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Abstract

Smartwatch health data is increasingly being used in health applications and patient monitoring,
including stress detection. This data contains a high level of sensitive personal information about
individuals and patients. At the same time, it is burdensome and expensive to collect this data from
many individuals. In this thesis, we present an approach to generate privacy-preserving smartwatch
data. We test the performance of synthetic sequence data generated by di�erent state-of-the-art
GANs: TimeGAN, conditional GAN (cGAN), and DoppelGANger. We train and hyperparameter
tune these GANs for our use case. Using these GANs, we generate synthetic datasets that learn the
statistical distribution of WESAD, a wearable stress detection dataset. To evaluate these synthetic
datasets, we present an evaluation method consisting of three evaluation facets: diversity, fidelity,
and usefulness. We use a PCA and t-SNE analysis to evaluate the diversity of the dataset, and use
di�erent machine learning classifiers to test the indistinguishability of the synthetic and the original
data. To evaluate usefulness, we train convolutional neural network (CNN) stress detection models
on the synthetic data in two di�erent ways. First, we augment the original dataset by the synthetic
dataset and evaluate the impact of the new synthetic samples on the training of the stress detection
models. We also perform the Train on Synthetic Test on Real (TSTR) evaluation procedure, where
we train the dataset exclusively on the synthetic data and test on the real data. By augmenting
the original dataset with synthetic data generated by the cGAN architecture, we achieve a stress
detection accuracy of 0.9115 and can thus improve the baseline approach without synthetic data by
0.0275. When training only on synthetic data generated by the cGAN, the stress detection model
achieves an accuracy of 0.910 on the original WESAD dataset, improving the baseline by 0.02.
To make the synthetic datasets generated by the GANs privacy-preserving, we apply Di�erential
Privacy (DP) to the cGAN that achieves the best results. We evaluate the results of this DP-
cGAN analogously to the GAN evaluation method for ‘ = {0.1, 1, 10}. We obtain a stress detection
accuracy of 0.811 for the TSTR evaluation with an ‘ = 0.1, decreasing the baseline accuracy of the
WESAD dataset by 0.082, while providing high privacy guarantees.

This work demonstrates that GANs, and more specifically DP-GANs, can be used to generate
synthetic health data. The synthetic data mimics the statistical distribution and physiological
stress response characteristics of the WESAD dataset. It also ensures privacy guarantees with a
performance trade-o� to improve stress detection results.
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1. Introduction

1. Introduction

In recent years, deep learning has made a significant di�erence. The triumph of Convolutional
Neural Networks (CNN) is initiated by Krizhevsky et al. [1] with the AlexNet in the ImageNet
Challenge, which used deep learning methods to outperform conventional approaches. As a result,
the topic of deep learning is getting a lot of attention, both in current research and in everyday
life.

Deep learning is finding applications in various professional fields such as law enforcement, financial
services, and customer service. It is also making critical advances in medicine and healthcare, to
the point where AI is better able to detect breast cancer than human doctors [2]. In healthcare,
the study of stress is becoming increasingly important, to the extent that stress has been called the
health epidemic of the 21st century [3]. To address this problem with advances in deep learning,
Gil-Martin et al. [4] show that using a CNN, classification into stressed and non-stressed based
on physiological and biological signals is feasible. The researchers trained their CNN model on
the WESAD dataset, which consists of physiological and biological signals from 15 subjects [5].
The results show di�erent performance in the stress detection for individual subjects, with some
performing very well and others performing poorly.

To solve this problem of high variability, deep learning models often require a larger dataset.
Depending on the application field, data is more or less accessible and available. In the healthcare
sector in particular, there is often little data available on specific diseases, which in turn come from
only a few individuals. Measuring and aggregating new data is often time-consuming and costly.
Besides, the data often comes from patient records, which can include information about diseases,
health status, and medications. This raises another issue, which is the privacy of this data.

The protection of sensitive personal data is increasingly becoming the focus of social discourse,
which also led to the introduction of data protection laws like the General Data Protection Regu-
lation (GDPR)1 in the EU in 2016. This regulates the handling and processing of personal data.
This has led to e�orts to anonymize data to support analytics and applications while protecting
sensitive data. However, approaches where data is anonymized, supposedly ensuring privacy, have
also revealed potential weaknesses to allow re-identification of the person [6]. To overcome the first
problem, the scarcity of data, the use of Generative Adversarial Networks (GAN) provides a good
solution. Thus, new synthetic data points can be generated based on an existing dataset [7].

The newly generated data points can then be used to train the model and are likely to improve
the final performance to some extent. Now, it might seem reasonable to think that synthetically
generated data also solves the problem of protecting personal data, since it involves people who
do not actually exist. However, researchers have shown that the data points generated in this way,
and the model trained on them, also leak information about the individual from the distribution of
the original dataset [8]. Nevertheless, to solve the privacy problem, di�erent approaches from the
field of di�erential privacy (DP) can be implemented. Xie et al. [9] have shown that adding DP to
a GAN can ensure that the privacy of the original data distribution is preserved, and no inferences

1
https://dsgvo-gesetz.de/
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1. Introduction

can be made about the original distribution, while at the same time generating data points that
allow the models to be trained with more data.

The following work addresses the research question of whether it is possible to develop a GAN to
learn the statistical distribution of a smartwatch dataset for stress detection and generate synthetic
data samples to improve stress detection. For this purpose, we use the WESAD dataset of Schmidt
et al. [5]. We will show that it is possible to augment this dataset with synthetic data to increase
stress detection performance. Since this dataset contains multivariate time-series data with the two
states stress and non-stress, we first had to determine GAN architectures that can learn these data
characteristics. We take existing state-of-the-art time-series GAN architectures, extend them, and
train and hyperparameter tune them for our use case, stress detection. We address the di�culty
of GAN evaluation and compare the synthetic data generated by the GANs with respect to three
di�erent evaluation facets. We perform a visual evaluation to determine the diversity of the data.
That is, the ability of the GAN to represent the diversity and the time-dependent evolution of
the original data for the two states, stress and non-stress. The fidelity evaluation is devoted to
the statistical attributes of the synthetic data compared to the original data. Answering whether
the GANs can reproduce the statistical frequency distribution and correlation within the di�erent
signals of the WESAD dataset, depending on the stress state. Furthermore, we test the fidelity
by using several binary machine learning classifiers to verify the indistinguishability between the
synthetic datasets and the original dataset. Finally, we train the CNN architecture of Gil-Martin et
al. [4] to verify the usefulness. Finally, we apply DP to the best of these GAN architectures and can
use it to generate privacy-preserving smartwatch data, on which stress detection can be performed
with some performance trade-o�. We do this to address another research question, whether it is
possible to apply DP to the GAN architectures for our use case.

After providing a brief overview of the motivation and goal of this thesis, in Chapter 2 we will
introduce background and fundamental concepts to understand the applied methods. We first give
an overview of the role of smartwatch health data for stress detection. Then, we present the funda-
mental idea, functionality, and challenges of GANs, explain DP and elaborate the application of DP
to GANs. In Chapter 3, we consider related work on which our approach to synthetic smartwatch
generation is built. We introduce the WESAD dataset, related GAN architectures, stress detec-
tion for evaluating the synthetic dataset, Privacy in Synthetic Data and Di�erential Private GANs
(DP-GAN). Chapter 4 provides a presentation of the methodology we use in this thesis, explaining
choices we have made. The chapter o�ers a comprehensive workflow from preprocessing the data,
to the di�erent GAN architectures implemented, to the evaluation of the synthetic data, and the
application of DP to our GAN architecture. Following this workflow overview, Chapter 5 explains
the detailed experimental setup. This includes technical implementation details from the software
and libraries used to the specific GAN architectures to the training parameters. Furthermore, we
describe the implementation of the stress detection CNN model for the usefulness evaluation of
the synthetic data. Finally, we give an overview of the training setting used to implement DP on a
GAN architecture. Chapter 6 evaluates the results of the synthetic dataset generated by the three
GAN architectures with respect to evaluation facets we introduced. We consider the diversity, the
fidelity as well as the usefulness of the synthetic data. In order to test the usefulness, we train
several stress models based on the synthetic GAN datasets and evaluate this in two procedures:

Nils Wenzlitschke
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1. Introduction

the augmentation of the real dataset by synthetic subjects and the Train on Synthetic Test on
Real (TSTR) method. Chapter 7 discusses the findings from the previous chapter, highlighting the
advantages and disadvantages of GANs in general and specific to the individual architectures. At
the same time, it shows the practical implications of our work for research and smartwatch health
care data in general. Moreover, we present a user-friendly frontend developed by us for generat-
ing the synthetic data using the GAN models trained in this thesis. In Chapter 8 we summarize
the presented work and give an outlook on possible further research questions resulting from this
work.
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2. Background

2. Background

In this chapter, we explain the fundamental concepts of this thesis. In Section 2.1, we provide
an overview of the role of smartwatches in stress detection and its importance. Section 2.2 covers
the fundamentals of GANs and how they can be used to generate synthetic data. We introduce
two di�erent GAN extensions that are important for further work and the challenges that each
architecture presents. Finally, Section 2.3 explains di�erential privacy and how it can be used to
protect the privacy of synthetic data in the context of GANs.

2.1. Understanding Smartwatch Health Data for Stress Detection

In the following section, we describe the role of wearable devices in healthcare and individual
use for self-diagnosis and personal analysis. We describe the opportunities and di�erent uses of
wearables in healthcare and introduce one area of application: stress detection. We discuss the
health consequences of long-term stress and explain the physiological responses of the human body
to stress. We then show how stress can be measured with the Empatica E4 Wristband. We also
describe how the individual sensors can measure the body’s physiological stress responses and how
these sensors work. We also present di�erent approaches to stress detection and provide a guide to
machine learning-based stress detection based on physiological stress data from the Empatica E4.
Finally, we address privacy concerns related to health data.

2.1.1. The role of wearables in healthcare

Piwek et al. [10] point to the increasing use of wearables for self-diagnosis and personal analytics.
Wearables have the ability to monitor patients over time to detect chronic diseases [10, 11]. Wear-
ables can also serve as more comprehensive systems of predictive, preventive diagnostics for early
detection of health problems. The authors believe that in the future, wearables will be a standard
part of the healthcare system, providing both individual and aggregated data to patients, govern-
ments, and healthcare providers. This type of data aggregation holds great promise for the future
of healthcare, however due to the highly sensitive nature of the data, it requires the development
of functional use cases and privacy-compliant handling. One such functional use case of particular
interest to both individuals and healthcare systems is stress response detection.

2.1.2. Stress and its health consequences

Stress, a common physiological response to stressful situations, can have significant health con-
sequences. Long-term stress can cause many serious health problems, including headaches, sleep
disturbances, increased risk of cardiovascular disease [12, 13, 14], increased susceptibility to infec-
tion, slower physical recovery, and decreased mental performance [15]. In addition, as mentioned
earlier, wearable devices such as smartwatches o�er the ability to measure health conditions, in-
cluding stress, relatively unobtrusively over time. In order to use smartwatches for stress detection,
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2. Background

we must first have an understanding of the nature of stress and the methods by which it can be
measured. During a stressful event (e.g., exam, meeting, sport) the body is under great physical or
psychological stress and the sympathetic nervous system is activated to meet metabolic demands
[16, 17]. To do this, certain processes in the body are accelerated, the fight-or-flight response,
causing heart rate, blood pressure, and sweat rate to increase [18, 17]. After the stress event, the
parasympathetic nervous system engages and initiates rest and repair processes to restore bal-
ance. Chronic stress occurs when the sympathetic response is continuously elevated and there is no
balance between the sympathetic and parasympathetic systems. It is more important to prevent
chronic stress than to treat it, and to make this possible, stress detection systems are available.
Unobtrusive wrist devices are able to detect these bodily responses, namely Empatica [19] or the
Microsoft Band.

2.1.3. Empatica E4 and its sensors

In particular, the Empatica E4’s2 ability to accurately measure physiological stress indicators has
been validated in several studies [20, 21, 22]. This device includes a 3-axis hand-wrist accelerometer
(ACC_x, ACC_y, ACC_z), an Electrodermal Activity (EDA) sensor, an optical skin thermometer
measuring the skin temperature (TEMP), and a Photoplethysmography (PPG) sensor measuring
blood volume pulse (BVP), heart rate (HR), and heart rate variability (HRV).

The EDA sensor measures the electrical conductance at the surface of the skin. Because the sympa-
thetic nervous system controls the sweat glands, EDA can measure an indication for physiological
arousal [23]. A high electrical conductance is an indicator of an increased level of stress and arousal.
This is measured using a tiny amount of current passed between two electrodes in contact with
the skin. The conductance is measured in microSiemens (µS). The Empatica device measures EDA
with a sampling rate of 4Hz (4 times per second) for conductance in the [0.01, 100]µS range [19].

