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Abstract

We classify data quality problems that are addressed by data cleaning and provide an overview of the
main solution approaches. Data cleaning is especially required when integrating heterogeneous data
sources and should be addressed together with schema-related data transformations. In data ware-
houses, data cleaning is a major part of the so-called ETL process. We also discuss current tool support
for data cleaning.

1 Introduction
Data cleaning, also calleddata cleansingor scrubbing, deals with detecting and removing errors and incon-
sistencies from data in order to improve the quality of data. Data quality problems are present in single data
collections, such as files and databases, e.g., due to misspellings during data entry, missing information or other
invalid data. When multiple data sources need to be integrated, e.g., in data warehouses, federated database
systems or global web-based information systems, the need for data cleaning increases significantly. This is
because the sources often contain redundant data in different representations. In order to provide access to accu-
rate and consistent data, consolidation of different data representations and elimination of duplicate information
become necessary.

Data warehouses [6, 16] require and provide extensive support for data cleaning. They load and continuously
refresh huge amounts of data from a variety of sources so the probability that some of the sources contain ”dirty
data” is high. Furthermore, data warehouses are used for decision making, so that the correctness of their data
is vital to avoid wrong conclusions. For instance, duplicated or missing information will produce incorrect or
misleading statistics (”garbage in, garbage out”). Due to the wide range of possible data inconsistencies and the
sheer data volume, data cleaning is considered to be one of the biggest problems in data warehousing. During the
so-called ETL process (extraction, transformation, loading), illustrated in Fig. 1, further data transformations
deal with schema/data translation and integration, and with filtering and aggregating data to be stored in the
warehouse. As indicated in Fig. 1, all data cleaning is typically performed in a separate data staging area before
loading the transformed data into the warehouse. A large number of tools of varying functionality is available
to support these tasks, but often a significant portion of the cleaning and transformation work has to be done
manually or by low-level programs that are difficult to write and maintain.

Federated database systems and web-based information systems face data transformation steps similar to
those of data warehouses. In particular, there is typically awrapperper data source for extraction and ame-
diator for integration [32, 31]. So far, these systems provide only limited support for data cleaning, focusing
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Figure 1: Steps of building a data warehouse: the ETL process

instead on data transformations for schema translation and schema integration. Data is not preintegrated as for
data warehouses but needs to be extracted from multiple sources, transformed and combined during query run-
time. The corresponding communication and processing delays can be significant, making it difficult to achieve
acceptable response times. The effort needed for data cleaning during extraction and integration will further
increase response times but is mandatory to achieve useful query results.

A data cleaning approach should satisfy several requirements. First of all, it should detect and remove all
major errors and inconsistencies both in individual data sources and when integrating multiple sources. The
approach should be supported by tools to limit manual inspection and programming effort and be extensible to
easily cover additional sources. Furthermore, data cleaning should not be performed in isolation but together
with schema-related data transformations based on comprehensive metadata. Mapping functions for data clean-
ing and other data transformations should be specified in a declarative way and be reusable for other data sources
as well as for query processing. Especially for data warehouses, a workflow infrastructure should be supported
to execute all data transformation steps for multiple sources and large data sets in a reliable and efficient way.

While a huge body of research deals with schema translation and schema integration, data cleaning has
received only little attention in the research community. A number of authors focussed on the problem of
duplicate identification and elimination, e.g., [11, 12, 15, 19, 22, 23]. Some research groups concentrate on
general problems not limited but relevant to data cleaning, such as special data mining approaches [29, 30],
and data transformations based on schema matching [1, 21]. More recently, several research efforts propose
and investigate a more comprehensive and uniform treatment of data cleaning covering several transformation
phases, specific operators and their implementation [11, 19, 25].

In this paper we provide an overview of the problems to be addressed by data cleaning and their solution. In
the next section we present a classification of the problems. Section 3 discusses the main cleaning approaches
used in available tools and the research literature. Section 4 gives an overview of commercial tools for data
cleaning, including ETL tools. Section 5 is the conclusion.

