No pre-processing (e.g., indexing)

Andreas Thor: NewSQL, SQL on Hadoop 10 .

Hive: Workflow

Hive

Compller
Hive
SQL
Q HiveServer2 Optimizer
Hadoop

Task

2. Hive parses and plans query
3. Query converted to MapReduce
4. MapReduce run by Hadoop

Map / Reduce e

Data Node

Abadi et. al: SQL-on-Hadoop Tutorial. VLDB 2015

Andreas Thor: NewSQL, SQL on Hadoop

Hive: Query

SELECT gl.x, gl.avg, g2.cnt
FROM (
SELECT a.x, AVG(a.y) AS avg
FROM a
GROUP BY a.x) gl

JOIN (
SELECT b.x, COUNT (b.y) AS cnt
FROM b
GROUP BY b.x) g2

ON (gl.x = g2.x)

ORDER BY gl.avg

Andreas Thor: NewSQL, SQL on Hadoop

E
A/ @
NS |

JOIN i E
l

ORDER I?J

Hive: Query Optimization

+ Query optimization employs ideas st
from database research ?
— Logical (rule-based) transformations
— Cost-based optimizations

* Projection / selection pushdown

— Remove unnecessary attributes /
records as early as possible

* Adaptive implementations, e.qg.,
joins
— Based on statistics (e.g., number of
records, min-max values)

http://de.slideshare.net/ragho/hive-user-meeting-august-2009-facebook
Andreas Thor: NewSQL, SQL on Hadoop

Semi-structured JSON data vs. relational data

« JSON data (collection of objects)

{*_id""1”, "name":"fish.jpg","time":."17:46","user":"bob®,"camera":"nikon",
"info":{"width":100,"neight":200,"size":12345},"tags":["tuna", “shark“]}
{“_id”:ﬂzu’ "name":"treeS_jpg",“time":”17:57”,"User":"j0hn” n nn

camera . canon
"info":{"width":30,"height":250,"size":32091}, "tags":["oak"]}

« Relational: Nested table with multi- valued attributes

fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark]
trees.jpg 17:57 john canon 30 250 32091 [oakK]
snow.png 17:56 john canon 64 64 1253 [tahoe, powder]
hawaii.png 17:59 john nikon 128 64 92834 [maui, tuna]
hawaii.gif 17:58 bob canon 320 128 49287 [maui]
island.gif 17:43 zztop nikon 640 480 50398 [maui]

S O B LWON -

Source: http://labs.mudynamics.com/wp-content/uploads/2009/04/icouch. htmI .
Andreas Thor: NewSQL, SQL on Hadoop

SQL to MapReduce- SELECT camera, AVG(info.size)

FROM Pictures

Example WHERE user=%“john”
GROUP BY camera

map
function (doc) {
if (doc.user ==“john”) { |reduce
emit (doc.camera, function (key, values) {
doc.info.size); } sum = 0;

} foreach (v:values) sum += v;

return sum/values.length;
ey value IR

id:1,user:bob ...}
id:2,user:john ...} canon 32091
id:3,user:john ...} = canon 1253
id:4,user;john ..} [nikon 92834
id:5,user:bob ...}
id:6,user:zztop...}

key _values

canon [32091, 1253]
nikon [92834]

(canon,16672)
(nikon,92835)

shuffle + sort
reduce

{
{
{
{
{
{

Andreas Thor: NewSQL, SQL on Hadoop 15 ‘

SQL to MapReduce

SQL MapReduce

Selection Filter in map function

WHERE user = ‘John’ if (user=="John’) {emit (...); }

Projection Map output value

SELECT camera, size emit (..., {camera, size});

Grouping Map output key = grouping attribute(s)
GROUP BY camera emit (camera, ...);

Aggregation Computation in reduce function

SELECT AVG (size) average ([size1, size2, ...]);

Nested Queries Sequence of MapReduce programs

FROM (SELECT ... FROM ...)AS T OQutput of MR1 (inner query)= input to MR2 (outer q.)
Sorting Map output key = sorting attribute(s)
ORDER BY camera Requires single reducer or range partitioner
Join -- see next slides --

FROM R JOIN S ON (R.b=S.b)

Andreas Thor: NewSQL, SQL on Hadoop 16 @

Repartition Join (for Equi Join)

