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Abstract. Current data integration approaches are mostly limited to
few data sources, partly due to the use of binary match approaches be-
tween pairs of sources. We thus advocate for the development of more
holistic, clustering-based data integration approaches that scale to many
data sources. We outline different use cases and provide an overview
of initial approaches for holistic schema/ontology integration and entity
clustering. The discussion also considers open data repositories and so-
called knowledge graphs.

1 Introduction

Data integration aims at providing uniform access to data from multiple sources
[17]. It has become a pervasive task for data analysis in business and scientific
applications. The most popular data integration approaches such as data ware-
houses or big data platforms utilize a physical data integration where the source
data is combined within a new dataset or database tailored for analysis tasks.
This is in contrast to virtual data integration where data entities remain in their
original data sources and are accessed at runtime, e.g., for federated query pro-
cessing. Federated query processing has also become popular in the so-called
Web of Data, also referred to as Linked Open Data (LOD), and is supported by
semantic links interconnecting different sources [67,63].

Key tasks for data integration include data preprocessing (data cleaning [62],
data enrichment), entity resolution (data matching) [20,13], entity fusion [9], as
well as matching and merging metadata models such as schemas and ontolo-
gies [61,7]. Data enrichment can often be achieved by linking entities and/or
metadata such as attribute names to background knowledge resources (e.g., dic-
tionaries, ontologies, knowledge graphs), which is a non-trivial mapping and data
integration problem in itself [68]. The different data integration tasks have been
the focus of a huge amount of research and development. Still, the mentioned
tasks are inherently complex and are in many cases not performed fully automat-
ically but incur a high degree of manual interaction. This is because data sources
may be of low data quality, may be unstructured or follow different data formats
(relational, JSON, etc.) and exhibit a high degree of semantic heterogeneity since
they are mostly developed independently for different purposes.

These problems increase with the number of data sources to be integrated.
As a result, most data integration approaches and efforts focus on only a few
data sources. Data matching and schema matching approaches mostly determine
correspondences (links) between only two sources. While pairwise matching is a



building block for most data integration solutions, the sole generation of such
binary mapping approaches does not scale to many data sources as the number
of possible mappings increases quadratically with the number of sources. For
example, fully interlinking 200 LOD sources would require the determination
and maintenance of almost 20,000 mappings.

We thus see a strong and increasing need for holistic data integration ap-
proaches that can integrate many data sources. To be scalable, holistic data in-
tegration should not be limited to pairwise matching and integration of sources
but support a clustering-based integration of both metadata1 and instance data
to holistically combine the information from many sources. The need for such
holistic approaches is fueled by the availability of relevant data in millions of web-
sites and the provision of large data and metadata collections in public (open
data) repositories. Platforms such as data.gov, www.opensciencedatacloud.org,
datahub.io and webdatacommons.org contain thousands of datasets and millions
of web extractions (e.g., web tables) for many topics in different domains. There
are also repositories for metadata (schemas, ontologies) and mappings, e.g.,
schema.org, medical-data-models.org, Linked Open Vocabularies (lov.okfn.org),
BioPortal [52], and LinkLion [49], supporting the re-use of this information to
facilitate data integration tasks.

To achieve scalability to many sources, holistic data integration approaches
should be fully automatic or require only minimal manual interaction. It should
also be easily possible to add and utilize additional data sources and deal with
changes in the data sources. As with all data integration approaches, high effi-
ciency and high data integration quality need to be supported which becomes
more challenging due to the increased number of (heterogeneous) sources and
the typically much increased data volume. High efficiency asks for the utiliza-
tion of powerful (big data) platforms for parallel processing and blocking-like
techniques to reduce the search space for match tasks. Achieving high data in-
tegration quality and avoiding/minimizing manual interaction are contradictory
goals so that viable compromises need to be found.

The main goal of this paper is to motivate the need for holistic data integra-
tion with different use cases and to provide an overview of initial approaches. In
Section 2, we outline six use cases for holistic integration of metadata or entities.
Section 3 discusses approaches to match and merge many schemas and ontolo-
gies as well as the use of open data repositories. In Section 4, we focus on the
holistic clustering of entities of different types, e.g. for LOD sources or to de-
termine knowledge graphs. Finally, we summarize our observations and discuss
opportunities for future research.