2 Data cleaning problems
This section classifies the major data quality problems to be solved by data cleaning and data transformation. As
we will see, these problems are closely related and should thus be treated in a uniform way. Data transformations
[26] are needed to support any changes in the structure, representation or content of data. These transformations
become necessary in many situations, e.g., to deal with schema evolution, migrating a legacy system to a new
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Figure 2: Classification of data quality problems in data sources

information system, or when multiple data sources are to be integrated.
As shown in Fig. 2 we roughly distinguish between single-source and multi-source problems and between

schema- and instance-related problems. Schema-level problems of course are also reflected in the instances; they
can be addressed at the schema level by an improved schema design (schema evolution), schema translation and
schema integration. Instance-level problems, on the other hand, refer to errors and inconsistencies in the actual
data contents which are not visible at the schema level. They are the primary focus of data cleaning. Fig. 2 also
indicates some typical problems for the various cases. While not shown in Fig. 2, the single-source problems
occur (with increased likelihood) in the multi-source case, too, besides specific multi-source problems.

2.1 Single-source problems
The data quality of a source largely depends on the degree to which it is governed by schema and integrity con-
straints controlling permissible data values. For sources without schema, such as files, there are few restrictions
on what data can be entered and stored, giving rise to a high probability of errors and inconsistencies. Database
systems, on the other hand, enforce restrictions of a specific data model (e.g., the relational approach requires
simple attribute values, referential integrity, etc.) as well as application-specific integrity constraints. Schema-
related data quality problems thus occur because of the lack of appropriate model-specific or application-specific
integrity constraints, e.g., due to data model limitations or poor schema design, or because only a few integrity
constraints were defined to limit the overhead for integrity control. Instance-specific problems relate to errors
and inconsistencies that cannot be prevented at the schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = current year - birth year should

hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”);
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not
defined

Table 1: Examples for single-source problems at schema level (violated integrity constraints)

For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that uniqueness
constraints specified at the schema level do not prevent duplicated instances, e.g., if information on the same
real world entity is entered twice with different attribute values (see example in Table 2).

Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously
an important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules during
warehouse design can suggest improvements to the constraints enforced by existing schemas.
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Scope/Problem Dirty Data Reasons/Remarks
Attribute Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one at-
tribute (e.g. in a free-form field)

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Record
type

Word
transpositions

name1= ”J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,. . . );
emp2=(name=”J. Smith”,. . . )

same employee represented twice due
to some data entry errors

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described
by different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined
but wrong

Table 2: Examples for single-source problems at instance level

2.2 Multi-source problems
The problems present in single sources are aggravated when multiple sources need to be integrated. Each source
may contain dirty data and the data in the sources may be represented differently, overlap or contradict. This
is because the sources are typically developed, deployed and maintained independently to serve specific needs.
This results in a large degree of heterogeneity w.r.t. data management systems, data models, schema designs and
the actual data.

At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and struc-
tural conflicts [2, 24, 17]. Naming conflicts arise when the same name is used for different objects (homonyms)
or different names are used for the same object (synonyms). Structural conflicts occur in many variations and
refer to different representations of the same object in different sources, e.g., attribute vs. table representation,
different component structure, different data types, different integrity constraints, etc.

In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g., dupli-
cated records, contradicting records,. . . ). Furthermore, even when there are the same attribute names and data
types, there may be different value representations (e.g., for marital status) or different interpretation of the
values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources may be
provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer to different
points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).

A main problem for cleaning data from multiple sources is to identify overlapping data, in particular match-
ing records referring to the same real-world entity (e.g., customer). This problem is also referred to as the
object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the informa-
tion is only partially redundant and the sources may complement each other by providing additional information
about an entity. Thus duplicate information should be purged out and complementing information should be
consolidated and merged in order to achieve a consistent view of real world entities.

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonymsCustomer/Client, Cid/Cno, Sex/Gender) and structural
conflicts (different representations for names and addresses). At the instance level, we note that there are dif-
ferent gender representations (”0”/”1” vs. ”F”/”M”) and presumably a duplicate record (Kristen Smith). The
latter observation also reveals that whileCid/Cnoare both source-specific identifiers, their contents are not com-
parable between the sources; different numbers (11/493) may refer to the same person while different persons
can have the same number (24). Solving these problems requires both schema integration and data cleaning;
the third table shows a possible solution. Note that the schema conflicts should be resolved first to allow data
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Customer(source 1)
CID Name Street City Sex

11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
24 Christian Smith Hurley St 2 S Fork MN 1

Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax

24 Smith Christoph M 23 Harley St, Chicago IL,
60633-2394

333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South Fork
MN, 48503-5998

444-555-6666

Customers(integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno

1 Smith Kristen L. F 2 Hurley
Place

South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3: Examples of multi-source problems at schema and instance level

cleaning, in particular detection of duplicates based on a uniform representation of names and addresses, and
matching of theGender/Sexvalues.