The PPG sensor, which measures blood volume, pulse, and heart rate, works by illuminating arteries
filled with blood with green and red light. The arteries reflect the light according to their oxygen-
saturated hemoglobin. The sensor then measures the reflected light. BVP is measured at a fixed
sampling rate of 64Hz (64 times per second). The BVP signal can be used to calculate HR and
HRV. Increasing heart rate and decreasing HRV are indicators of stress [24, 25].

The optical skin thermometer is an infrared thermopile sensor. It captures the infrared radiation
emitted by the skin without contact and can generate a voltage from the temperature di�erence
in the sensor components and use this current to determine the skin temperature [26, 19]. It is
important to note that skin temperature is not representative of core body temperature. During a
stress response, the sympathetic nervous system can constrict blood vessels, called vasoconstriction,
which can cause skin temperature to drop. A very low skin temperature is therefore a possible
indicator of stress [27]. The Empatica device measures TEMP with a sampling rate of 4Hz (4 times
per second). It is calibrated for a temperature range of -40 to 115 °C and measures with an accuracy
of ± 0.2 °C. However, it must be noted that the average skin temperature varies between 33.5 and
36.9 °C [28].

2
https://e4.empatica.com/e4-wristband
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The ACC sensors measure the acceleration force in the 3-dimensions X, Y, and Z at 32Hz (32 times
per second). The sensor itself does not provide an indicator of moments of stress, but contextualizes
the physiological signals, taking into account physical activity and movement.

2.1.4. Methods for stress detection

To detect stress, researchers have developed various methods for stress detection [29]. Mirsamadi et
al. [30] detect and analyze stress and emotions based on speech by using recurrent neural networks.
Tzirakis et al. [31] detect stress and emotional a�ection by analyzing video content using deep
neural networks.

In addition, researchers have also developed stress detection systems based on the previously pre-
sented physiological signals captured by sensor modalities [32]. Therefore, theses signal data is
analyzed and used to train various traditional machine learning algorithms such as Decision Tree,
Linear Discriminate Analysis (LDA), and K-Nearest Neighbor (KNN). Healey and Picard [33] con-
ducted one of the first studies on stress detection using physiological data. To do this, they first
recorded stress data by measuring the relative stress levels of subjects in di�erent driving situa-
tions on the road. The measured physiological signals were recorded with an electrocardiogram,
electromyography, respiratory rate sensor, and EDA sensors. These data were then processed into
22 hand-crafted features, which then formed the input to the LDA machine learning algorithm for
binary classification into stress and non-stress states. Subsequently, other researchers used di�erent
combinations of physiological stress data with various traditional machine learning methods.

Siirtola [34] focus his research on stress detection using sensors of commercially available smart-
watches. The study found that di�erent combinations of sensors can be used to detect stress. The
researcher uses the WESAD dataset [5], which is recorded with the four sensor modalities from the
Empatica E4 wrist-worn device. To detect stress, the author uses di�erent combinations of sensor
signal data and three di�erent machine learning algorithms: quadratic discriminant analysis, ran-
dom forest, and LDA. The best stress detection of 87.4 is obtained with a sensor signal combination
of TEMP, BVP and HR using LDA.

Subsequently, other researchers applied deep learning approaches to the physiological sensor data
to counteract the laborious part of the manual feature extraction and computation [4, 29]. Deep
neural networks are able to extract the features themselves from the raw data. For this purpose,
both Li et al. [29] and Gil-Martin et al. [4] use a CNN for feature extraction and stress detection.

2.2. Generative Adversarial Network

To generate a medical dataset, Imtiaz et al. use GANs [35]. In 2014, the GAN was introduced
by Goodfellow et al. [36]. GAN is a class of machine learning frameworks, which consists of two
neural networks that are trained simultaneously. The generative model G that captures the data
distribution, and the discriminative model D that calculates the probability if a sample originates
from the dataset rather than G. Fig. 2.1 shows the architecture of the original GAN. The generator
G aims to create realistic sample data. Then, the discriminator D receives the synthetic-created
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samples and real samples. The discriminator classify each sample as either real or fake. The gener-
ator does not have direct access to the real sample. The interaction with the discriminator is the
only way it learns. Both the synthetic samples and the real dataset samples are available to the
discriminator. The discriminator receives the error signal based on the ground truth of knowing
whether the sample originated from the real dataset or from the generator. The same error signal is
then passed through the discriminator to train the generator, resulting in the generation of better
synthetic samples. The generator network can be considered as a mapping from a representation
vector space, the so-called latent space z, to the representational data space x, e.g., an image.
Formally, this can be written as G : G(z) æ R|x|, where z œ R|z| and x œ R|x| depicts the data
representation. The discriminator can formally be written as D : D(x) æ (0, 1), where D describes
a mapping from the input data to the probability of belonging to the fake data (close to 0) or to
real data (close to 1). G is trained to maximize D’s probability of making a mistake. Training takes
place in the form of a min-max game, which is defined by the objective function V (G, D).

The original min-max game objective function [37] is:

min
G

max
D

V (D, G) = Ex≥pdata(x)[log D(x)] + Ez≥pz(z)[log(1 ≠ D(G(z)))] (2.1)

Figure 2.1.: Overview of the fundamental GAN structure: The generator G produces a synthetic
sample xÕ based on a random noise input z. The synthetic samples xÕ, along with real
samples x, are the input to the discriminator D, that classifies each sample either as
real or fake. Based on this classification, the loss is calculated to update the generator
and discriminator via backpropagation.

2.2.1. Challenges

Saxena and Cao [38] highlight several challenges and their solutions in the application and training
of GANs. The main challenges are mode collapse, non-convergence and instability, and metric
evaluation.

Mode collapse. Mode collapse is one of the main reasons for unstable GAN training. The mode
collapse problem is shown in 2.2.

The problem occurs when a generator G, i.e. the mapping function from the latent space to the
data space, maps several di�erent inputs z1, z2, . . . , zn to a very similar or identical output such
that the following holds [39]:
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Figure 2.2.: The figure shows the mode collapse problem for a two-dimensional toy dataset. At
the top is the target distribution that the GAN should learn. Below is the learned
distribution over time during training. Instead of learning the distribution, the model
generates the di�erent training modes alternately. However, it is not able to learn the
original distribution. Image is taken from [39, 1].

G(z1) ¥ G(z2) ¥ . . . ¥ G(zn)

This can happen when the generator generates a sample that fooled the discriminator over and over
again, and as a result keep producing this sample. If the training of the generator is not changed
by an incentive such as an additional or changed loss function, mode collapse will occur.

Non-convergence and Instability. Since the generator and the discriminator are in a min-max
game where they both want to minimize their own loss function and maximize the loss function
of the other, GAN training can become unstable. The model parameters are constantly changing,
which destabilizes the model and it never converges.

Evaluation. Another challenge in GAN training is the quantitative evaluation of the generative
model. While qualitative evaluation (visual inspection) of generated images, audio samples, or time-
series can often determine whether a generative model performs well, there are no real established
metrics in the field of GANs that can quantify the performance of a generative model. For example,
on the one hand a model may achieve supposedly low loss values for generator and discriminator,
or come close to the statistical distribution of the original dataset, but the generated samples are
poor. On the other hand, supposedly quantitatively poor GANs may produce good samples [39].

To avoid mode collapse and non-convergence, Saxena and Cao [38] summarize to use the appropriate
architecture and objective function, and the optimal optimization techniques.

2.2.2. Conditional GAN

The conditional GAN (cGAN) is an extension of the GAN framework introduced by Mirza et
al. [40]. In this framework, both the generator and the discriminator receive additional auxiliary
information such as a class label as input. This auxiliary information allows cGAN to achieve better
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results when generating multimodal data [41]. Figure 2.3 illustrates the structure of a CGAN. The
objective function of a cGAN is:

min
G

max
D

V (D, G) = Ex≥pdata(x)[log D(x|y)] + Ez≥pz(z)[log(1 ≠ D(G(z|y)))] (2.2)

where the only di�erence to Equation 2.1 is that the generator and discriminator additionally
receive the conditional class label y in the generation function G(z|y) and the discriminator function
D(x|y).

In addition to the challenges of GANs already mentioned in Section 2.2.1, there is the additional
challenge with cGANs of whether the additional label really a�ects the training process and the
generation of synthetic data.

Figure 2.3.: Overview of the cGAN structure: The generator produces a synthetic sample based on a
random noise input z and an auxiliary information label y. The synthetic samples, along
with real samples, are the input to the discriminator and a corresponding auxiliary
information label y, which must classify whether each sample is real or false. Based
on this decision, the loss is calculated to update the generator and discriminator via
backpropagation.

2.2.3. Time-series GANs

Building on the development of GANs and their success in generating image data, researchers
developed time-series GANs that can learn and reproduce the distribution of time-series data.
Essential to this type of data is that the GAN models reproduce the temporal relationships between
data points over time.

Brophy et al. [42] define time-series data as a sequence xt = x1, . . . , xn of vectors which depends
on time t for continuous/real and discrete time. The data can be univariate or multivariate, and
time-series can be continuous or discrete.

The di�erence with the canonical GAN is that the first GAN architecture used fully connected
neural networks for the generator and discriminator [37]. However, these are not good at learning
temporal dependencies like a recurrent neural networks (RNN). RNNs, on the other hand, can
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optimally capture sequential data such as financial data, medical data, text, and speech modeling
due to their loop-like structure [42]. The only di�culty is long-term data, which RNNs cannot
understand by themselves. For this purpose, Hochreiter et al. [43] introduced the Long Short-Term
Memory (LSTM) network, a special form of RNN capable of learning temporal dependencies over
a longer period of time. In addition, LSTMs o�er the advantage of addressing the vanishing and
exploding gradient problem to some degree that a�ects conventional RNNs [44]. In terms of these
capabilities, RNNs, and especially in the form of LSTMs, are the fundamental architecture of
generator and discriminator for time-series GANs. In addition to the challenges that a�ect basic
GANs and are described in section 2.2.1 time-series GANs have to address the following challenges
[45]:

Temporal Dependencies. One of the problems here is the mapping of temporal dependencies,
which is addressed by using LSTM to generate the sequences, but not definitively solved.

High Dimensionality. Time-series data, if not exactly univariate, often have highly complex
correlations between multivariate features, which the time-series GAN must learn in addition.

Evaluation. The evaluation of time-series GANs is further complicated by the two points men-
tioned above, the correlation between the multivariate features of the dataset and the temporal
dependencies.

2.3. Di�erential Privacy

Di�erential Privacy (DP), introduced by Dwork et al. [46], is a mathematical concept for measuring
the degree of privacy of an individual in a dataset. Academia and industry, such as Apple [47],
Google [48], and US Census [49], have adopted DP as a standard for data protection [50].

Intuitively, any algorithm A applied to a dataset D is di�erentially private if the output does
not indicate whether someone’s individual data is present in the dataset or not. Thus, if a data
point belonging to an individual were removed from the dataset D resulting in a new dataset DÕ,
the change in the output must be statistically indistinguishable. Datasets that di�ers in only one
element are called neighboring datasets.

The privacy guarantee is represented by the privacy budget ‘. This is the measure of privacy loss or
privacy preservation. A small ‘ (Æ 1.0) means that the distance between two output probabilities
of an algorithm A applied to two neighboring datasets D and DÕ is small. The closer the ‘ value
is to zero, the higher the privacy. Thus, ‘ = 0 means that the algorithm A with two neighboring
datasets, corresponding to two di�erent inputs, will produce exactly the same output twice. The
value ‘ = 0 guarantees privacy preservation without any loss of privacy. However, this also results
in no data accuracy. Thus, the algorithm su�ers a performance loss [49]. At the same time, the
expression ‘ = Œ expresses the non-private case [9]. In this case, the privacy loss is maximal with
no privacy preserved, but the algorithm A operates with the optima accuracy based on the data.
This leads to a trade-o� between privacy and performance.
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” is the probability that the privacy loss is not bounded by ‘. The optimal value for ” is less than
the inverse of the dataset size, i.e. 1

|D| . (‘, ”)-DP is given if two datasets that di�er by a single entry
are statistically indistinguishable, and the following holds:

Pr[A(D) œ S] Æ e‘ Pr[A(DÕ) œ S] + ” (2.3)

where S is the set of all possible results that can be produced by the algorithm A applied to the
dataset D and D’.

To implement these privacy guarantees, noise is added. One way to implement this is the Di�erential-
Private Stochastic Gradient Descent (DP-SGD) algorithm of Abadi et al. [51]. The algorithm works
by computing the gradient at each SGD step for a subset of random data points by first clipping
it and then adding noise.