* Naive approach
— Map output: key = join attribute, value = relation + tuple (relevant attributes)
— reduce: all pairs from different relations

Raﬂ';: (3, Riay) (1, [Sic,])

RN AN shhbbbbil
as; 3 (2: R:az) (2, [R:a,, S:c,,

_%_2_ _____ R:a,, R:a,, a, 2 c,
25 ; (3, R:as) R:agl) ag 2 c,
—— (2, R:ag) OO0 _ a; 2 G
! (2, R:a,) | 2 | e
ag 2 (2, R:ay) (3, [R:a;, R:a,, a 3 Cs

Sl b | c i R:a;, S:icy, a, 3 Cj
1 < (1, S:c,) R:as]) a; 3 Cj
2 G (2, S:cy) POl _ as 3 C3
3¢ (3, S:cs)
=lRey (4, S:c,) (4, [S:cyl)

Andreas Thor: NewSQL, SQL on Hadoop

Repartition Join: Extended Key

* Reducer needs to buffer all values per key
— No specific order of reduce values in list; sequential access to list only

 Key extension (+ adjusted grouping and sorting comparators)
— Extend map output key by relation name; group by attribute only

— Sorting so that keys of small relation (S) are before keys of large relation (R)
— Reduce buffering for S keys only

« Example

Naive Extended Key
(2, R:ay) (2:5, c,)
(2, S:cC,) (2:B, a,)
(2, R:ay) (2:R, a6)
(2, R:a,) (2:R, a,)
(2, R:ay) (2:R, ag)
(2, S:cy)

Ne

Andreas Thor: NewSQL, SQL on Hadoop 18 @

Broadcast Join

" . 8 a | b
* Repartition Join: Large map output a3
— All tuples are sorted between map and a, 3
reduce > high network traffic 2| o
. G| 2
« Common scenario: [R| >> |5 a. 3
— Example: Logfile = User g 2
s | 2
dg 2

* Join computation in the map phase;
no reduce phase

— Use small relation (S) as 1 o
additional map input § zz

3

 Data transfer 4 ¢,

— Small relation is sent to all n nodes — n-|$
— No transfer of R: map task consumes local map partition
— Repartition-Join: |R|+|S|

Andreas Thor: NewSQL, SQL on Hadoop

Evaluation

Size (bytes)

11MB 32MB 110MB 1GB 10GB 32GB 106GB
1000

Data size sent through the network
I #record Repartition | Broad-

oL (Relation S) | (ext. Key) | cast

0.3-10® 145GB 6 GB

10-106 145GB 195 GB
_ 300-108 151 GB 6240 GB

'

750 |

Time (seconds)
o
o
o

« Prefer broadcast for small S

250 | - e ,
Repariiionng -+ |+ Repartitioning: Benefit of
Repart. K -
epart (en. Key) extended key
Semi-Join | —m—
0 | | 1 1 |
0.1 0.3 1 10 100 300 1000

records (millions)

Blanas et al.: A Comparison of Join Algorithms for Log Processing in MapReduce. SIGMOD 2010
Andreas Thor: NewSQL, SQL on Hadoop 20 ‘

SQL on Hadoop

Apache Hive Apache Spark SQL Apache Drill
Operation Mode Batch Procedural Interactive
Scenario Data-Warehouse-like ~ Complex Data Analysis Interactive Data
queries Algorithms (e.g., Discovery
ETL processing Machine Learning) (Exploration)
Latency high medium low
Language HiveQL (SQL-like) Mix Spark code (Java/ ANSI SQL
Scale) with SQL
Data Sources Hadoop Hadoop, Hive Tables, = Hadoop, NoSQL
JDBC (joining different data
sources)
Schema Relational, Relational, JSON, On-the-fly
Pre-defined Pre-defined (,schema-free)

Translates into MapReduce & Spark ~ Spark

Andreas Thor: NewSQL, SQL on Hadoop 21 @

From SQL on Hadoop to NewSQL

P =
g 3 (s
L
£ s © _|o &
2 S sE sC e
> o2
I 7 E|Fx|lo| 5 =
©
o

Shared Nothing Cluster

Andreas Thor: NewSQL, SQL on Hadoop 22 ‘

NewSQL: Definition

« “... delivers the scalability and flexibility promised by NoSQL while
retaining the support for SQL queries and/or ACID, or to improve
performance for appropriate workloads.” (451 group)