3 Data cleaning approaches
In general, data cleaning involves several phases

� Data analysis: In order to detect which kinds of errors and inconsistencies are to be removed, a detailed
data analysis is required. In addition to a manual inspection of the data or data samples, analysis programs
should be used to gain metadata about the data properties and detect data quality problems.

� Definition of transformation workflow and mapping rules: Depending on the number of data sources, their
degree of heterogeneity and the ”dirtyness” of the data, a large number of data transformation and cleaning
steps may have to be executed. Sometime, a schema translation is used to map sources to a common data
model; for data warehouses, typically a relational representation is used. Early data cleaning steps can cor-
rect single-source instance problems and prepare the data for integration. Later steps deal with schema/data
integration and cleaning multi-source instance problems, e.g., duplicates. For data warehousing, the control
and data flow for these transformation and cleaning steps should be specified within a workflow that defines
the ETL process (Fig. 1).
The schema-related data transformations as well as the cleaning steps should be specified by a declarative
query and mapping language as far as possible, to enable automatic generation of the transformation code.
In addition, it should be possible to invoke user-written cleaning code and special-purpose tools during a
data transformation workflow. The transformation steps may request user feedback on data instances for
which they have no built-in cleaning logic.

� Verification: The correctness and effectiveness of a transformation workflow and the transformation defini-
tions should be tested and evaluated, e.g., on a sample or copy of the source data, to improve the definitions
if necessary. Multiple iterations of the analysis, design and verification steps may be needed, e.g., since
some errors only become apparent after applying some transformations.

� Transformation: Execution of the transformation steps either by running the ETL workflow for loading and
refreshing a data warehouse or during answering queries on multiple sources.

� Backflow of cleaned data: After (single-source) errors are removed, the cleaned data should also replace
the dirty data in the original sources in order to give legacy applications the improved data too and to avoid
redoing the cleaning work for future data extractions. For data warehousing, the cleaned data is available
from the data staging area (Fig. 1).
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The transformation process obviously requires a large amount of metadata, such as schemas, instance-level
data characteristics, transformation mappings, workflow definitions, etc. For consistency, flexibility and ease of
reuse, this metadata should be maintained in a DBMS-based repository [4]. To support data quality, detailed
information about the transformation process is to be recorded, both in the repository and in the transformed
instances, in particular information about the completeness and freshness of source data and lineage information
about the origin of transformed objects and the changes applied to them. For instance, in Fig. 3, the derived
tableCustomerscontains the attributesCID andCno, allowing one to trace back the source records.

In the following we describe in more detail possible approaches for data analysis (conflict detection), trans-
formation definition and conflict resolution. For approaches to schema translation and schema integration, we
refer to the literature as these problems have extensively been studied and described [2, 24, 26]. Name conflicts
are typically resolved by renaming; structural conflicts require a partial restructuring and merging of the input
schemas.

3.1 Data analysis
Metadata reflected in schemas is typically insufficient to assess the data quality of a source, especially if only a
few integrity constraints are enforced. It is thus important to analyse the actual instances to obtain real (reengi-
neered) metadata on data characteristics or unusual value patterns. This metadata helps finding data quality
problems. Moreover, it can effectively contribute to identify attribute correspondences between source schemas
(schema matching), based on which automatic data transformations can be derived [20, 9].

There are two related approaches for data analysis, data profiling and data mining.Data profiling focusses
on the instance analysis of individual attributes. It derives information such as the data type, length, value range,
discrete values and their frequency, variance, uniqueness, occurrence of null values, typical string pattern (e.g.,
for phone numbers), etc., providing an exact view of various quality aspects of the attribute. Table 3 shows
examples of how this metadata can help detecting data quality problems.