2.3.1. Di�erential Privacy in GANs

The application of noise in terms of privacy preservation needs to be applied to all neural networks
that access the real data. In case of a GAN, the noise is only applied to the discriminator during
the training. This comes back to the post-processing property [52] that states that if data has been
properly privacy-preserved, further calculations and transformations on this data do not reduce the
privacy level. When applied to GANs, this means that applying DP to the discriminator ensures
the privacy guarantee for the GAN architecture.
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3. Related Work

The following Chapter focuses on related work that underlies our approach to generating synthetic
data with di�erent time-series GANs. First, in Section 3.1, we present recent developments in the
field of health data generation, as physiological data for stress detection fall into the domain of
health and medical data. We consider the importance of high quality data in medical research and
discuss issues related to privacy and sensitivity of these data. We also show how synthetic data can
provide a remedy and what technologies have been and can be used to generate them.

In Section 3.3, we briefly discuss the initial challenges faced in the development of time-series GAN
architectures, and how these challenges have been addressed by di�erent techniques in research.
This discussion leads us to the three main architectures that we have used or extended in this work:
TimeGAN, cGAN, and DoppelGANger GAN (DGAN).

Finally, in Section 3.5 we review related work on privacy in synthetic data and applying DP to
GAN architectures to enhance the privacy guarantees of our synthetic datasets.

3.1. Using Synthetic Data for Analysis in Medical Research

Medical and healthcare research has a growing need for high quality data. In particular, electronic
health record data provide valuable real-world evidence about health conditions of individuals,
leading to new hypotheses, and methods. These datasets, based on individual clinical trials, o�er
great analysis potential in meta-studies.

However, a major problem lies in the sensitive nature of these data. Each data point contains
extensive information about an individual person and their health status. Therefore, this data is
highly sensitive, and many complex privacy requirements make it di�cult to access [53].

Kokosi and Harron [53] provide an overview of di�erent approaches for generating synthetic data.
The goal of all these approaches is to create a dataset that mimics the properties of the original
dataset at the individual level, taking into account sample size and matching in the respective
columns. Due to the often complex and high-dimensional data in medical research, machine learn-
ing methods are mainly used. These are able to reproduce the distribution of the data and the
correlations within the data points well. The machine learning methods include Bayesian networks,
which use sampling techniques to synthetically create the dataset, or deep learning methods such as
GANs. GANs are becoming increasingly popular for creating synthetic data [54, 55, 56]. A signifi-
cant benefit and use case of synthetic datasets in medical research is their potential for preliminary
development and testing of code for hypotheses before accessing the real dataset. Researchers can
leverage synthetic datasets to evaluate and refine their methods, improving subsequent analysis.
Another advantage is the preservation of anonymity that synthetic data provide to some degree.
Each sample cannot be specifically associated with an individual, but is a probabilistic sample
from a mimicked statistical distribution of the original dataset. This results in less sensitive patient
information being directly accessible. However, the supposed preservation of anonymity is limited
by the mere synthetic generation, as we will discuss later. Furthermore, as noted by Azizi et al. [57],
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there is an increasing demand to expand the availability of research data for secondary analysis.
For this, synthetic datasets can be used to share with other researchers for reproducibility without
providing the real dataset to verify models [53].

Gonzales et al. [58] review the state of synthetic data in healthcare in 2023. They show that
synthetic data can be used in a variety of ways and can often bridge data gaps. They also predict
that there will be more synthetic datasets, more tools for generating synthetic data, and more
users or researchers using these tools and datasets. They list a number of uses for synthetic data
in healthcare, such as simulation and prediction [59], testing hypotheses, methods, and algorithms
[60], epidemiologic studies for public health [61], education and training [62], and linkage testing
[63].

3.2. An Overview of the WESAD Dataset: Physiological and Motion
Signals for Stress and A�ect Detection

Figure 3.1.: Example: Graphical representation of subject data over the course of the di�erent lab
sessions. the di�erent episodes are indicated by the labels: Neutral, Stress, Amusement.
[5].

Schmidt et al. [5] introduce the publicly available WEarable Stress and A�ect Dataset (WESAD)3

dataset for wearable stress and a�ect detection. The dataset includes physiological and motion
signals from 15 subjects (12 males and 3 females). The signals are recorded using both a RespiBAN
device on the chest and an Empatica E4 wristband in a laboratory setting. It includes several sensor
modalities measured by the RespiBAN, such as: respiration, body temperature, three-axis body
acceleration, electrocardiogram (ECG), electromyogram, and electrodermal activity (EDA) sampled
at 700 Hz. The Empatica E4 device also recorded ECG, EDA and additionally blood volume pulse
(BVP), arm temperature (TEMP) and three-axis hand acceleration (ACC_x, ACC_y, ACC_z).
Unlike the RespiBAN, these signals were measured at di�erent sampling rates and downsampled

3
https://ubicomp.eti.uni-siegen.de/home/datasets/
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to 1 Hz for further experiments in this work. The dataset covers three di�erent a�ective states
(neutral, stress, amusement) as shown in Figure 3.1. To obtain these signals, all 15 subjects went
through 5 phases of a laboratory protocol during a ninety-minute session.

This protocol consists of the following stages:

• Baseline phase: the participant remains in a neutral position and reads a magazine for 20
minutes. This can be done standing or sitting. This way, the researchers try to induce a
neutral a�ective state.

• Amusement phase: the subject watches 11 funny videos for a duration of 6 minutes

• Stress phase: The stress phase is induced by exposing the subject to the Trial Social Stress
Test (TSST) for 10 minutes. In Schmidt et al.’s [5] TSST, the test consists of two parts, a
“public speaking” unit and a mental arithmetic task, each lasting 5 minutes duration in front
of a three-people panel, which they were told were supposed to be human resource specialists
from the research facility.

• Meditation phase: an expert guides the subject back to neutral a�ective mood using a breath-
ing protocol in a seated position with eyes closed.

• Recovery phase: the subject is informed that the panel members are “normal” researchers,
the sensors are synchronized with a double-tap gesture, and the sensors are removed.

Although the dataset includes self-reports from the subjects, these are not considered in this thesis.
Only the wristband signals measured by the Empatica E4 are used in the following experiments,
as the work focuses on smartwatch data.

3.3. GAN Architectures

3.3.1. Time-Series Based GAN

After the GAN was introduced by Goodfellow et al. [36] in 2014, it was essentially used and known
for media generation [64, 65]. The first fundamental proposal for time-series GAN happened in
2016 when Jiwoong et al. [66] introduced the recurrent GAN for image generation. Building on
these foundations and the initial introduction of recurrent GANs in computer vision, Esteban et
al. [67] introduced a Recurrent GAN (RGAN) and a Recurrent Conditional GAN (RCGAN) for
continuous data generation in 2017. Until then, only one other GAN, the C-RNN-GAN by Mogren
et al. [68] aimed at generating continuous-valued sequences, which were polyphonic classical music
sequences. Both GANs by Esteban et al. [67] focus on the generation of real-valued multidimensional
time-series data in order to use this synthetic data to support applications based on medical data.
The architecture of the two GANs is similar in that both use recurrent neural networks for the
generator and discriminator. For the RCGAN, additional conditional auxiliary information is given
to both neural networks to control the generation of the sequences. To evaluate the two GANs and
their corresponding synthetic sequences, the researchers introduce the novel method of the Train
on Synthetic Test on Real (TSTR) evaluation framework. They generate a synthetic dataset, train
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a classification model on this synthetic dataset, and evaluate the performance of this model on a
real test set. This evaluation method is also used in the following thesis. Based on this evaluation,
the authors train the RCGAN on two classification applications. A digit classification task on
the MNIST dataset and an early warning system on a medical dataset of 17,000 patients from
an intensive care unit. The results show little degradation in model performance, and the authors
conclude that the synthetically generated dataset is suitable for training models for the classification
tasks.

Due to the challenges inherent in training GANs, and in particular time-series GANs, time-series
GANs mostly employ LSTM neural networks to overcome the vanishing gradient problem often
encountered in conventional RNN architectures [44]. This is also true for the three previously
presented approaches, RGAN, RCGAN, and C-RNN-GAN, which implement the recurrent aspect
using two LSTMs for generator and discriminator. In 2019, Yoon et al. [69] propose the TimeGAN,
an architecture that utilizes the traditional unsupervised GAN training and a supervised learning
approach. By combining these approaches, the authors preserve the temporal dynamics within the
time-series data and respect the ground truth relationships between the multivariate sequential
variables over time. The researchers were able to improve upon the state-of-the-art time-series
GANs (RCGAN and C-RNN-GAN). They provide a novel GAN architecture consisting of four
network components, including an embedding function, a recovery function, a sequence generator,
and a sequence discriminator. The embedding function translates real sequences and random vectors
into the latent space, where the adversarial network consisting of the sequence generator and the
sequence discriminator learns the temporal dynamics in the latent space representation of the
sequence. Finally, the recovery function reconstructs the feature space back into the latent space.
These functions are trained simultaneously over di�erent loss functions for each function itself.

3.3.2. cGAN

In 2014, Mirza and Osindero [40] provide an architecture named conditional GAN. With this archi-
tecture, the authors extend the canonical GAN by Goodfellow et al. [36] by feeding the generator
a random prior noise z and an additional auxiliary information y such as class labels. The dis-
criminator receives the auxiliary information y and the sample x to be discriminated. To add the
additional information, the random noise z and the auxiliary information y are combined into a
joint hidden representation for the generator.

Building on this idea, Ehrhart et al. [70] propose a data augmentation technique using a cGAN
architecture to handle the imbalance in a physiological measurement dataset in a stress detection
use case. The authors are inspired by existing time-series GAN approaches. However, instead of
using LSTM networks for the generator and discriminator as in previous research, they use an LSTM
for the generator and a Fully Convolutional Network (FCN) for the discriminator to improve the
extraction of features from the physiological signal. This architecture is coupled with a diversity
term that addresses the challenges of unstable cGAN training. The diversity term is a mathematical
term derived from the distance between two generated samples. The authors introduce this term
into the loss computation to train the generator’s ability to generate di�erent samples with di�erent
random noise inputs and not fall into mode collapse.
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The imbalanced ground truth time-series data is collected with low-cost wearable sensors, the
Empatica E44, in a previously controlled laboratory data collection campaign, where subjects were
exposed to audio stimuli to induce moments of stress.

Methodologically, the authors used an LSTM as a generator and a (FCN) as a discriminator. These
two networks together form the GAN for the generation of time-series. To employ the conditional
property of the network, the researchers feed the stress label of the respective time-series sample
into the GAN as auxiliary information, making it a cGAN.

Remarkably, by adding the synthetic data to the stress detection evaluation, the stress detection
model based on an LSTM increases the detection of stress moments by 19.05% in recall and 11.03%
in F1-score compared to the baseline LSTM without the synthetic data samples.

In summary, the paper by Ehrhart et al. [70] provides an architecture for augmenting a dataset by
adding synthetic samples based on a small and imbalanced dataset. The researchers are conducting
these experiments in the healthcare domain, using health data from smartwatches and the same
application, stress detection based on wearable sensors. The data they use is also collected with an
Empatica E4, the device used as an aggregation tool for the WESAD dataset.

Since this approach, the nature of the data, and the domain strongly match our research goals,
in the following work we will implement the cGAN architecture as one of the GAN architectures
to synthetically extend the WESAD dataset. We will also present an adaption that extends the
existing approach to include DP.

3.3.3. DGAN

Lin et al. [71] propose the DGAN architecture. The research question that the authors address is
whether it is possible to create high-fidelity, easily generalizable synthetic datasets for the domain
of network applications. The goal is to provide a toolkit that facilitates the collection and sharing of
data using data-driven techniques. Thus, their paper takes advantage of recent advances in GANs
to learn high-fidelity representations of high-dimensional relationships in datasets.

In addition, the authors explore the privacy properties of their GAN architecture and conclude that
further research is needed. The key challenge seems to be the shrinking fidelity while providing
su�cient privacy guarantees. They formulate the problem of destroying the fidelity of di�erent
test datasets to have hard-to-interpret guarantees, while still being vulnerable to privacy leaking
attacks.

The architecture of the DGAN di�ers from canonical approaches, in three main aspects. The authors
use a decoupled generation of metadata and measurements by using an auxiliary discriminator.
This allows them to condition the generated measurements based on the generated metadata. The
authors address the mode collapse problem by adding the fake metadata to capture the min/max
values on each generated sample. To capture the temporal correlations and generate representative
time-series samples, a batch RNN generator is used.

4
https://www.empatica.com/research/e4
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The paper elaborates an approach that promises generalization to di�erent data domains and
achieves performance improvements over other existing GAN architectures, with 43% better fidelity
than baseline models. At the same time, the authors show a further advantage over other state-of-
the-art approaches: The training time is significantly lower (1.7 times faster than RCGAN and 15.2
times faster than TimeGAN) compared to existing time-series GANs under the same conditions
and with the same dataset. Finally, their paper elaborates and critiques key theoretical aspects for
time-series data that are to receive privacy guarantees via DP.