1 In this paper, we are only concerned with metadata in the form of schemas and
ontologies and their components like attributes or concepts. We are thus not consid-
ering the wide range of additional metadata (e.g., provenance information, creator,
creation time, etc.) despite their importance, e.g., for data quality.



2 Use cases

Table 1 lists six examples for holistic data integration together with estimates on
the number of domains, the number of sources, features about the kind of data
integration (physical vs. virtual), and whether the focus is on data integration
for metadata (schemas/ontologies) and/or instance data. We also indicate the
kind of clustering and to what degree data integration can likely be automated.

The first two use cases, meta-search and the use of open data, focus on simple
schemas such as web forms or tables consisting of relatively few attributes. Meta-
search is a virtual data integration approach based on metadata integration.
The goal is to integrate the search forms of several databases of the so-called
hidden web to support a meta-search across all sources, e.g., for comparing
products from different online shops. Schema integration mainly entails grouping
or clustering similar attributes, which is simpler than matching and merging
complex schemas. As a result, scalability to dozens of sources is typically feasible.
Proposed approaches include Wise-Integrator and MetaQuerier [33,12].

A completely different situation is when there is an enormous number of
datasets such as web tables made available within open data repositories. The
physically collected datasets are typically from diverse domains and initially
not integrated at all. To enable their usability, e.g., for query processing, it is
useful to group the datasets into different domains and to semantically annotate
attributes. Google Fusion Tables has demonstrated the utilization of millions of
such semantically annotated web tables to better answer certain search queries
[4]. Semantically enriched attributes could also be used to match and cluster
datasets such as web tables within the repository. Problems similar to those
for open data repositories arise for so-called “data lake” approaches to collect
datasets in their original format for later use [55,27].

degree of

Use case Data integration #domains #sources clustering? automated data

type integration

1) meta-search virtual metadata 1 low - attributes medium

medium

2) open data physical primarily many very (possible) high, but limi-

collection metadata high ted integration

3) integrated physical metadata 1+ low - concepts low -

ontology medium medium

4) knowledge physical data + many low - entities + medium -

graphs metadata high concepts/ high

attributes

5) entity search physical data (+ 1 very entities high

engines metadata) high

6) comparison physical/ data + 1+ high entities high

portal hybrid metadata

Table 1. Use cases for holistic data integration.



The next two use cases are concerned with physical data integration to deter-
mine integrated background knowledge resources such as large domain ontologies
or multi-domain knowledge graphs. In the first case (use case 3) the goal is to
semantically merge several related ontologies into a combined ontology to con-
sistently represent the knowledge of a domain. This implies the identification of
synonymous concepts across all source ontologies as well as the derivation of a
consistent ontology structure for these concepts and their relations. An example
of such an integration effort is the biomedical ontology UMLS Metathesaurus
[10] which currently (2016) combines more than three million concepts and more
than 12 million synonyms from more than 100 biomedical ontologies and vo-
cabularies. The integration process is highly complex and involves a significant
effort by domain experts. Another example for holistic metadata integration is
the construction of an integrated product catalog from several merchant-specific
catalogs, e.g., for price comparisons.

The generation of so-called knowledge graphs [18] is a related use case for
holistic data integration where concepts as well as entities from different sources
are physically integrated. Popular knowledge graphs in the Web of Data are
DBpedia, Yago and Wikidata [3,41,70,73] that extract information about mil-
lions of real-world entities (such as persons or locations) of different domains
as well as concepts from other resources such as Wikipedia or WordNet. The
entities are placed within a categorization or class (concept) hierarchy and in-
terlinked with a variety of semantic relationships. Web search engines such as
Google or Bing utilize even larger knowledge graphs [51] combining information
from additional resources as well as from web pages and search queries. Knowl-
edge graphs can provide valuable background knowledge, e.g., to enrich entities
mentioned in text documents or to enhance the search results for web queries.
Web-scale knowledge graphs for many domains ask for highly automated data
integration methods but face substantial challenges regarding data quality and
semantic heterogeneity [18,26]. So-called enterprise knowledge graphs focus on
the datasets relevant for an enterprise and their semantic integration [22].