Problems Metadata Examples/Heuristics
Illegal values cardinality e.g., cardinality (gender)> 2 indicates problem

max, min max, min should not be outside of permissible range
variance, deviation variance, deviation of statistical values should not be higher than

threshold
Misspellings attribute values sorting on values often brings misspelled values next to correct values
Missing values null values percentage/number of null values

attribute values + default values presence of default value may indicate real value is missing
Varying value
representations

attribute values comparing attribute value set of a column of one table against that of a
column of another table

Duplicates cardinality + uniqueness attribute cardinality = # rows should hold
attribute values sorting values by number of occurrences; more than 1 occurrence indi-

cates duplicates

Table 3: Examples for the use of reengineered metadata to address data quality problems

Data mininghelps discover specific data patterns in large data sets, e.g., relationships holding between sev-
eral attributes. This is the focus of so-called descriptive data mining models including clustering, summarization,
association discovery and sequence discovery [10]. As shown in [28], integrity constraints among attributes such
as functional dependencies or application-specific ”business rules” can be derived, which can be used to com-
plete missing values, correct illegal values and identify duplicate records across data sources. For example, an
association rule with high confidence can hint to data quality problems in instances violating this rule. So a
confidence of99% for rule ”total = quantity �unit price” indicates that1% of the records do not comply and
may require closer examination.

3.2 Defining data transformations
The data transformation process typically consists of multiple steps where each step may perform schema- and
instance-related transformations (mappings). To allow a data transformation and cleaning system to generate
transformation code and thus to reduce the amount of self-programming it is necessary to specify the required
transformations in an appropriate language, e.g., supported by a graphical user interface. Various ETL tools
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(see Section 4) offer this functionality by supporting proprietary rule languages. A more general and flexible
approach is the use of the standard query language SQL to perform the data transformations and utilize the
possibility of application-specific language extensions, in particular user-defined functions (UDFs) supported
in SQL:99 [13, 14]. UDFs can be implemented in SQL or a general-purpose programming language with
embedded SQL statements. They allow implementing a wide range of data transformations and support easy
reuse for different transformation and query processing tasks. Furthermore, their execution by the DBMS can
reduce data access cost and thus improve performance. Finally, UDFs are part of the SQL:99 standard and
should (eventually) be portable across many platforms and DBMSs.

CREATE VIEW Customer2 (LName, FName, Gender, Street, City, State, ZIP, CID)
AS SELECT LastNameExtract (Name),FirstNameExtract (Name), Sex, Street,CityExtract (City),

StateExtract (City), ZIPExtract (City), CID
FROM Customer

Figure 4: Example of data transformation mapping

Fig. 4 shows a transformation step specified in SQL:99. The example refers to Fig. 3 and covers part
of the necessary data transformations to be applied to the first source. The transformation defines a view on
which further mappings can be performed. The transformation performs a schema restructuring with additional
attributes in the view obtained by splitting the name and address attributes of the source. The required data
extractions are achieved by UDFs (shown in boldface). The UDF implementations can contain cleaning logic,
e.g., to remove misspellings in city names or provide missing zip codes.

UDFs may still imply a substantial implementation effort and do not support all necessary schema trans-
formations. In particular, simple and frequently needed functions such as attribute splitting or merging are not
generically supported but need often to be re-implemented in application-specific variations (see specific ex-
tract functions in Fig. 4). More complex schema restructurings (e.g., folding and unfolding of attributes) are
not supported at all. To generically support schema-related transformations, language extensions such as the
SchemaSQL proposal are required [18]. Data cleaning at the instance level can also benefit from special lan-
guage extensions such as a Match operator supporting ”approximate joins” (see below). System support for
such powerful operators can greatly simplify the programming effort for data transformations and improve per-
formance. Some current research efforts on data cleaning are investigating the usefulness and implementation
of such query language extensions [11, 25].