In the following work, we will use this GAN to generate synthetic data based on the WESAD
dataset. At the same time, we will use Lin et al.’s consideration of user privacy as a starting point
for an elaboration and outlook on DP in the use of time-series GANs.

3.4. Evaluating GANs using Stress Detection

The GANs we use require a comprehensive evaluation. Since we want to generate a synthetic
stress/non-stress dataset based on the WESAD dataset, we need to evaluate the performance
of this dataset in a real application scenario, stress detection. To accomplish this, we draw on
the work of Gil-Martin et al. [4] who developed a stress detection model based on the WESAD
dataset. They propose a deep learning architecture based on a Convolution Neural Network (CNN).
Furthermore, they investigate various signal preprocessing techniques to generate the input to the
CNN. They evaluate this architecture both for training on individual subsets of the WESAD dataset
(physiological, motion) over the respective recording modalities (wristband, chest-band) and all
data points together and in di�erent classification experiments. In the experiment of interest, they
report an accuracy of 92.7 and an F1-score of 92.55 for the binary classification of stress and non-
stress situations based on the wrist dataset. For the following work, we use a previously implemented
solution of the proposed approach of Gil-Martin et al. by Sülzle and Wenzlitschke 5. However, this
implementation only achieves accuracy and F1-score of 0.87.

3.5. Privacy in synthetic data

In the broader context of our work on generating synthetic datasets using GANs, the following
section discusses the topic of privacy in synthetic data and how privacy guarantees can be applied to
GAN architectures. Considering the privacy guarantees attributed to the outcome of data synthesis
and conventional GANs, one might think that additional e�orts to implement DP are obsolete [53,
72, 73]. Therefore, the idea is repeated that data synthesis poses little privacy and anonymity risk
to of the original data because the synthetic samples are not identical to the samples of the original
distribution in terms of an explicit one-to-one match [74].

However, researchers have shown that the assumption of privacy guarantees based on a synthetic
dataset is not valid. It has been shown that generative models and GANs in particular can leak

5
https://github.com/peasypi/Stress-Detection-From-Wearables
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information about the original training patterns from a synthetic dataset [75, 76, 77]. Thus, gen-
erative sequence models can su�er from unintentional memorization of training data, such that a
given synthetic sample is identically similar to a training sample [78]. This weakness of a generative
model can be exploited by attackers using membership inference attacks to learn whether a data
point known to the attackers is present in the original data [79, 74]. The attacker uses the output
data from the machine learning models and applies statistical or machine learning techniques to de-
termine whether certain information was present in the generative models training set. Membership
inference is a privacy violation because the target has not necessarily given consent.

3.5.1. Di�erential Privacy GANs

Researchers have subsequently addressed this issue with the introduction of DP on GANs. DP
aims to protect the fundamental privacy of a dataset [45]. Building on the fundamental idea of DP
of Dwork et al. [46], Xie et al. [9] introduce the DPGAN. This GAN is a proposal to make the
training data of a GAN di�erential private. They show that this approach guarantees (‘, ”)-DP.
The implementation of DP is achieved by applying noise to the gradients during training.

A similar e�ort in terms of applying DP to GAN architectures to generate smartwatch datasets is
implemented by Imtiaz et al. [35]. They use a boundary-seeking GAN (BGAN) architecture and
DP to generate a Fitbit-smartwatch-based smart healthcare dataset. They test this architecture
in three di�erent privacy settings and show that their approach is able to learn categorical and
numerical data points for highly diverse tabular data distributions. The Laplacian noise and the
corresponding ‘ are chosen depending on the attribute category, such that ‘ = 0.2 is chosen for
categorical or static attributes, which require higher privacy settings, and ‘ = 0.5 is chosen for
so-called behavioral attributes.

Regarding the di�erent previous related works, in the following thesis we will perform the feasibility
study of the DP by applying noise to the gradients, as we will explain in the further thesis. A review
of related work shows that optimal training of a GAN and finding the appropriate hyperparameters
is a challenge in itself.
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4. Methodology

The following chapter introduces our methodology for applying GANs to the WESAD dataset
to generate synthetic datasets. An overview of our workflow for generating synthetic data can
be found in Figure 4.1 and is described in detail in the following sections. Section 4.1 outlines
the preprocessing steps taken to prepare the time-series signal data for the following tasks. In
Section 4.2, we discuss the dataset characteristics that influence the selection of suitable GAN
architectures. We introduce the three implemented GAN architectures, TimeGAN, cGAN, and
DGAN, providing an overview of the architectures, explaining design decision and give an overview
over the corresponding workflow. Evaluating GANs in general, and time-series GANs in particular,
presents di�erent challenges. In Section 4.3, we address these challenges, propose our evaluation
method decisions, and explain why a combination of these methods are indicating how well our
GANs perform on the WESAD test dataset.

Statistical
Evaluation

WESAD Dataset

Min-Max
Normalization

Combine Subject
Sliding Windows

Turn Subject
Dataframe into

Sliding Windows

Downsample all
Signals to 1Hz

Prepare data into
(1083, 60,6) windows

and labels

TimeGAN cGAN DoppelGANger

Split dataset into
stress and non
stress dataset

Synthetic
DoppelGANger

Dataset

Synthetic cGAN
Dataset

Synthetic
TimeGAN
Dataset

Subject2 Subject3

...

Subject17

Stress
Detection
Evaluation

Data Augmentation

Data Preprocessing

Evaluation

Compare synthetic
and original dataset

Visual
Evaluation

Train CNN model

LOSO TSTR

Figure 4.1.: Shown is our workflow for generating synthetic samples to improve stress detection
based on the WESAD dataset. In the first step, we load and preprocess the WESAD
dataset. Then we train the GAN models for data augmentation. Each model generates
a synthetic dataset. Finally, we evaluate the di�erent datasets.

4.1. Preprocessing

Preprocessing is a crucial step in working with time-series signal data. In the following work, we
have adopted the signal preprocessing of Gil-Martin et al. [4]. First, the Empatica E4 measurement
signals were recorded at di�erent sampling rates. Therefore, they need to be resampled to a unified
sampling rate and aligned for further processing to ensure that each point in time has corresponding
samples in each signal. All signals are downsampled to a consistent sampling rate of 1Hz using the
Fourier method. Thus, despite the reduction in data points per second, the crucial non-stress/stress
dynamics can still be captured, while training of the GANs is greatly accelerated.

Second, the labels are adjusted so that the labels baseline and amusement are labeled as non-
stress labels. The data points associated with the other labels are removed from the dataset. This
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is done because we are only considering the stress and non-stress data points that are relevant to
binary stress detection. A first exploratory data analysis on the dataset showed that the signal data
collected during the amusement phase in the laboratory is crucial for stress detection because there
is an overlap in some signal characteristics, such as BVP or ACC, for amusement and stress. In
order to develop a stress detection system that can also robustly discriminate between amusement
and stress situations, we perform this label adaptation. Since the subjects’ signals were measured
sequentially in di�erent phases of the laboratory session, we can remove the data points from
the meditation and recovery phase without potentially changing the trends of the signals. After
relabeling, there are 23,186 non-stress labels and 9,966 stress labels.

Third, the signals are min-max normalized to the range [0,1], eliminating the scaling di�erence
among the signals while still capturing the relationships within the data. In addition, the normal-
ization has a great impact on the subsequent GAN training, as it helps the model to converge faster
during training, thus shortening the time for the model to learn optimal weights. Figure 4.2 shows
the dataset for Subject 4 of the WESAD dataset after the resampling, relabeling, and normalization
for the di�erent signals and the corresponding stress label.

Figure 4.2.: Plot of individual signal data for Subject 4 after resampling to 1Hz, relabeling to non-
stress/stress data, and normalization with the respective stress states.

After this preprocessing, we plot a correlation matrix to validate the relationship between the
respective signals. As the correlation matrix in Figure 4.3 shows, there is a strong positive correlation
between the EDA signal and the stress label, with a value of 0.77. This indicates that as the EDA,
i.e. the conductivity of the skin, increases, so does the stress level. TEMP has a moderate negative
correlation with the stress label of -0.35. Both correlations are consistent with the understanding
of physiological responses to stress that we presented in background Section 2.1.
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Figure 4.3.: Shown is the correlation matrix over the min-max normalized and downsampled to
1Hz signals of the WESAD dataset.

Given that the dataset consists of ninety-minute sessions per subject, we divide these long sessions
into smaller, more manageable input windows. We transfer each subject’s ninety-minute session into
60-second windows. In addition, as Dzieøyc et al. [80] did in their work on the WESAD dataset
for research on an end-to-end deep learning approach for a�ect recognition, we introduce a sliding
window of 30 seconds. This sliding window overlaps with the previous and next window for 30
seconds, providing more contextual information for each window. Additionally, sliding windows
increases the amount of data on which the GANs are trained. We examine the stress/non-stress
labels within each window. To assign a label for a window, we determine the present majority
class in the 60- second window, analogous to Dzieøyc et al.[80]. Finally, we concatenate both the
60-second windows and the associated stress class labels from all subjects into a training dataset
for GAN training. Figure 4.4 shows ten random sequences from the set of preprocessed sliding
windows. These are shown for the individual signals for both the non-stress and stress states. The
distribution of the signal sequences is characteristic for the respective stress state and corresponds
to the theoretical basis on the physiological stress responses of the body from Chapter 2.1, e.g.,
TEMP: non-stress high / stress low; EDA: non-stress low / stress high; or BVP, which has a higher
frequency in the stress state than in the non-stress state.

Nils Wenzlitschke
3755701

21



4. Methodology

Figure 4.4.: Shown are 10 preprocessed window sequences, split into non-stress and stress samples,
for each signal.
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4.2. Model Architectures Overview

Data is essential for deep learning tasks, and although the goal of this work and of training a
GAN is to generate synthetic data, existing datasets are necessary for this endeavor. It is equally
important to understand the nature of the data and how to prepare it for the task. After bringing
our signal data to a consistent sampling frequency in the previous step, it is important to determine
the proper model architecture for this preprocessed data. In the research field of GANs, researchers
have developed numerous architectures for each specific data form since the original paper by
Goodfellow et al. [36], the more significant it is to understand the distinguishing characteristics of
the corresponding data to find a proper fitting architecture. The given WESAD dataset has three
main characteristics that are critical for architecture selection.

1. Each time point across all 6 signals has a stress/non-stress label.

2. It is continuous time-dependent data recorded over a time interval.

3. Each signal correlates with the other signals.

Based on these data characteristics, we have selected three di�erent GAN architectures that address
these criteria.

4.2.1. TimeGAN Overview

We introduce TimeGAN as a baseline model to measure the expected improvements over the other
GANs. While TimeGAN is able to capture continuous time dependence and multi-correlation within
the data, it cannot be fed additional information such as the stress label to generate conditional
data. This means that TimeGAN must be trained twice to generate a synthetic dataset that covers
both conditions. Once for the data non-stress labeled data, and once for the stress labeled data, our
workflow for preprocessing the WESAD dataset for the TimeGAN training can be seen in Figure
4.5. This, and the fact that Lin et al. [71] show that TimeGAN is one of the GANs with the longest
training time, makes this approach more cumbersome in the training process than the following
ones, which build on this approach.

In order to capture not only the distribution of features within each time point, but also poten-
tially complex dynamics over time, the authors introduce a novel mechanism that combines an
unsupervised GAN with a controlling supervised training from the field of autoregressive models.
The proposed model consists of four components: an embedding function, a recovery function, a se-
quence generator, and a sequence discriminator. In Figure 4.6 these components, the functions and
the respective losses can be seen. The objective of this model is to simultaneously learn to encode
features, generate samples, and iterate over time. The embedding and recovery functions convert the
sequences from feature space to latent space and back. In this latent space, the adversarial network
can learn the temporal dynamics underlying the data using these low-dimensional representations.
The adversarial network, consisting of a generator and a discriminator, then outputs synthetic
samples into this latent embedding space. To generate a sequential time-dependent sample, the
generator takes a tuple of static and temporal random vectors and outputs a synthetic latent code.
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Signal Data for one Subject

Split into stress and non-stress
data

Stress

Non-Stress

Convert data into multiple sliding
windows

Figure 4.5.: TimeGAN preprocessing workflow to capture the conditional characteristics of the
WESAD dataset

The TimeGAN implementation uses RNNs for both the generator and the discriminator. It also
trains an additional neural network that maps time-series sequences to a vector embedding space.
While Lin et al. [71]. state that this learning of an additional embedding space leads to a network
that models long time-series poorly, this is addressed in the TimeGAN by segmenting long datasets
into chunks and evaluating this model on the generation of new time-series with this fixed length.
Because we do not want to have a model that generalizes over di�erent domains of varying length
in the original data but rather augments the data for a specific dataset, we also work with fixed
length windows of the WESAD dataset, and will evaluate our approach on these chunks of the
dataset.