Entity search engines such as Google Scholar or Bing Shopping (use case 5)
cluster corresponding entities such as publication records or product offers from
thousands to millions of data sources or web pages. The focus is on physical
clustering at the instance level. The quality and usability of clustering can be
improved by assigning the entities to categories, e.g., for products, which may be
arranged in a product catalog, e.g., organized as a hierarchical taxonomy. Com-
parison portals for hotel bookings, product offers, etc. (use case 6) are similar to
entity search engines in that they cluster comparable offers for the same product
or booking request. They are typically more selective in the sources they include
and may obtain their data in curated form rather than by extracting the entities
from web pages as in the case of Google Scholar. Data integration is mostly
physical but may also be virtual to retrieve the most recent information, e.g.,
about the availability of bookable items such as flight seats or hotel rooms. Fur-
thermore, the categorization of entities along different dimensions is the norm
to enhance the browsing and search facilities for portal users. This kind of use



case involves highly challenging data integration problems, in particular to au-
tomatically cluster a huge number of continuously updated product offers from
many sources within thousands of product categories described by different sets
of attributes and schemas [54].

The discussed use cases show that holistic data integration has wide applica-
bility with significant differences in the considered characteristics. All use cases
with a large number of sources utilize physical data integration and are primarily
focused on instance-level integration based on a clustering of matching entities.
By contrast, metadata integration is limited to a small to medium number of
sources and depends more on manual interaction to deal with the typically high
complexity. Holistic metadata integration can utilize a clustering of concept syn-
onyms as well as a clustering of attributes per concept or entity type. Virtual
data integration generally depends on metadata integration and is thus of limited
scalability for complex sources. Scalability of virtual integration is also impaired
by likely performance problems for queries involving many sources that typically
differ in their capacity, utilization and availability.

3 Holistic integration of schemas and ontologies
Most work on the integration of schemas and ontologies has focused on the pair-
wise matching of such models, i.e., determining semantically corresponding ele-
ments such as pairs of matching schema attributes or ontology concepts [61,21,7].
Matches are usually identified by a combination of techniques to determine the
similarity of elements. This includes 1. the linguistic similarity of element names
(based on string similarity measures or synonym information from background
knowledge resources such as dictionaries), 2. the structural similarity of elements
(e.g., based on the similarity of ancestors and/or descendants) and 3. the simi-
larity of associated instance data. The set of determined match correspondences
forms a mapping between the two aligned schemas/ontologies. Such match map-
pings are useful input to merge or integrate the respective models since they
indicate the elements that should only be represented once in the integrated re-
sult. In fact, several such mapping-based merge approaches have been proposed
for both schemas [58,59] and ontologies [64].

In the following, we first discuss proposed holistic match and merge ap-
proaches for complex schemas and ontologies, including for LOD sources. Af-
terwards we discuss proposed data integration approaches for simple schemas
such as web forms and web tables.

Complex schemas and ontologies

In principle, the pairwise matching and merging can be applied to more than
two models by incrementally matching and merging two models at a time. For
instance, one can use one of the schemas as the initial integrated schema and
incrementally match and merge the next source with the intermediate result until
all source schemas are integrated. Such a binary integration strategy for multiple
schemas has already been considered in early work on schema integration [6],
however based on a largely manual process. More recently it has been applied



Fig. 1. Composition of mappings to match many schemas

within the Porsche approach [66] to automatically merge many tree-structured
XML schemas. The approach holistically clusters all matching elements in the
nodes of the integrated schema. The placement of new source elements not found
in the (intermediate) integrated schema is based on a simplistic heuristic only. A
general problem of incremental merge approaches is that the final merge result
depends on the order in which the input schemas are matched and merged.

The matching between many schemas and ontologies can be facilitated by
the re-use of previously determined mappings between such models, especially if
such mappings are available in repositories like Bio-Portal [52]. Such a re-use of
mappings has already been proposed in the 2001 survey [61] and several match
approaches are utilizing re-use techniques based on a repository of schemas and
mappings [16,43,65]. A simple and effective approach is based on the compo-
sition of existing mappings to quickly derive new mappings. In particular, one
can derive a new mapping between schemas S1 and S2 by composing existing
mappings, e.g., mappings between S1and Si and between Si and S2 for any
intermediate schema Si (Fig. 1 left). Such composition approaches have been
investigated in [23,28] and were shown to be very fast and also effective, espe-
cially if one can combine several such derived mappings for improved coverage
of the schemas to be matched. A promising strategy is to utilize a hub schema
(ontology) per domain to which all other schemas are mapped. Then one can
derive a mapping between any two schemas by composing their mappings with
the hub schema (Fig. 1 right).