3.3 Conflict resolution
A set of transformation steps has to be specified and executed to resolve the various schema- and instance-level
data quality problems that are reflected in the data sources at hand. Several types of transformations are to
be performed on the individual data sources in order to deal with single-source problems and to prepare for
integration with other sources. In addition to a possible schema translation, these preparatory steps typically
include:

� Extracting values from free-form attributes (attribute split): Free-form attributes often capture multiple indi-
vidual values that should be extracted to achieve a more precise representation and support further cleaning
steps such as instance matching and duplicate elimination. Typical examples are name and address fields
(Table 2, Fig. 3, Fig. 4). Required transformations in this step are reordering of values within a field to deal
with word transpositions, and value extraction for attribute splitting.

� Validation and correction: This step examines each source instance for data entry errors and tries to correct
them automatically as far as possible. Spell checking based on dictionary lookup is useful for identifying
and correcting misspellings. Furthermore, dictionaries on geographic names and zip codes help to correct
address data. Attribute dependencies (birthdate - age, total price - unit price / quantity, city - phone area
code,. . . ) can be utilized to detect problems and substitute missing values or correct wrong values.

� Standardization: To facilitate instance matching and integration, attribute values should be converted to a
consistent and uniform format. For example, date and time entries should be brought into a specific for-
mat; names and other string data should be converted to either upper or lower case, etc. Text data may
be condensed and unified by performing stemming, removing prefixes, suffixes, and stop words. Further-
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more, abbreviations and encoding schemes should consistently be resolved by consulting special synonym
dictionaries or applying predefined conversion rules.

Dealing with multi-source problems requires restructuring of schemas to achieve a schema integration, in-
cluding steps such as splitting, merging, folding and unfolding of attributes and tables. At the instance level,
conflicting representations need to be resolved and overlapping data must to be dealt with. Theduplicate elim-
ination task is typically performed after most other transformation and cleaning steps, especially after having
cleaned single-source errors and conflicting representations. It is performed either on two cleaned sources at
a time or on a single already integrated data set. Duplicate elimination requires to first identify (i.e. match)
similar records concerning the same real world entity. In a second step, similar records are merged into one
record containing all relevant attributes without redundancy. Furthermore, redundant records are purged. In the
following we discuss the key problem of instance matching. More details on the subject are provided elsewhere
in this issue [22].

In the simplest case, there is an identifying attribute or attribute combination per record that can be used for
matching records, e.g., if different sources share the same primary key or if there are other common unique at-
tributes. Instance matching between different sources is then achieved by a standard equi-join on the identifying
attribute(s). In the case of a single data set, matches can be determined by sorting on the identifying attribute
and checking if neighboring records match. In both cases, efficient implementations can be achieved even for
large data sets. Unfortunately, without common key attributes or in the presence of dirty data such straightfor-
ward approaches are often too restrictive. To determine most or all matches a ”fuzzy matching” (approximate
join) becomes necessary that finds similar records based on a matching rule, e.g., specified declaratively or
implemented by a user-defined function [14, 11]. For example, such a rule could state that person records are
likely to correspond if name and portions of the address match. The degree of similarity between two records,
often measured by a numerical value between 0 and 1, usually depends on application characteristics. For in-
stance, different attributes in a matching rule may contribute different weight to the overall degree of similarity.
For string components (e.g., customer name, company name,) exact matching and fuzzy approaches based on
wildcards, character frequency, edit distance, keyboard distance and phonetic similarity (soundex) are useful
[11, 15, 19]. More complex string matching approaches also considering abbreviations are presented in [23].
A general approach for matching both string and text data is the use of common information retrieval metrics.
WHIRL represents a promising representative of this category using the cosine distance in the vector-space
model for determining the degree of similarity between text elements [7].

Determining matching instances with such an approach is typically a very expensive operation for large data
sets. Calculating the similarity value for any two records implies evaluation of the matching rule on the cartesian
product of the inputs. Furthermore sorting on the similarity value is needed to determine matching records
covering duplicate information. All records for which the similarity value exceeds a threshold can be considered
as matches, or as match candidates to be confirmed or rejected by the user. In [15] a multi-pass approach
is proposed for instance matching to reduce the overhead. It is based on matching records independently on
different attributes and combining the different match results. Assuming a single input file, each match pass
sorts the records on a specific attribute and only tests nearby records within a certain window on whether they
satisfy a predetermined matching rule. This reduces significantly the number of match rule evaluations compared
to the cartesian product approach. The total set of matches is obtained by the union of the matching pairs of
each pass and their transitive closure.