4.2.2. cGAN Overview

The cGAN is a type of GAN that takes into account additional information such as class labels
to generate labeled data. The architecture we use for the cGAN is based on the work of Ehrhart
et al. [70]. The authors claim that their architecture is capable of generating labeled synthetic
samples that are statistically similar to the original dataset. Using the cGAN, they are able to
generate synthetic data that is indistinguishable from the original dataset. They then use this data
to train a neural network to detect stress moments. The proposed cGAN consists of two neural
networks, a generator that aims to produce synthetic stress or non-stress samples that are similar to
samples drawn from the real dataset, thus fooling the discriminator, and a discriminator that learns
to distinguish between real stress or non-stress moments and synthetic samples. As noted in the
description of the data criteria, the dataset is based on time-dependent variables. The architectural
workflow can be seen in Figure 4.7.

First, the conditional generator, implemented as a Stacked-LSTM, receives a latent space and
auxiliary information, the class label (stressed/non-stressed), based on this input it generates a fake
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Figure 4.6.: TimeGAN Overview of components, functions, and their losses. The embedding and
reconstruction functions learn to map from and into the latent space. Meanwhile, the
generator and discriminator learn through min-max training based on the embedded
sequence samples. Image taken from Yoon et al. [69].

sequence with a corresponding label. Second, the FCN receives this fake sequence with label and
a real sequence with the belonging label and discriminates the sample as real or fake. Third, using
backpropagation, the FCN or LSTM adjusting their weights in alternating epochs, until optimal
weights are found within training. The authors address the time-dependence using a generator
which is implemented by a LSTM taking care of the temporal context. Thus, the neural network
predicts the next time step, based on the previous and present time state, making them suitable
for processing temporal, and sequential data. Besides, using the LSTM, the author stating they are
more robust to the problem of vanishing or exploding gradients, which often occurs for comparable
generator architectures implemented by other temporal neural network architectures, for instance
RNNs.

Figure 4.7.: Ehrhart et al.’s overview of original cGAN structure. Image taken from [70]
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Ehrhart et al. uses a temporal FCN as implementation for the discriminator. The researchers
state it outperforms the recurrent discriminator. It consists of convolutional layers which extract
features from the time-series signal. The second data criteria foresees that each point in time has
a corresponding class label. Ehrhart et al. also working with stress and non-stress moment data,
extending their proposed GAN architecture by feeding vector-based conditional information to their
neural network. Before concatenating the vector and the corresponding matrix X the conditional
information vector ystress(n) fed into a 2D categorical embedding layer and upsampled to the shape
of X via a linear dense layer. Using the categorical embedding, a mapping is learned by the neural
network setting the stress label and the sequence into relation. Thus, the generator can be better
controlled by adding conditional information.

We use this architecture, determine the optimal parameters for the GAN based on our dataset
using a hyperparameter tuning. For the generator, we solely use the LSTM architecture proposed
by Ehrhart et al. [70] as initial experiments have shown that the generated samples closely resemble
the original signal windows, while the discriminator’s loss tends to reach a plateau early on. To
address this issue, we implement two other discriminator architectures, an LSTM, as well as a
transformer architecture for comparison to determine the optimal setup of this GAN.

Ehrhart et al. [70] introduce a diversity term to counteract mode collapse and reward the model for
generating diverse samples. Also during training, after a certain number of epochs, the classifier-
two-sample test (CTST) is performed. Here, a binary classifier on unseen test data decides whether
it belongs to the original dataset or is part of the synthetic dataset. The closer the accuracy of this
binary classifier is to 0.5, the better the cGAN generation works. A low accuracy (0.5) means that
the binary classifier is not able to assign the data to the correct origin, better than guessing. These
values are recorded during training and hyperparameter sweeping to give an indication of the best
GAN architecture.

4.2.3. DGAN Overview

Lin et al. [71] introduce a solution to existing shortcomings of time-series GANs with respect to
fidelity with the DGAN. Since the canonical GAN relies on fully-connected multi-layer percep-
trons, this is not su�cient to capture long-time relationship and correlations between data points
of a time-series. To capture these long-time relationships and generate them synthetically, they use
RNNs, to be more precise LSTM. They rely on batch generation by the RNNs to generate longer
time-series, improving both the e�ciency and the capture of temporal relationships. Furthermore,
to incorporate additional information, Lin et al. [71] propose an architecture with multiple gener-
ators. The researcher’s intuition is to decouple this conditional generation task into two tasks, the
generation of metadata and the generation of continuous measurements, i.e., time-series sequence
samples based on this metadata. There is a separate generator for each of the di�erent task. Thus,
a single generator is used for the generation of metadata, i.e., categorical data, and a separate one
for continuous data, in our case the values that our sequence represents for a signal. An auxiliary
discriminator is used in addition to a general discriminator. The auxiliary discriminator has the
task of learning the output of the metadata. This additional discriminator allows the network to
learn the metadata which strongly influences the characteristics of the sequence measurements.
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In our case, this is the network being fed the stress or non-stress label to produce the associated
output.

To address the mode collapse, they introduce even one more generator, which treats the min and
max of each time-series as metadata. First, the MLP generator generates fake metadata, second
this metadata is then the input for the min/max generator. Third, the metadata from the metadata
generator and the min/max is the input for the sequence generation RNN. This architecture can
be seen in Figure 4.8

Figure 4.8.: Overview of architecture of the DGAN shows the multitude of generators and discrim-
inators. Figure taken from [71].

At the same time, the loss of both discriminators is merged to improve the training of the generators.
By combining these techniques, Lin et al. [71] indicate to address the relationship between the
di�erent attributes, the problem of mode collapse and the generation of high-fidelity synthetic
time-series data. This approach also o�ers the advantage that a trained model can be further
refined, and by flexibly changing the metadata, can generate synthetic data for a di�erent use
case.

4.3. Evaluation

The evaluation process is one of the key challenges in training and using GANs. While in many
areas of neural network application, certain evaluation metrics have become established within the
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research field. This is true for the area of GANs that involve computer vision such as image gen-
eration, but not for time-series GANs. In terms of GAN evaluation, it needs to be distinguished
between qualitative and quantitative metrics. Qualitative metrics refer to subjective human judg-
ment and are often used in fields where visual quality, realism, or aesthetics are critical, such as
computer vision. These qualitative metrics are di�cult to quantify; on the other hand, quanti-
tative metrics are primarily concerned with capturing objective measurements, such as accuracy,
performance, or statistical properties of a sample.

While in case of computer vision, the most representative qualitative metric is the human annotation
of the visual quality. In terms of time-series data, it is way harder to evaluate it on visual quality.
Brophy et al. [42] state the comparatively low publication density as the reason the field has not
yet been able to agree on evaluation metrics.

Another problem in finding a uniform evaluation metric can be traced back to the di�erent appli-
cation domains of time-series GANs. For example, a time-series GAN used in the financial sector
will have to meet di�erent requirements than a GAN used in the healthcare sector. This makes
both the uniform metric definition and the creation of a benchmark dataset di�cult. Moreover,
di�erent researchers care about di�erent things. While one researcher is particularly interested in
the consistency of the statistical distribution, the next researcher places a high value on high quality
samples.

Contrary to the field of computer vision GANs, where there are many comprehensive benchmark
datasets such as ImageNet [81] and CIFAR-10 [82], this does not exist for the field of time-series
GANs. One of the problems is the generalizability of the GANs and possible privacy problems of
these data, as in the case of medical GANs that rely on clinical personal data. These two issues
make it more di�cult for the scientific field to compare approaches and results.

While we can address the issue of inconsistent evaluation metrics by picking and using promising
approaches, in this work we neglect to determine the performance of our approach on a benchmark
dataset. This is not the goal of this work, as we will extend an existing dataset and validate it for
the particular use case.

In order to evaluate our results comprehensively, we choose di�erent metrics. For this choice of
evaluation metrics, we decide on the three desiderata Yoon et al. [69] propose on their evaluation
on TimeGAN:

• Diversity: samples should be as distributed as the real data points

• Fidelity: samples should be indistinguishable from real points

• Usefulness: samples should be as useful as the real dataset when used in the same application
context (i.e., training on synthetic data, testing on real data).

While the three evaluation approaches address various facets of the synthetic data, they all examine
the nature of the synthetic data compared to the original WESAD dataset. We perform the diversity
and fidelity evaluation on both the synthetic and original datasets, comparing the non-stress and
stress data, respectively. In this way, we can ensure that the conditional property is learned by
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the GANs and that they can generate both stressed and unstressed data according to the original
data.

4.3.1. Diversity

Assessing diversity means assessing the ability of the GAN to understand the data distribution in
its entirety. The visual examination of individual sample sequences from each signal type plays a
crucial role in answering the following questions: Visual inspection of individual sample sequences
from each signal type plays a crucial role in answering the following questions: Do the synthetic
sequences show a similar signal progression, a similar signal profile as the real sequences in the 60-
second windows? Can the model generate di�erent sequences per signal type, or are they prone to
mode collapse as described in the background Section 2.2.1? Furthermore, to examine the diversity,
visualizations are useful that reduce the dimensions of the dataset and make them comparable in
a two-dimensional space. In this context, we apply a Principal Component Analysis (PCA) and a
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis.

PCA. PCA is a statistical technique for simplifying and visualizing a dataset. It converts many
correlated statistical variables into principal components. PCA is able to identify the principal
components in which the data di�er while preserving the coarser structure of the data.

t-SNE. t-SNE is another method for visualizing high-dimensional data. Each data point is assigned
a position in a two-dimensional space. This reduces the dimension while maintaining significant
variance. Unlike PCA, it is not good at preserving the location of distant points, but can better
represent the equality between nearby points.

4.3.2. Fidelity

Fidelity as defined by Yoon et al. [69] measures the indistinguishability between the synthetic and
the real dataset. Furthermore, we determine the fidelity by examining the statistical properties
of the individual signals in the synthetic dataset or the real dataset. Therefore, we analyze the
statistical distributions of the signal values over the entire laboratory session time course and
compare this with the statistical distribution of the values that form the synthetic dataset. An
optimal synthetic dataset completely mimics the distribution of the real dataset and is therefore
indistinguishable from the real one. We also evaluate the fidelity by performing indistinguishability
tests. This goes beyond the statistical distribution comparison, and we get more information about
how well the synthetic dataset mimics the real one, and how well the synthetic data can fool trained
machine learning models. For this test, we train several binary classifiers to distinguish between
real and synthetic data. This follows the intuition that, when the synthetic data closely mimics the
real data, the classifier struggles distinguishing and tends to an optimal accuracy of 0.5. Upfront,
we partition the synthetic and real data based on the stress label to evaluate the fidelity on each
label. We then label the real data ’1’ and the synthetic data ’0’. The data is then combined and
split into train and test dataset with 80:20 ratio. Over this data, we train a variety of classifiers
such as logistic regression, K-Nearest Neighbors (KNN), and Naive Bayes. We use di�erent classifier
algorithms to ensure that the result obtained is robust, and not based on an insu�ciency or bias of
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a single classifier. The performance is then assessed by calculating the accuracy of the predictions
of the remaining 20% test dataset.

4.3.3. Usefulness

To test the third criterion, the usefulness of a dataset, we use a CNN for stress detection. We
provide further details on the preprocessing for the CNN stress detection model in Section 4.4. To
measure usefulness, we perform two di�erent training procedures with the synthetic data.

LOSO. On the one hand, we use the generated dataset to train the model in the Leave-One-
Subject-Out (LOSO) procedure. We train 15 di�erent models, each using 14 of the 15 subjects from
the WESAD dataset as training data and evaluating them on the remaining subject so that each
subject is the test data once. To evaluate our synthetic data, we generate stress and non-stress
sequences per GAN model with the size of an average subject. We use this data in the LOSO
training procedure as a synthetic subject, having 15 subjects plus 1 synthetic subject, and evaluate
the influence of the additional synthetic data on the LOSO evaluation of the other subjects. To
compare the influence, we use the results of Sülzle and Wenzlitschke6 and can compare the accuracy,
recall, precision, and F1-score with and without the synthetic dataset in the LOSO procedure.

Train-test leakage is a problem that occurs when instances from the test set unintentionally influence
the training set, which can lead to an overly optimistic performance of the trained model. This
problem is also part of our LOSO training procedure, since the data from each subject that we
excluded for evaluation was part of the training dataset for the GANs.

To address the train-test leakage problem, we trained a GAN without subject 14 as an exem-
plary case. Subject 14 performed very poorly in comparable work with the stress detection model.
By separately training a GAN without this subject and training with the same, we can test the
generalizability of our data.