* NewSQL: An Alternative to NoSQL and Old SQL for New OLTP Apps
(by Michael Stonebraker)
— SQL as the primary interface
— ACID support for transactions
— Non-locking concurrency control
— High per-node performance
— Scalable, shared nothing architecture

Matt Asslet, 451 Group, 2011: https://www.451research.com/report-short?entityld=66963
Michael Stonebraker, 2011: http://cacm.acm.org/blogs/blog-cacm/109710

Andreas Thor: NewSQL, SQL on Hadoop 23 @

RBDMS Design Principles

« RBDMS developed for shared-memory and (later) shared-disk
architectures
— Cloud / Data Center: Shared Nothing

« RDBMS store data on hard-drive disks; main memory for caching only
— Cloud / Data Center: large amount of main memory affordable; solid state disks

]
+*

Amazon EC2 price history
EC2 for 1TB main memory

T On-Demand
L -

o an
& 7
-~

iHRREIEY

MmO e = = = - = £t E £ =5 § =
£ 5 535 5 53 3 K 5 .__ : 5 5 5 % 8 § _, = E E .__ E g z 5 5 % 3
A 8 B S @ o

. RDBMS |mplement Recovery using dISk based Logflles

— Cloud / Data Center: Fast recovery via data copying through the network possible

« RDBMS support Multi-Threading (on a single core)

— T2 can be started if T1 is still waiting for data (from disk) = long transactions should
not block short transactions = low latency

— Cloud / Data Center: Multi core nodes, large main memory
Andreas Thor: NewSQL, SQL on Hadoop 24 @

RDBMS Overhead

« “Removing those overheads and running the database in main memory
would yield orders of magnitude improvements in database performance”

Useful work
» Retrieve / update data

Buffer Management

» Mapping records to pages for
block-wise storage on disk

— Not needed anymore for In-
Memory-Databases

Index Management

Logging
» Write & read log files (write-

Locking & Latching ahead logging)

 Concurrency control » ReDo Recovery (after outage),
(locking protocols), deadlock handling UnDo Recovery (after

 Short-term locks in multi-threading (latching) transaction failures)

— Reduce overhead for Isolated Execution — ReDo by “Copy from Replica”
(e.g., no multi-threading) possible; avoid UnDo cases

Harizopoulos, S. et. al., “OLTP: Through the Looking Glass and What We Found There,” SIGMOD, June 200
Andreas Thor: NewSQL, SQL on Hadoop 25

HStore: Overview

* Distributed, row-store-based, main memory relational database
— Cluster of nodes (shared-nothing); multiple sites per node
— Site = single-threaded daemon on a single CPU — no latching
— Row-store (B-Tree) in main memory — no buffer management

* Transactions
— No ad-hoc SQL queries; pre-defined stored Procedures (SP) only
— Classification of transactions (e.g., “single / multi partition”, “two phase”)
— Global ordering of transactions — strong consistency
- ACID

— Direct data access / transfer (no ODBC)

* Recovery
— Replica-based recovery — no logging needed

* VolItDB (commercial) ~ HStore (open source / research prototype)

Andreas Thor: NewSQL, SQL on Hadoop 26 @

HStore: Site Architecture

: Database] [Cluster]
. Schema Information

:[Stored] [Sample]
X Procedures Workload

[Deployment Framework

l Database Designer l

[Query Planner/Optimizer]

| Compiled Stored l
l Query Plans]l Physical Layout l

Deployment Time

- - B s 8B 8 8 g

{

[ourpapplication |

l H-Store API

- - . w =

Messaging Fabric

¥

Transaction Manager

Stored Procedure Executor]

~—

Other Cluster
Execution Nodes

=

Query Execution Engine

System Catalogs]

Main Memory
Storage Manager

Runtime Time

Jones, Abadi, and Madden, "Low overhead concurrency control for partitioned main memory databases,“ SIGMOD 2010

Andreas Thor: NewSQL, SQL on Hadoop

27

OLTP transaction in Web Applications

 Focus of web applications: Scalability, scalability, scalability
— Limited flexibility on transactions is ok