4 Tool support
A large variety of tools is available on the market to support data transformation and data cleaning tasks, in
particular for data warehousing.y Some tools concentrate on a specific domain, such as cleaning name and
address data, or a specific cleaning phase, such as data analysis or duplicate elimination. Due to their restricted
domain, specialized tools typically perform very well but must be complemented by other tools to address the
broad spectrum of transformation and cleaning problems. Other tools, e.g., ETL tools, provide comprehensive
transformation and workflow capabilities to cover a large part of the data transformation and cleaning process.

yFor comprehensive vendor and tool listings, see commercial websites, e.g., Data Warehouse Information Center
(www.dwinfocenter.org), Data Management Review (www.dmreview.com), Data Warehousing Institute (www.dw-institute.com)
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A general problem of ETL tools is their limited interoperability due to proprietary application programming
interfaces (API) and proprietary metadata formats making it difficult to combine the functionality of several
tools [8].

We first discuss tools for data analysis and data rengineering which process instance data to identify data
errors and inconsistencies, and to derive corresponding cleaning transformations. We then present specialized
cleaning tools and ETL tools, respectively.

4.1 Data analysis and reengineering tools
According to our classification in 3.1,data analysis toolscan be divided into data profiling and data mining
tools. MIGRATIONARCHITECT (EvokeSoftware) is one of the few commercialdata profiling tools. For each
attribute, it determines the following real metadata: data type, length, cardinality, discrete values and their
percentage, minimum and maximum values, missing values, and uniqueness. MIGRATIONARCHITECT also as-
sists in developing the target schema for data migration.Data mining tools, such as WIZRULE (WizSoft) and
DATA MININGSUITE (InformationDiscovery), infer relationships among attributes and their values and com-
pute a confidence rate indicating the number of qualifying rows. In particular, WIZRULE can reveal three
kinds of rules: mathematical formula, if-then rules, and spelling-based rules indicating misspelled names, e.g.,
”value Edinburgh appears 52 times in field Customer; 2 case(s) contain similar value(s)”. W IZRULE

also automatically points to the deviations from the set of the discovered rules as suspected errors.
Data reengineering tools, e.g., INTEGRITY (Vality), utilize discovered patterns and rules to specify and per-

form cleaning transformations, i.e., they reengineer legacy data. In INTEGRITY, data instances undergo several
analysis steps, such as parsing, data typing, pattern and frequency analysis. The result of these steps is a tabular
representation of field contents, their patterns and frequencies, based on which the pattern for standardizing
data can be selected. For specifying cleaning transformations, INTEGRITY provides a language including a set
of operators for column transformations (e.g., move, split, delete) and row transformation (e.g., merge, split).
INTEGRITY identifies and consolidates records using a statistical matching technique. Automated weighting
factors are used to compute scores for ranking matches based on which the user can select the real duplicates.

4.2 Specialized cleaning tools
Specialized cleaning tools typically deal with a particular domain, mostly name and address data, or concentrate
on duplicate elimination. The transformations are to be provided either in advance in the form of a rule library or
interactively by the user. Alternatively, data transformations can automatically be derived from schema matching
tools such as described in [21].

� Special domain cleaning: Names and addresses are recorded in many sources and typically have high cardi-
nality. For example, finding customer matches is very important for customer relationship management. A
number of commercial tools, e.g.,IDCENTRIC (FirstLogic), PUREINTEGRATE (Oracle), QUICKADDRESS

(QASSystems), REUNION (PitneyBowes), and TRILLIUM (TrilliumSoftware), focus on cleaning this kind
of data. They provide techniques such as extracting and transforming name and address information into
individual standard elements, validating street names, cities, and zip codes, in combination with a match-
ing facility based on the cleaned data. They incorporate a huge library of pre-specified rules dealing with
the problems commonly found in processing this data. For example, TRILLIUM ’s extraction (parser) and
matcher module contains over 200,000 business rules. The tools also provide facilities to customize or
extend the rule library with user-defined rules for specific needs.