TSTR. On the other hand, the TSTR framework is commonly used in the synthetic data domain.
TSTR means that the model is fully trained on the synthetic data and then evaluated only on the
real dataset. Thus, the real dataset is not part of the training process and the generalizability of the
synthetic dataset can be better represented. We apply TSTR to stress detection on the 15 subjects.
For this, we first generate a synthetic dataset per GAN model with the size of the original WESAD
dataset. We then train a CNN model for each synthetic dataset. We then evaluate this model on
each of the subjects. The final performance of the model is given by the averaged accuracy, recall,
precision, and F1-score over all subjects, as in the LOSO method. The metrics we use to evaluate
the stress detection model are accuracy, precision, recall and F1-score.

Accuracy determines the ratio of correctly classified stress, true positives (TP), and non-stress,
true negatives (TN), windows to the entirety of all predictions. While this measure can provide an
indication of the performance of the model, for unbalanced training datasets, accuracy alone is not
su�cient to provide a comprehensive picture of the model’s performance.

6
https://github.com/peasypi/Stress-Detection-From-Wearables
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Accuracy = TP + TN

TP + FP + TN + FN

Precision considers the true positives (TP), i.e., all correctly classified stress windows, in relation
to all samples classified as stress windows. In other words, how often does the model classify stress
without predicting false positives (FP) (windows falsely identified as stress).

Precision = TP

TP + FP

Recall is a measure that determines the ratio of correctly classified stress windows to the total
number of stress windows. A high recall value means that the model is capturing a large portion
of the stress moments, possibly at the cost of a higher occurrence of FP but less false negatives
(FN).

Recall = TP

TP + FN

F1-score combines both precision and recall, which are important for our stress detection model, to
determine the balance between these metrics. The F1-score is the harmonic mean and is particularly
useful for unbalanced datasets, such as the WESAD dataset, in the distribution of stress labels.

F1-score = 2 ◊ Precision ◊ Recall
Precision + Recall

4.4. Preprocessing for Stress Detection with a CNN Model

We conduct the usefulness evaluation using a CNN Model by Gil-Martin et al. [4]. The researchers
use a 2-dimensional CNN to perform stress detection on the WESAD dataset. The input to this neu-
ral network is a further processing form of the windows we described in Section 4.1. Here, the win-
dows of the form (number of samples, length of window in seconds, number of signals)

are transformed via Fast Fourier Transformation (FFT) into a frequency dependent representation.
FFT is an algorithm that e�ciently calculates the Fourier transform to convert a time-dependent
signal into its frequency components, which form the original signal.

The preprocessing workflow is illustrated in Figure 4.9 by dividing the 60-second windows into
further subwindows of di�erent lengths depending on the signal type and a sliding window of 0.25
seconds. The di�erent length of these subwindows results from the unique frequency spectrum
characteristics of each signal type. Gil-Martin et al. [4] provide these values for the frequency range
and the corresponding sub-window length, which can be seen in Table 4.1.

The upper bound of the frequency range multiplied by the sub-window length results 210 which is a
fixed input size for the CNN. The FFT is then applied to these subwindows. This means that these
subwindows are transformed into frequency spectra. The frequency spectra of the subwindows are
then averaged along all subwindows in a 60-second window to finally obtain a frequency spectrum
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per 60-second window, resulting in an average spectrum having the same number of 210 frequency
points. These 210 frequency points then become the input to the CNN model.

Figure 4.9.: Preprocessing workflow for CNN stress detection and image taken by Gil-Martin et
al. [4].

Signal Frequency Sub-window Number of inputs
range length to CNN

Accelerations (X, Y, Z) 0–30 Hz 7 seconds 210
BVP 0–7 Hz 30 seconds 210
EDA 0–7 Hz 30 seconds 210
TEMP 0–6 Hz 35 seconds 210

Table 4.1.: Details for subwindow length per signal taken from Gil-Martin et al. [4].

4.5. Applying Di�erential Privacy to GANs

One of the main challenges in applying DP to GANs is to produce high quality samples that
convey high information value with respect to the domain without giving the linkage of a sample
with individual data [46, 42]. To examine DP in the following, we draw on the approach of Xie et al.
[9] and Liu et al. [83]. Both approaches introduce the same concept, a DP guarantee via applying
noise to the gradient. The researchers provide a proof for the (‘, ”)-di�erential privacy guarantee.
They can guarantee DP by adding noise gradients to the optimizer during the training phase, and
evaluate this approach over multiple dataset, showing they are able to produce high quality data
samples.
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The generator only receives the feedback from the discriminator, while the discriminator is accessing
the real data [83]. That indicates that only the discriminator needs to apply to DP. DP is used
only for the cGAN discriminator, since the cGAN gave the best results during the hyperparameter
tuning. In order to determine the necessary noise multiplier, i.e. the factor by which the noise
must be added in order to guarantee a certain privacy level, we must first determine the following
parameters:

” is chosen to be less than the inverse of the size of the dataset, as described in the background
Section 2.3. In our case, we have, 1083 sliding windows. But only 545 of them are unique windows,
so ” needs to be smaller than 1

545 , resulting in ” = 10≠4. For good privacy guarantees, the privacy
budget should be ‘ Æ 1 . To investigate the trade-o� between privacy and quality, we tested di�erent
values for the privacy budget ‘ = {0.1, 1, 10, Œ} in our DP-cGAN experiments. Furthermore, the
calculation of the noise depends on the number of epochs and the size of the microbatches. For
more details, see the experimental setup chapter Section 5.6.
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5. Experimental Setup

The following chapter outlines the experimental setup for this thesis and describes the technical
details we decided to use. The chapter consists of the following sections: In Section 5.1 we provide
an overview of the tools, libraries, and frameworks used to implement the di�erent GANs. Section
5.2 describes the signal processing on the WESAD dataset that we did to obtain the training
dataset for the GAN training. Section 5.3 explains the architectures for each GAN in terms of
implementation details of the individual building blocks, generator and discriminator, regarding
the number and type of di�erent layers. In Section 5.4 we explain the training processes common
to all GANs, but also highlight the design of the specific training iterations for each GAN. Finally,
in Section 5.5 we present the further preprocessing, architecture, and training process for the stress
detection model, which we will use in the following to evaluate the di�erent GAN architectures.

5.1. Environment

For the implementation, we use Python as our programming language of choice, working in multiple
Jupyter notebooks. The Jupyter notebooks represent the individual steps taken to preprocess the
data, define the hyperparameter tuning, and train the model. Subsequently, the data is generated
and then evaluated using the visual and statistical metrics specified in Section 4.3. Finally, the
stress detection evaluation model is used to retrieve the evaluation metrics in a use case setting to
obtain the usability evaluation dimension. We use Keras7 with TensorFlow8 for the implementa-
tion of TimeGAN and cGAN, and PyTorch9 for the DGAN architecture, since it comes with the
gretel-ai synthetics implementation10 that we use. The hyperparameter sweep for the cGAN and
the TimeGAN are performed using WandB11. To show the applicability of DP, we also use the
tensorflow-privacy12 library to replace the optimizer with a DP optimizer.

The source code is available in a Git repository13 for easy access and reproducibility.

5.2. Signal preprocessing

For the signal preprocessing of the GANs, we follow the methodology of Gil-Martin et al. [4]
described in Section 4.1. Based on the implementation of Sülzle and Wenzlitschke14, we first process
each subject of the WESAD dataset individually. The data is downsampled to 1Hz, relabeled to
non-stress and stress labels, and min-max-normalized into the range of [0,1]. We then turn this
data into 60-second windows with an overlap of 30 seconds. Subsequently, the individual 60-second

7
Available on GitHub: https://github.com/keras-team/keras

8
Available on GitHub: https://github.com/tensorflow/tensorflow

9
Available on GitHub: https://github.com/pytorch/pytorch

10
Available on GitHub: https://github.com/gretelai/gretel-synthetics

11
See: https://wandb.ai/

12
Available on GitHub: https://github.com/tensorflow/privacy

13
Available on GitHub: https://github.com/geheim01/Privacy-Preserving-Smartwatch-Health-Data-Generation-

Using-DP-GANs
14

Available on GitHub: https://github.com/peasypi/Stress-Detection-From-Wearables
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windows and their corresponding labels from the subjects are merged into the training dataset.
Resulting in data with a shape of (1083, 60, 6), where 1083 relates to the number of windows
with a length of 60 seconds and 6 signals (BVP, EDA, ACC_x, ACC_y, ACC_z, TEMP). 320 of
these windows are stress-labeled and 763 are non-stress labeled.

5.3. GAN Architectures

As just described, the data after preprocessing has the shape (1083, 60, 6). After this signal
preprocessing, the data is split into stress and non-stress data, and then split into an 80:20 train/test
split for further training and evaluation in the training process. This data after signal preprocessing
serves as input for training the di�erent GAN networks.

While we describe three di�erent GAN architectures in detail below, it should be emphasized that
hyperparameter tuning was only performed on the TimeGAN and the cGAN. We only applied DP
to the cGAN because it gave the best results in the exploratory training trials and was therefore
the most promising. The code for the cGAN architecture was provided to me by Ehrhart et al. [70].
We adapted and hyperparameter tuned this architecture for our use case.

5.3.1. TimeGAN Implementation

We use the TimeGAN implementation15 which was used as a baseline approach in the Hide and
Seek Privacy Challenge [84]. This implementation was originally developed by Yoon et al. [69] and
subsequently ported for use in TensorFlow 216. We will use this implementation for the following
experiments.

A crucial di�erence to the other two GANs used here is that the TimeGAN cannot capture the
conditional aspect. To counteract this, we first divide the dataset into stress and non-stress data,
and then train two TimeGANs to deal with the two conditions. Then, to obtain a synthetic dataset
that mimics the WESAD dataset, we generate samples with each of the two models and merge
them.

Generator The generator is an RNN implemented with Gated Recurrent Units (GRU) with a
tanh activation function, 10 hidden units, and 3 layers. These GRU layers followed by a dense layer
with 10 hidden units and a sigmoid activation function. For the optimizer, the Adam optimizer is
used. The loss is calculated using the binary cross-entropy loss function.

Discriminator The discriminator is built analogously to the generator with an RNN consisting of
three GRU layers, except that the output dense layer has only 1 unit and no activation function. The
Adam optimizer and the binary cross-entropy loss function are used for training. The embedding
network and the recovery network are implemented with the same architecture as the generator and
the discriminator, where the embedding network follows the generator network and the recovery
network follows the discriminator architecture.

15
Available at: https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/app/hide-and-seek

16
Available on GitHub: https://github.com/mcps5601/TimeGAN-tensorflow2
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5.3.2. cGAN Implementation

The cGAN architecture is based on the work of Ehrhart et al. [70]. In the following, we describe
the implementation details, including the configuration of the architecture and the optimal hyper-
parameters, which we determined through a hyperparameter sweep via WandB17.

The architecture of the cGAN consists of an LSTM in the generator. For the discriminator, we
implemented two di�erent neural networks, an FCN and an LSTM architecture. These three archi-
tecture can be seen in Figure 5.1.

Generator. The generator first feeds the generated random noise into the neural network through
an input layer and reshaped to add an additional channel. Then the categorical input, i.e. the
stress/non-stress class, is embedded by an embedding layer, put through a dense layer and con-
catenated with the reshaped noise. This is then put through two LSTM layers. The input sequence
length is 60, we use 64 hidden units for the LSTM layers.

FCN Discriminator. For the discriminator, we tried two architectures: FCN and LSTM. The
FCN discriminator takes the conditional information and the stress/non-stress signal sequence as
input. Then, the conditional information is preprocessed in the manner of embedding and dense
layer, and then concatenated with the signal sequence. The concatenated matrix is then passed
through several Conv1D, BatchNorm, and ReLU blocks to be averaged and pooled at the end. For
the three Conv1D layer we apply [32,64,32] filters, with kernel size of [8,5,3] with the respective
layer. Finally, the binary cross-entropy loss function is applied to determine whether the sample is
drawn from the real data distribution or synthetically generated by the generator.

LSTM discriminator. The LSTM discriminator transforms the input in the same way as the FCN
discriminator, up to the point where the conditional information and the input signal sequence are
concatenated. This is followed by two LSTM layers, which are also followed by a global average
pooling layer, which binary cross-entropy loss function. For the LSTM layers, we choose a hidden
size of 64 units.

5.3.3. DGAN Implementation

We use the DGAN implementation that comes with the gretel synthetics library for time-series
synthetic data18. The DGAN network consists of several generator and discriminator networks.
The metadata generator and the min/max generator are implemented with multilayer perceptrons
(MLPs) with 2 hidden layers and 100 units per layer. The measurement generator, which generates
the continuous data, is implemented with a 1-layer LSTM with 100 units. The softmax activation
function is used for the metadata generator output. We use the sigmoid activation function for the
measurement generator because we normalize the data to [0,1]. The discriminator and the auxiliary
discriminator are implemented with a 4 hidden layer MLP with 200 hidden units per layer.