The next step would be to integrate all schemas with the hub schema together
with a clustering of the matching elements. Such integrated hub ontologies have
been determined in the life sciences, e.g., UMLS [10] and Uberon [45], although
with the need of a large amount of manual work by domain experts to achieve a
high-quality integration result. A more automatic integration becomes feasible
for the integration of simpler ontologies such as dictionaries or thesauri. An ex-
ample is the SemRep repository [2] combining millions of concepts and semantic
relations (equal, is-a, part-of, etc.) between them extracted from Wikipedia as
well as obtained from existing resources such as WordNet.

Pairwise matching has been applied in [35] to match the terms of more than
4000 web-extracted ontologies (including large LOD sources such as DBpedia)



with a total of more than 2 million terms. The match process using a state-of-
the-art match tool took about one year on six computers showing the insufficient
scalability of pairwise matching. A holistic matching of concepts in LOD sources
has been proposed in [25]. The authors first cluster the concepts within differ-
ent topical groups and then apply pairwise matching of concepts within groups
to finally determine clusters of matching concepts. For clustering and match-
ing they derive keywords from the concept labels and descriptions, determine
associated (trees of) categories in Wikipedia and use these to derive concept
similarities (similarly as for the BLOOMS match technique [36]). In the evalua-
tion, the authors originally considered 1 million concepts from which less than
30% could be annotated with Wikipedia categories. Topical grouping was then
possible for 162K concepts (using the preferred configuration) that were assigned
to about 32K groups with a maximal size of about 5K concepts. Matching for the
largest group took more than 30 hours. The approach is an interesting first step
but it requires improved scalability and coverage, e.g., by applying additional
match techniques than the use of Wikipedia categories. Furthermore, clustering
is needed not only for concepts but also for LOD entities (Section 4).

Simple schemas

The holistic integration of many schemas has mainly been studied for simple
schemas such as web forms and web tables (use cases 1 and 2). As we will discuss
in the following, previous work for web forms focused on their integration within
a mediated schema as well as on their categorization into different domains.
For web tables, the focus has been on the semantic annotation and matching of
attributes.

The integration of web forms has been studied to support a meta-search
across deep web sources [33,12]. Schema integration implies clustering all simi-
lar attributes from the web forms, mainly based on the linguistic similarity of
the attribute names (labels) [60]. The approaches also observe that similarly
named attributes co-occuring in the same schema (e.g., FirstName and Last-
Name) do not match and should not be clustered together [31]. Das Sarma and
colleagues propose the automatic generation of a so-called probabilistic medi-
ated schema from n input schemas, which is in effect a ranked list of several
mediated schemas [14]. Their proposed approach only considers the more fre-
quently occurring attributes and uses their pairwise similarities for determining
the different mediated schemas.

The holistic integration of several schemas is generally only relevant for
schemas of the same application domain. For a very large number of schemas,
it is thus important to first categorize schemas by domain. Several approaches
have been proposed for the automatic domain categorization problem of web
forms [32,5,44], typically based on a clustering of attribute names and the use of
further features such as explaining text in the web page where the form is placed.
While approaches such as [32,5] considered the domain categorization for only
few predefined domains, Mahmnoud and Aboulnaga [44] cluster schemas into
a previously unknown number of domain-like groups that may overlap. In [19],



this approach has also been applied for a domain categorization of web tables
from a large corpus.