� Duplicate elimination: Sample tools for duplicate identification and elimination include DATACLEANSER

(EDD), MERGE/PURGELIBRARY (Sagent/QMSoftware),MATCHIT (HelpITSystems), and MASTERMERGE

(PitneyBowes). Usually, they require the data sources already be cleaned for matching. Several approaches
for matching attribute values are supported; tools such as DATACLEANSER and MERGE/PURGELIBRARY

also allow user-specified matching rules to be integrated.

4.3 ETL tools
A large number of commercial tools support the ETL process for data warehouses in a comprehensive way,
e.g., COPYMANAGER (InformationBuilders), DATA STAGE (Informix/Ardent), EXTRACT (ETI), POWERMART

(Informatica), DECISIONBASE (CA/Platinum), DATATRANSFORMATIONSERVICE (Microsoft), METASUITE
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(Minerva/Carleton), SAGENTSOLUTIONPLATFORM (Sagent) and WAREHOUSEADMINISTRATOR (SAS). They
use a repository built on a DBMS to manage all metadata about the data sources, target schemas, mappings,
script programs, etc., in a uniform way. Schemas and data are extracted from operational data sources via both
native file and DBMS gateways as well as standard interfaces such as ODBC and EDA. Data transformations
are defined with an easy-to-use graphical interface. To specify individual mapping steps, a proprietary rule
language and a comprehensive library of predefined conversion functions are typically provided. The tools also
support reusing existing transformation solutions, such as external C/C++ routines, by providing an interface
to integrate them into the internal transformation library. Transformation processing is carried out either by an
engine that interprets the specified transformations at runtime, or by compiled code. All engine-based tools (e.g.,
COPYMANAGER, DECISIONBASE, POWERMART, DATA STAGE, WAREHOUSEADMINISTRATOR), possess a
scheduler and support workflows with complex execution dependencies among mapping jobs. A workflow
may also invoke external tools, e.g., for specialized cleaning tasks such as name/address cleaning or duplicate
elimination.

ETL tools typically have little built-in data cleaning capabilities but allow the user to specify cleaning func-
tionality via a proprietary API. There is usually no data analysis support to automatically detect data errors and
inconsistencies. However, users can implement such logic with the metadata maintained and by determining
content characteristics with the help of aggregation functions (sum, count, min, max, median, variance, devia-
tion,). The provided transformation library covers many data transformation and cleaning needs, such as data
type conversions (e.g., date reformatting), string functions (e.g., split, merge, replace, sub-string search), arith-
metic, scientific and statistical functions, etc. Extraction of values from free-form attributes is not completely
automatic but the user has to specify the delimiters separating sub-values.

The rule languages typically coverif-thenandcaseconstructs that help handling exceptions in data values,
such as misspellings, abbreviations, missing or cryptic values, and values outside of range. These problems
can also be addressed by using a table lookup construct and join functionality. Support for instance matching
is typically restricted to the use of the join construct and some simple string matching functions, e.g., exact
or wildcard matching and soundex. However, user-defined field matching functions as well as functions for
correlating field similarities can be programmed and added to the internal transformation library.

5 Conclusions
We provided a classification of data quality problems in data sources differentiating between single- and multi-
source and between schema- and instance-level problems. We further outlined the major steps for data transfor-
mation and data cleaning and emphasized the need to cover schema- and instance-related data transformations
in an integrated way. Furthermore, we provided an overview of commercial data cleaning tools. While the
state-of-the-art in these tools is quite advanced, they do typically cover only part of the problem and still require
substantial manual effort or self-programming. Furthermore, their interoperability is limited (proprietary APIs
and metadata representations).

So far only a little research has appeared on data cleaning, although the large number of tools indicates both
the importance and difficulty of the cleaning problem. We see several topics deserving further research. First of
all, more work is needed on the design and implementation of the best language approach for supporting both
schema and data transformations. For instance, operators such as Match, Merge or Mapping Composition have
either been studied at the instance (data) or schema (metadata) level but may be built on similar implementation
techniques. Data cleaning is not only needed for data warehousing but also for query processing on hetero-
geneous data sources, e.g., in web-based information systems. This environment poses much more restrictive
performance constraints for data cleaning that need to be considered in the design of suitable approaches. Fur-
thermore, data cleaning for semi-structured data, e.g., based on XML, is likely to be of great importance given
the reduced structural constraints and the rapidly increasing amount of XML data.
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