17
https://wandb.ai/

18
Available on GitHub: https://github.com/gretelai/gretel-synthetics/tree/master/src/gretel_synthetics/timeseries_dgan
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Figure 5.1.: Generator and discriminator architectures for the cGAN. Image based on Ehrhart et
al. [70] adjusted by LSTM discriminator.

5.4. GAN Training

To ensure the reproducibility of our results, we set a random seed for the GAN trainings to 42.
Furthermore, the training of the GANs follows a similar abstract pattern: the generator is first fed
random noise, from which it generates a sample. Then, the discriminator classifies the sample as
a stress or non-stress situation. This process is repeated in a training loop over many iterations,
where the generator learns to generate better samples based on the discriminator loss, while the
discriminator learns to discriminate better between real and fake data over time. The details are
explained below.

5.4.1. TimeGAN Training

The TimeGAN consists of four main components: Embedding and recovery function, and the dis-
criminator and generator network, as can be seen in Figure 4.6. These are trained by three loss
functions: Reconstruction Loss (LR), Unsupervised Loss (LU ), and Supervised Loss (LS). Initially,
these loss functions are trained separately, and later combined.

The training consists of three parts. First, the embedding network is trained for 2,000 iterations.
It learns to map the higher-dimensional feature space into a lower dimensional latent embedding
space with LR:
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LR = Ex1:T ≥p

C
ÿ

t

Îxt ≠ x̃tÎ2

D

(5.1)

LR is determined by computing the distance between the reconstructed data x̃1:T and the original
data x1:T using the L2 norm. x1:T represents a temporal sample sequence from our real data
distribution p. In order for the embedding and reconstruction functions to learn the embedding
space correctly, the goal is to minimize this loss in order to obtain accurate reconstructions.

LU = Ex1:T ≥p

C
ÿ

t

log yt

D

+ Ex1:T ≥p̂

C
ÿ

t

log(1 ≠ ŷt)
D

(5.2)

LU is used to train the generator and discriminator in a min-max game. Therefore, the predicted
likelihoods of yt and 1 ≠ ŷ originating from the real distribution p or the synthetic distribution p̂

are compared.

LS = Ex1:T ≥p

C
ÿ

t

Îht ≠ gX(ht≠1, zt)Î2

D

(5.3)

LS is used to train the generators’ ability to capture the temporal dynamics within the sequence
data points. LS is calculated using the L2 norm as the distance between the latent space h and
the synthetic latent space generated by the generator. This generator receives as input the latent
space ht≠1 of a temporally preceding state and a random noise variable zt.

In the second training round, only LS is trained. Finally, the four components are jointly trained
with their respective loss functions for 6,000 iterations. Thus, the generator is trained twice as often
as the discriminator, which helps the generator to produce better samples.

We set the batch size to 32, and for all four component neural networks, we utilize the Adam
optimizer with a learning rate of 10≠3.

5.4.2. cGAN Training

The cGAN consists of two networks, the generator G and the discriminator D, which are optimized
simultaneously. To compute the loss, the min-max adversarial loss function from the original GAN
paper [36] is used and adapted below.

min
G

max
D

= Ex,y[log(D(x|y))] + Ez,y[1 ≠ log(D(G(z|y)))] (5.4)

Therefore, the discriminator tries to maximize the log probability of correctly classifying the real
samples and fake samples from the time-series data. At the same time, the generator tries to
minimize the probability classifying the generated samples as fake. The generator generates these
sequence samples from a latent space z with a Gaussian distribution N(µ, ‡2). A novel concept in
this training loop is the introduction of the diversity term. As mentioned before, a key challenge in
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GAN training is the production of the same samples over and over again, leading to mode collapse.
An example of a mode collapse that occurred during hyperparameter tuning and could be resolved
by adjusting the hyperparameters is shown in Figure 5.2.

Figure 5.2.: Mode collapse, which occurred during hyperparameter tuning of the cGAN model.
The generated synthetic sequences are shown on the left for stress (MOS) and non-
stress (No_MOS), which tend to be all the same, while the sequences from the original
WESAD dataset for the BVP, EDA, and TEMP signal types are shown on the right.

To counteract this problem, the generator produces two samples from di�erent latent spaces. The
distance between these two samples produces the diversity term in this training step. Ehrhart et
al. [70] define the diversity term as:

max
G

f(G) = Ez1,z2

5ÎG(z1, y) ≠ G(z2, y)Î
Îz1 ≠ z2Î

6
(5.5)

This approach follows the basic idea that if the noise samples are di�erent but the generated
sequence sample is the same, the diversity term is 0. This diversity term is then factored into the
gradient calculation for the generator, which results in the generator also trying to maximize this
diversity term.

The introduction of the diversity term leads to this adapted version of the loss function:

min
G

max
D

f(G, D) ≠ ⁄f(G) (5.6)
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where f(G, D) represents the original objective function and f(G) represents the diversity term.
The ⁄ term defines the importance of the diversity term.

For our experiments, we followed the diversity term ⁄ = 8 chosen by Ehrhart et al. [70]. Figure
5.3 shows the evolution of the diversity term values during training. Initially, these values increase
and then fluctuate between 1.5 and 2 as the training time progresses, which, according to initial
exploratory investigations, is indicative of good sample sequence diversity.

We used multiple optimizers in a hyperparameter sweep WandB19, resulting in the Adam optimizer
with a learning rate of 0.0002 and a beta value of 0.5 as the best setting. The training is done in
di�erent training iterations, where several runs with di�erent settings are performed.

We determined these optimal performing GANs in consideration of plotting signal sequences, t-SNE
and PCA plots. Furthermore, we inspected the CTST score and the diversity term after each 100
epochs (Figure 5.3).

The best performing cGAN-LSTM was trained for 1599 epochs and a batch size of 64 reaching a
CTST score of 0.745. The best performing cGAN-FCN was trained for 2848 epochs with a batch
size of 64 achieving a CTST score of 0.642

The CTST score is implemented by a binary classifier, a KNN Classifier, to compare the similarity
of the synthetic data with the original data during training and to detect progress or degradation
in the training of the GAN. Figure 5.3 shows this evaluation metric for training the best cGAN
model. The lower this value is, the better the GAN is able to generate the synthetic dataset that
mimics the original dataset. The worse the performance of the classifier in distinguishing between
the two datasets.

(a) Diversity Term (b) CTST Score

Figure 5.3.: Shown are the two training metrics, the diversity term and the CTST score, for the
cGAN in the wandb training environment, which illustrate the learning progress of the
model over time.

5.4.3. DGAN Training

The DGAN consists of several generators and discriminators. One discriminator classifies the gen-
erated sequence samples, and an auxiliary discriminator distinguishes the additional metadata
output. Both discriminators are trained simultaneously with the following loss function:

19
See: wandb.ai
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min
G

max
D1,D2

L1(G, D1) + –L2(G, D2) (5.7)

where Li, i œ {1, 2} is the Wasserstein loss of the original and auxiliary discriminators. The loss
function for both discriminators is implemented via the Wasserstein loss because it improves train-
ing stability and avoids mode collapse.

For the optimizer, the Adam optimizer is used with a learning rate of 10≠3 for both the generator
and the discriminator and a batch size of 552.

5.5. Stress Detection Evaluation Model

In this section, we describe the steps to test our third evaluation metric, usefulness in a real-world
scenario. To do this, we draw on architecture from Gil-Martin et al. [4] for stress detection of
wearable smartwatch data on the WESAD dataset. Gil-Martin et al. propose a CNN architecture
that detects the stress of the respective signals based on the frequency spectrum. We use Sülzle
and Wenzlitschke’s implementation20 of the architecture and signal preprocessing in the following
step and extend the evaluation with the TSTR framework.

Before we can train the stress detection model, we need to further process our synthetic datasets.
These datasets consist of multiple windows with the shape (1083,60,7). This time-dependent data
must be transformed into the frequency spectrum as described in 4.4.

5.5.1. Stress Detection Signal Preprocessing

The following signal processing builds on the previous preprocessing of the WESAD dataset in
60-second windows from Section 5.2. These windows are the training data for the GAN training,
but must be further processed to serve as the training data for the stress detection. It is important
to understand that the following processing is applied to both the newly generated synthetic data
from the GANs and the 60-second windows from WESAD dataset.

The stress detection signal processing input consists of (1083,60,6) windows, each labeled with the
corresponding stress or non-stress state. We divide each window into subwindows. The subwindow
length depends on the signal type, as shown in Table 4.1 in Section 4.4, with a sliding window of
0.25. To subsequently transform these time-dependent subwindows into the frequency spectrum,
we use the FFT provided by SciPy21. We apply the FFT to the time-dependent subwindows and
obtain a subwindow of the signal in the frequency spectrum. By varying the frequency ranges,
we can ensure that the regions of interest of each signal type are captured. Depending on the
frequency range, we adjust the subwindow length to obtain a constant input shape of 210 data
points. Subsequently, the frequency spectrum subwindows of each 60-second window are averaged
to obtain an average frequency spectrum per 60-second window.

20
Available on GitHub: https://github.com/peasypi/Stress-Detection-From-Wearables

21
See: https://scipy.org
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To avoid possible errors in dealing with missing frequencies in the higher range caused by GAN
generated data, we pad the FFT subwindows with additional 0s to the upper limit 210.

5.5.2. Architecture

The architecture of the CNN model for stress detection consists of an input layer with an input shape
of (6,210,1), corresponding to the number of signals, the number of inputs from preprocessing in
the FFT representation, and a single channel. Figure 5.4 illustrates the implemented architecture.
The input layer is followed by three blocks consisting of Conv2D layers, Dropout Layer and a
2DMaxPooling for extracting and learning the features from the data. The Conv2D layers has 64
filters with the ReLU activation function and a kernel size of (1,3). The Dropout layer has a
dropout rate of 0.3 and the 2DMaxPooling layers has a pool size of (1,2).

These feature learning Conv2D layer blocks are followed by two blocks of Dense layers with 128 and
64 units and the ReLU activation function to learn the classification into the stress and non-stress
class. Each dense layer is followed by a Dropout layers with a dropout rate of 0.3. The output
layer is a Dense layer with two units corresponding to the class number and the sigmoid activation
function. We have chosen the sigmoid function over the softmax function because it is a binary
classification into stress and non-stress class. Although the softmax function is also suitable for
binary classification, the sigmoid function simplifies the output of the classes and is therefore more
computationally e�cient.

Figure 5.4.: CNN Architecture for the Stress Detection Model. Image by Gil-Martin et al. [4]

5.5.3. Training

Training is performed using the LOSO cross-validation method. Here, the model is trained such
that iteratively X-1 subjects form the training data, while the resulting model is evaluated on the
remaining subject. Thus, as a baseline approach on the unmodified WESAD dataset, we obtain 15
models based on 15 subjects. This LOSO procedure is used because stress data can vary greatly
among di�erent subjects, and thus the generalizability of a model can be better verified by testing
it on individual stress data it has not seen before.
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Since the classes in the dataset are unbalanced as described in Section 4.1, there are many more
non-stress labeled windows in the original WESAD dataset than stress labeled windows, we use
class weights for training this binary classifier. We determine the class weights using the Keras
fit function. We set the class weights for the non-stress class to 1 and for the stress class we use
the ratio of the non-stress class to the amount of stress class instances. The training is done over
100 epochs with a batch size of 50. As optimizer, we use RMSprop with a default learning rate of
10≠3. As loss function, we use the binary cross-entropy. In training, we do not use a validation set,
but evaluate the final trained model on the remaining subject. We monitor the model performance
during training using accuracy, recall, and precision. In addition, we trained the model with a model
checkpoint callback, where only the best model based on its loss is stored, and an early stopping
callback, where a model was stored if its loss did not improve after 10 epochs.

The training for the augmentation evaluation case follows this procedure for the WESAD dataset.
To address the problem of train-test leakage, we additional train GAN models on the WESAD
dataset without Subject 14 for exemplary case. In doing so, we add synthetic subjects. These can
either correspond to one subject or multiple. The LOSO training procedure remains the same,
except that each model now contains additional subjects in the training dataset. To determine the
optimal size of synthetic augmentation, we add subjects between the size of a single subject and
100 subjects.

For the TSTR evaluation case, training is performed on the synthetic data only. We first shu�e the
synthetic data and then split it into a training and a validation set with the ratio 80:20. In contrast
to the LOSO procedure, the training and validation data remain the same. As a result, the TSTR
training method returns a single model per synthetic dataset.