For huge collections of web tables the domain categorization is especially im-
portant but cannot successfully be accomplished by only considering attribute
names which are often cryptic or very general. This is also a problem for further
tasks such as finding related web tables (e.g., to answer queries or to extend
web tables with additional attributes) or matching attributes within a corpus
of web tables. Hence, it is necessary to consider additional information such as
the attribute (instance) values in tables as well as information from the table
context in the web pages [4]. Furthermore, it is necessary to semantically en-
rich attribute information by utilizing external background information such as
knowledge graphs, in particular to determine the semantic data type or con-
cept classes of attributes, e.g., company, politician, date-of-birth, country, cap-
ital, population etc. Also, relationships between attributes of the same table
should be identified. Such semantic enrichment approaches have been investi-
gated in [42,72,74,15,30] utilizing different knowledge resources such as Yago,
DBpedia, or Probase. In [72], Google researchers utilized web-crawled knowl-
edge of about 60,000 classes with at least 10 associated entities to find about
1.5 million “subject” attributes in a web table corpus (about 8 times more than
using the Wikipedia-based Yago knowledge base).

The Infogather system [76] utilizes such enriched attribute information to
match web tables with each other. To limit the scope they determine topic-
specific schema match graphs that only consider schemas similar to a specific
query table. The match graphs help to determine matching tables upfront before
query answering and to holistically utilize information from matching tables.
Instance-based approaches to match the attributes of web tables considering the
degree of overlap in the attribute values have been used in [19].

Despite such approaches the information in open data repositories is not yet
sufficiently utilized. Attribute matching could be improved by considering both,
attribute metadata and instances, not just one of them. Further approaches could
apply physical data integration, e.g., to combine and cluster matching entities
from different tables or to extract entities to build or extend domain-specific
knowledge graphs.

4 Holistic integration of entities

Entity resolution (also called deduplication, object matching or link discovery)
[20,13] has mostly been investigated for finding matching entities2 (e.g. per-
sons, products, publications, and movies) within a single source or between two
sources. For a single source, matching entities are typically grouped within dis-
joint clusters such that any two entities in a cluster should match with each other
and no entity should match with entities of other clusters. For two sources, the

2 To be more precise, we can only find matching records referring to the same real-
word object. For simplification, we use the term ”entity” to refer to both the records
as well as the real-world objects they describe.



match result is mostly a binary mapping consisting of pairs of matching entities
(also called match correspondences or links). Binary match mappings may be
postprocessed to determine clusters of matching entities, e.g., by calculating the
transitive closure of the correspondences and refining the resulting connected
components (clusters) to ensure that indirectly linked entities are really similar
enough to stay in the same cluster [34,46,29]. Alternatively, one can construct a
similarity graph from the match correspondences and determine subgraph clus-
ters of connected and highly similar entities [24,57].

The match decision is typically based on the combined similarity of several
attribute values and possibly on the contextual similarity of entities. In current
systems, the combination of the similarity values for deriving a match decision is
either based on supervised classification models (learned from training examples)
or on manually determined match rules [38,48]. To achieve high efficiency for
large datasets, one has to avoid comparing each entity to all other entities. This is
made possible by utilizing so-called blocking strategies [13,75,53] and additional
filter techniques tailored to specific similarity or distance functions (e.g., the
triangle inequality for metric-space distance functions) [50]. Entity resolution
can also be performed in parallel on multiple processors and computing nodes,
e.g., on Hadoop platforms [37], to achieve additional performance improvements.

In the following, we first outline a general approach to holistically cluster
entities from many sources. We then discuss the use of such an approach for
LOD sources as well as for use cases of Section 2. Finally, we briefly discuss the
integration of entities into knowledge graphs.

Holistic clustering of entities

To holistically match entities from many sources, the prevalent approaches for
pairwise matching, e.g., within the Web of Data, are no longer sufficient and

viable. This is because one would need up to n·(n−1)
2 binary match mappings

for n data sources, i.e., up to 190 and 19,900 mappings for 20 and 200 sources,
respectively. Since each mapping is already expensive to determine for large
datasets, it is obvious that the computational effort to determine the mentioned
number of mappings is infeasible for a large number of sources. Holistic entity
resolution thus should be clustering-based by holistically determining match
clusters such that all matching entities from any source are combined in a single
cluster. For n duplicate-free sources the size of such a match cluster is limited

to at most n entities. Each cluster of k ≤ n entities represents k·(k−1)
2 match

pairs and is thus a much more compact representation than with the use of
correspondences. The entities of a cluster should have common attributes to
determine the entity similarity but can also have different additional attributes
that complement each other. By combining the different attributes of the entities
in a cluster within a fused entity it is possible to enrich the entity information
across all sources as desirable for data integration. The fused entity can serve as
a cluster representative that is used to match against further entities.