 QObservations: Transactions ...
— ... often touch data of current user only
— ... modify few records only
— ... are known a-priori, i.e., no ad-hoc queries needed
— ... are comparatively simple

Andreas Thor: NewSQL, SQL on Hadoop 28 @

Data Partitioning: Tree Schema

» Most schemas (for web applications) are “tree schemas”

— One (or more) root tables (e.g., warehouse)
— Other tables have (multiple) one-to-may relationships to root table

TPC-C Schema

WAREHOUSE

ITEM

v —

DISTRICT STOCK
CUSTOMER
ORDERS 2> ORDER_ITEM

Andy Pavlo: NewSQL, 2012

Andreas Thor: NewSQL, SQL on Hadoop

=

Schema Tree

WAREHOUSE

— ~

DISTRICT

v

CUSTOMER

v

ORDERS

v

ORDER_ITEM

STOCK

ITEM

9 &

Horizontal Partitioning Goal: Single-Partition
Transactions

» Horizontal partitioning of the root table
— Child tables are partitioned accordingly
— Replication of unrelated tables

Schema Tree Partitions

P1 P2 P3 P4 PS5

HStore: Infrastructure

Ar

H-Store

—

Client _Library

Single
Partition

Client I__ibrary

Fragment

Multi
Partition

Central
Coordinator

Node 1

Data
Partition 2

Primary

Data

Partition 1
Primary

Data
Partition 1

Data
Partition 4

Backup

Backup

Replication Messages

Clients i i i

Clienf _Library

|

Fragment

l

Node 2

Data

Partition 3

Data

Primary / Primary

Partition 4

=
~~._ Node 4
V\
Data Data
Partition 3 Partition 2
Backup Backup

Single Partition Transactions

* Client sends single partition transaction to (node of) primary partition

— Primary forwards to Secondary (Backup)
— Execute transactions by node_id + timestamp (nodes are time-synchronized)

* Independent, parallel execution on all partitions
— Each nodes achieve the same result (commit oder abort)

— Primary sends back result to client after receiving “acknowledge” from all
secondaries > Strong Consistency

— If node fails = copy partition replica = No ReDo logging

* Transactions are executed sequentially on every node (single-thread)
—> No Concurrency Control

» “Two phase” transaction ;Z[ﬁiﬂﬁﬁ;
— Format: “read(s), check for consistency, write(s)”
y =100 ?

— => No UnDo logging necessary
write(a, x+100)
write(b, y-100)

Andreas Thor: NewSQL, SQL on Hadoop 32 @

Multi Partition Transactions

* Multi Partition Transaction are controlled by a central Coordinator
— Multiple coordinators possible but preserving global order of transactions
 Execution

— Divide Multi Partition Transaction in fragments that are sent to all partitions
— UnDo buffer for undoing transactions in case of failures (e.g., consistency violations)

« Two-Phase Commit Protocol

— Coordination protocol to achieve global result (commit / abort) in distributed
environment

Andreas Thor: NewSQL, SQL on Hadoop 33 @

NewSQL: Overview

New Architectures

New SQL Engines

Middleware

Type Developed “from
scratch”

Examples H-Store / VoltDB
Google Spanner
MemSQL
NuoDB
Clustrix

Characteristics Designed for in-
memory (or flash) as
primary data store

“Plugin” to existing

RDBMS (e.g., MySQL)

MySQL Cluster
ScaleDB
Tokutek

Reuse components
from RDBMS
framework

Additional layer on top
of RDBMS

Schooner MySQL
ScaleArc

ScaleBase
dbShards

Transparent clustering/
sharding for scalability

Andreas Thor: NewSQL, SQL on Hadoop

summary
« SQL on Hadoop: ,Add SQL to NoSQL*

— Frameworks leveraging (parts of) the Hadoop infrastructure
— SQL-like queries on (semi-)structured data (files) and NoSQL (OLAP)
— Techniques: SQL-to-MR-translation, Query optimization, Metadata

« NewSQL: ,Add Scalability to RDBMS®

— New type of RDBMS in a shared-nothing cluster
— SQL and ACID transactions (OLTP)
— Techniques: In-Memory, Data Partitioning, Pre-defined SQL statements

Andreas Thor: NewSQL, SQL on Hadoop