Clustering the entities across all sources can be performed with much less
effort than with determining the quadratic number of binary mappings. For



Fig. 2. Holistic clustering of matching entities from multiple sources (clusters are
grouped by entity type and have a representative, e.g., rij for cluster cij of type Ti)

static sources, one can bootstrap the clustering process with one of the sources,
e.g., the largest one or a source with known high data quality, and use each of its
entities as an initial cluster (assuming duplicate-free sources). Then one matches
the entities of one source after another with the cluster representatives to decide
on the best-matching cluster or whether an entity should form a new cluster.
This process can be continued until all sources are matched and clustered. For
any entity of any source but the first, the number of match computations is
restricted by the number of clusters, which is limited by the total number of
distinct entities across all sources. The number of clusters to be considered can
be reduced by blocking techniques [13]. In particular, only entities of the same
semantic type or class need to be compared with each other, i.e. one should
maintain a separate set of clusters for every entity type. Once the entity clusters
are established it is relatively easy to match and add new entities from any
source, e.g., in a streaming-like manner. Fig. 2 illustrates this process where
new entities of different types Ti from different sources Dl are matched with
the centrally maintained clusters (specifically with cluster representatives rij)
for this entity type. The entity type and other entity attributes may have to be
determined during a preprocessing step before the actual match and clustering
can begin.

Holistic clustering of LOD entities

A holistic clustering of entities is especially promising for LOD data integra-
tion which so far is solely based on the use of binary mappings, mostly of type
owl:sameAs [48]. While a large number of such mappings has already been de-



termined by different tools, the degree of entity linking is still small. One step
to improve the situation is to provide pre-determined mappings within reposi-
tories such as LinkLion [49], and utilize these mappings for deriving additional
mappings, e.g., by their transitive composition as used in [11,28]. However, this
approach is not sufficient given the large number of LOD sources. Furthermore,
existing mappings determined by automatic tools are noisy so that their transi-
tive composition can easily lead to mappings of low quality.

Fortunately, it is possible to apply the sketched holistic entity clustering
for LOD sources, as recently proposed in [47]. The approach utilizes existing
mappings between n sources of a certain domain, e.g., geographical entities, to
determine the transitive closure between them and to postprocess these clus-
ters to ensure a high cluster quality. The approach distinguishes multiple entity
types, e.g. cities, mountains, lakes, etc. The entity types provided by the sources
are heterogeneous and have to be unified during preprocessing using a prede-
fined type mapping. Unfortunately, for many entities the type is not provided
so that it could happen that such untyped entities are clustered with entities
of a different type. Furthermore, errors in the input mappings can also lead to
wrong entity clusters. For these reasons, the approach postprocesses initially de-
termined clusters to split them to obtain clusters with highly similar entities of
the same type. An iterative merge process is also applied to allow entities that
have been separated due to a cluster split can be merged with other clusters.
The evaluation results showed that the approach clusters many previously un-
connected entities thereby resulting in a significantly improved degree of data
integration. Furthermore, many errors in the existing mappings could be elimi-
nated, especially by utilizing the type information, e.g., to separate entities with
the same names but different types (e.g., city vs. lake).

Further use cases

Holistic entity clustering can also be applied for use cases 5 and 6 of Section
2, e.g., to cluster publications or product offers. All such use cases require ex-
tensive data preprocessing and cleaning to consolidate the entities for matching
and also to determine their semantic type since most sources contain different
kinds of entities. This is especially the case for product offers, making the oper-
ation of a comprehensive price comparison site a highly challenging task. This
is because there are typically thousands of product categories each described
by different schemas and sets of attributes. Furthermore, there are millions of
products offered in thousands of online stores. In addition, product offers change
continually (especially on price) and the structure of offers and the attribute val-
ues may vary substantially between merchants even for the same product. To
facilitate the continuous integration of changing product offers it is important to
separate the different product categories and maintain clusters of product offers
separately per product type. Product offers should ideally be matched with clean
product descriptions serving as cluster representatives. Before new product offers
can be matched it is first necessary to determine their product category which
can be supported by supervised classification approaches [71]. Furthermore, it is



often necessary to extract match-relevant features from text attributes in prod-
uct offers (e.g., about the manufacturer), to resolve abbreviations and to perform
further data cleaning [1]. Matching can then be restricted to the product offers
of the selected category and should be based on category-specific match criteria,
e.g., category-specific learned classification models [39].

Knowledge graphs
The generation and continuous refinement of large-scale knowledge graphs (use
case 4) has similarities to the discussed maintenance of product entities and
offers within a large set of heterogeneous product categories. Knowledge graphs
typically cover many domains and integrate entities and concepts extracted from
Wikipedia, web pages, web search queries and other knowledge resources such
as domain ontologies, thesauri etc. [69]. Each entity is typically classified within
a large category system and interrelated with other entities. Entities typically
have a large number of attributes and attribute values collected and clustered
from the different sources [26]. Furthermore, it is desirable to keep track of entity
changes over time so that historical versions of entities can be provided [8]. In
2012, the Google knowledge graph contained already 570 million entities within
1500 entity types and 18 billion facts (attribute values, relations) [18]. However,
the majority of the automatically collected information is error-prone [18] so that
the overall data quality in web-scale knowledge graphs is a massive problem.

To integrate new entities and achieve good data quality, one needs approaches
similar to the integration of product offers (categorization of entities, error de-
tection, consolidation of attribute values, entity resolution, etc.), however, they
should be able to deal with an even greater scope and diversity of entities. Bellare
et al. discuss in [8] the construction of the Yahoo! knowledge graph utilizing a
Hadoop infrastructure; entity resolution is based on blocking and pairwise match-
ing followed by a postprocessing to generate entity clusters. Data integration for
knowledge graphs also requires the determination and continuous evolution of
a fine-grained category system which so far has been largely based on manual
decisions. Several studies have begun to address the data quality problems for
knowledge graphs, in particular by verifying entity information from multiple
sources [40,18]. Paulheim discusses such recent approaches to refine knowledge
graphs in [56].

5 Conclusions and outlook
Traditional data integration approaches that focus on few data sources need to
be extended substantially to holistically integrate many sources. In particular,
the prevalent pairwise matching of schemas and entities is not scalable enough.
The discussion of several use cases and current solutions indicates that holistic
data integration should be based on physical data integration as well as on the
use of clustering-based approaches to match entities and metadata (concepts,
attributes). Scalability for metadata integration is inherently complex and best
achieved for simple schemas such as web forms or web tables utilizing a cluster-
ing of attributes. Even in this case it is important to utilize large background



knowledge resources to semantically categorize and enrich attributes to facilitate
data integration. For holistic entity resolution we proposed a general clustering
strategy differentiating multiple entity types. Such a scheme can be utilized for
a holistic integration of LOD sources as well as for other use cases, e.g., to inte-
grate product offers from numerous online stores. The determination and main-
tenance of knowledge graphs is especially challenging as it implies the integration
of an extremely large number of entities within a huge number of categories. In
virtually all use cases, an extensive preprocessing of entities to consolidate and
categorize them is of paramount importance for their subsequent integration and
use. To limit the amount of manual work for holistic data integration, it seems
crucial to build up and re-use curated dictionaries (e.g., to resolve synonyms and
abbreviations), schema/ontology and mapping repositories.

The discussion has shown that there are many opportunities to develop new
or improved approaches for the holistic integration of metadata and instance
data. Open data collections need much more data integration to make them us-
able, e.g. by categorizing their datasets, clustering entities or deriving domain-
specific knowledge graphs. The initial approaches for LOD need to be extended
to achieve holistic data integration for both metadata and entities. The ap-
proaches for generating and using knowledge graphs need further improvements
and evaluation, in particular for largely automatic holistic metadata integration
as well as for achieving high data quality. Furthermore, there is a growing need to
support fast, near real-time integration of updates and new entities from differ-
ent sources and data streams. Lastly, scalability techniques including the use of
parallel infrastructures and blocking need to be extended to meet the increased
performance requirements for holistic data integration.
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