5.5.4. Evaluation

In the LOSO procedure, the models are evaluated on each withheld test subject. For each subject
we calculate accuracy, precision, recall Score and F1-score. Accuracy specifies the proportion of
correct stress and non-stress detections. Recall quantifies the number of correctly detected stress
situations (True Positive) out of all stress situations (Actual Stress). Precision determines the
number of correct stress detections (True Positive) with regard to all supposed stress detections
(Predicted Stress). The F1-score is the harmonic mean of precision and recall, and thus balances
these metrics. We then average the scores of the di�erent subjects to obtain the performance
measures accuracy and F1-score around stress detection over the entirety of the WESAD dataset.
The evaluation of the TSTR method is analogous to the LOSO method in that we test the model
obtained by TSTR training on each subject individually and then average the results to obtain an
overall performance.
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5.6. Introduction of Di�erential Privacy to the cGAN Architecture

To introduce the DP criteria, we use the vectorized DP Adam optimizer from the TensorFlow
privacy library22 for the discriminator in the cGAN architecture. The cGAN architecture remains
as described in section 5.3.2.

Training is performed over 1600 epochs with a batch size of 8. We use an L2 norm clip of 1 for the
vectorized DP Adam optimizer, the microbatch size is set to the batch size of 8, ” is 10≠4, and the
learning rate is 10≠3. We compute the noise multiplier as a function of the target ‘ and the above
parameters using the TensorFlow privacy function compute noise. We choose the noise to obtain
the privacy budget with target ‘ = {0.1, 1, 10, Œ}. n = 545 corresponds to the number of unique
windows in the dataset and not to the number of windows we train the GAN model with 1083,
since these are created by the sliding windows and thus contain already seen points. In addition,
the number of epochs is multiplied by 2 to calculate the noise, since each data point in a training
is seen twice due to the overlapping sliding windows.

22
available on GitHub: https://github.com/tensorflow/privacy
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6. Results

In the following chapter, we will present the results from the experiments. As described in Section
4.3 on evaluation methods, we present the performance of the di�erent GANs under consideration
of three evaluation facets: diversity, fidelity, and usefulness.

We evaluate the synthetic datasets that result from the di�erent GAN trainings. Thus, we generate
a synthetic dataset with each model in the same size as the original WESAD dataset. First, in
Section 6.1 we examine the diversity evaluation metric. Therefore, we plot several synthetic and
original WESAD sequences to assess whether the diversity of the original dataset can be reproduced.
We also investigate how diverse the distribution of the synthetic data is compared to the original
dataset by performing PCA and t-SNE analysis. In Section 6.2, we analyze the fidelity of the
synthetic datasets. To do this, we compare the correlation matrices of the datasets to understand
whether the underlying multivariate dependence between the di�erent signal types and the stress
condition has been reproduced in the synthetic datasets. We then plot the statistical frequency
distribution over the di�erent signal types compared to the WESAD dataset. We also perform an
indistinguishability test over several machine learning classifiers to examine how indistinguishable
the synthetic datasets are from the original dataset. Finally, in Section 6.3 we show the usefulness
of the generated sequences by the result of training a stress detection model based on the di�erent
synthetic datasets, compared by TSTR and LOSO training methods. In the following, we explicitly
examine the di�erence between the LSTM and FCN discriminators presented in Section 5.3.2 for
the cGAN model. For the diversity and fidelity evaluation, we only considered the cGAN-LSTM
because the results were very close, and we only wanted to show the fundamental di�erences between
the GAN architectures. An evaluation of di�erent privacy guarantees follows in Section 6.4.

6.1. Diversity: Visual Results

By visualizing multiple sample sequences of the synthetic dataset, it is possible to examine both
the diversity, i.e., the ability of the GAN to learn the full spectrum of the original data distribution,
and one of the most common problems of GANs, mode collapse. A mode collapse is made visible
by the fact that the network is only capable of producing one sample or a small subset of possible
outcomes over and over again. The GAN will output synthetic samples sequences with very low
diversity.

6.1.1. Plotting signal sequences

We can investigate whether and to what extent the time dependence and profile of the di�erent
signal types can be reproduced by plotting sample sequences from the di�erent datasets. Figure 6.1
shows 50 original sequences from the WESAD dataset and synthetic sequences generated by the
GAN models for each signal type for the stress condition. Figure 6.2 shows analogously the non-
stress sequences. The models are capable of generating more than a few identical sample sequences,
so we can see from this visualization that the models has not encountered the usual di�culty of
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mode collapse. Moreover, across all signal types, the stress windows show di�erent signal tendencies
than the non-stress windows, as can be seen in Figure 6.1 compared to the equivalent Figure 6.2 with
non-stress. This means that the models are able to learn the conditional aspect, given by additional
class information during training, and to reproduce it using these samples. These tendencies can
be seen very well in the case of EDA, as described in Chapter 2, a typical stress response is an
increase in the skin conductance level, while this value tends to be lower in non-stress states. This
learned di�erence can be seen across all GAN types.

Figure 6.1.: Shown are 50 stress sequences from the original WESAD dataset and synthetic sample
sequences generated by the di�erent GAN models. These samples are plotted per row
for each signal type: BVP, EDA, ACC_x, ACC_y, ACC_z, and TEMP. The columns
show the corresponding dataset. This overview allows comparing the ability of the
models to mimic the temporal dynamics of the original dataset.

cGAN. Furthermore, we can see that the cGAN signal-typical characteristics are well reproduced
across the di�erent samples of the cGAN. For example, the BVP signal for the stress state shows
abrupt changes within a condensed time frame, which represents the signal profile of the BVP
signal. Only the increasing amplitude and frequency in the mid-region of the signal sequences are
not replicated. The EDA as well as the TEMP signal show a more steady signal profile over time.
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The EDA stress samples are primarily generated in the upper range [0.3,1] as in the original,
representing the stress state very well, while the non-stress EDA samples correctly mimic the lower
range [0,0,4].

TimeGAN. The TimeGAN captures the range of di�erent stress signals reasonably well. The EDA
signal is properly captured in its range and signal profile. However, for the other signal types, the
stress signal profile shows a random pattern with high amplitude and constant frequency, which
does not represent the actual signal. This is even more true for the non-stress sequences, which
partially cover the ranges (EDA, BVP) but generate even more random signal profiles, such as the
ACC and TEMP signals.

DGAN. The DGAN is able to reproduce the range moderately well, can mimic the signal profile in
jagged courses well for BVP and the ACC signal sequences, but fails to reproduce the more steady
progression of EDA and TEMP.

6.1.2. PCA and t-SNE Analysis

For the second visual analysis, we examine the t-SNE and PCA plots in Figure 6.3 for the stress
dataset, which shows the result of the PCA and t-SNE analysis for the di�erent synthetic datasets
generated by the GANs. The PCA and t-SNE plots for the non-stress data can be seen in Figure 2
in the Appendix 8.1. This figure gives a good overview of the learned structure and the distribution
of the models over the original data. We do not get this information from the previous plot of
sequences. It shows how well the diversity of the original dataset has been mimicked and whether
synthetic data point clusters form outside of it, indicating that the model has not learned the full
diversity of the WESAD dataset. Conversely, it can show that the models may not have learned
certain outliers of the real dataset.

cGAN. It can be seen that the synthetic dataset resembles the distribution of the original dataset
in many data points of the PCA representation and mimics the diversity. However, the t-SNE plot
shows that the local similarity between the two classes is clearly separated in the stress dataset.
This leads to the assumption that the cGAN has not learned the full diversity of the original
dataset, which is reinforced by the sequence plots. The non-stress show much more similarity in
the distribution of synthetic and original data, leading to the assumption that the cGAN learned
the distribution of non-stress data better.

TimeGAN. The PCA analysis shows that the TimeGAN synthetic stress data covers the distri-
bution partly in a cluster. The non-stress data is clustered around the original distribution in both
plots. This also reinforces what is seen in the sequence plots, where the range is correctly mimicked,
but the signal profile does not match and tends to have a strong amplitude

DGAN. The DGAN, on the other hand, looks very good in both plots for the stress and non-stress
dataset. The synthetic data in the PCA plot is almost identical to the original data. There are only
a few outliers. This impression is also confirmed by the t-SNE plot, which shows much greater
similarities in diversity compared to the cGAN and TimeGAN plots.
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Figure 6.2.: Shown are 50 non-stress sequences from the original WESAD dataset and synthetic
sample sequences generated by the di�erent GAN models. These samples are plotted
per row for each signal type: BVP, EDA, ACC_x, ACC_y, ACC_z, and TEMP. The
columns show the corresponding dataset. This overview allows comparing the ability
of the models to mimic the temporal dynamics of the original dataset.

6.2. Fidelity: Statistical Results

The examination of the fidelity gives an indication of whether our models have learned the fun-
damental statistical distribution. If so, they should be partially indistinguishable from the original
data. In order to test this, we compare the correlation matrices of the original WESAD dataset and
the synthetic datasets generated by the di�erent GANs. We then look at the statistical distribution
of the synthetic datasets in comparison to the original dataset. Finally, we evaluate the results of
several machine learning classifiers, which are supposed to distinguish the synthetic datasets from
the real one.
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Figure 6.3.: Stress: The plots show the relative distribution of the synthetic GAN stress datasets
(orange) compared to the original stress dataset (blue) in the two-dimensional feature
space to see how well the GAN models mimic the original distribution.

6.2.1. Correlation analysis

In Figure 6.4 we compare the correlation matrices for the di�erent synthetic datasets. Relevant
correlations from the original dataset are between EDA and the stress label, with a strong positive
correlation of 0.78 and a weak negative correlation between TEMP and the stress label of -0.35.
The ACC signal correlation values of the WESAD dataset are in the negligible range, indicating
no significant correlation between these signals and the stress state.

cGAN. The cGAN is able to moderately reproduce the correlation matrix of the WESAD dataset.
The correlation between EDA and a stress moment is 0.91, indicating a strong positive relationship.
Thus, the cGAN learned the strong positive relationship between EDA and the stress label of
the original dataset. , the cGAN can only reproduce the ACC_z stress label relationship. The
correlation between TEMP and stress label is -0.56, indicating a moderately negative relationship.
This shows that the cGAN can also correctly capture the correlation for TEMP and stress label, but
overestimates it. In terms of inter-signal correlations, the cGAN overestimates these, such as the
correlation for BVP and EDA and EDA and TEMP. In conclusion, the cGAN is able to reproduce
the most important trends. This varies depending on the type of signal being reproduced.

DGAN. The DGAN is able to reproduce the original correlations of the WESAD dataset very
well, both between the signal types and the stress label, and the correlations between the signals,
both in trend and in the correlation value itself. The correlation values di�er only in a small range
(±0.05 ≠ 0.10). For example, the strong positive correlation of EDA and the stress label comes
very close to the original dataset, with a value of 0.74. The same is true for the slightly negative
correlation between TEMP and stress label, with -0.32 and -0.35, respectively. In summary, the
DGAN reproduces the correlations of the original dataset best.
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TimeGAN. TimeGAN can reproduce well the correlation between EDA and stress label and also
TEMP and stress label. On the other hand, it invents weak positive correlations like e.g., between
ACC_z and EDA or even moderate negative correlations like e.g., between EDA and TEMP or
EDA and ACC_y which are not present in the original dataset.

Figure 6.4.: Shown are the correlation matrices of the original WESAD dataset, as seen in Figure
4.3, and the synthetic datasets generated by the di�erent GAN architectures. This
figure shows whether the correlations between the respective signals and the stress
state could be adequately learned by the GAN.

6.2.2. Statistical distribution

The evaluation of the statistical distribution provides an overview of the statistical feature di�er-
ences between the original dataset and the synthetic datasets, based on which the indistinguishabil-
ity of a synthetic dataset can be decided. Figure 6.5 shows the frequency distribution of the di�erent
synthetic datasets compared to the distribution of the original dataset for all signals in the stress
state. The respective Figure 3 for the synthetic non-stress dataset can be seen in the Appendix 8.1.
The frequency distributions are shown in the normalized range [0,1] of the datasets.

cGAN. It can be seen that the cGAN matches the statistical distribution of the original dataset
well for most signal types. However, for the ACC signals in particular, it has di�culty mapping
certain value ranges. We can see that the cGAN cannot properly generate the low value ranges of
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the TEMP signal in the stress state. While it seems to better capture the higher values range in
the non-stress state.

TimeGAN. The TimeGAN does not perform much worse than the cGAN in the stress. However,
it can be seen that the original distribution is distinguishable from the TimeGAN stress dataset.
The same applies for the non-stress statistical distribution.

DGAN. The DGAN is a better representation of the original dataset than the cGAN with respect
to the TEMP signal and the low range of values in the EDA. At the same time, it has similar
di�culties in generating the ACC values.

In summary, the synthetic datasets generated by the cGAN and DGAN captures the characteristic
statistical frequencies. However, the synthetic datasets are still distinguishable from the original
dataset, not reproducing the identical frequency distribution for signal types.

Figure 6.5.: Shown are the distributions of the stress signals from the original WESAD dataset
and the synthetic signals generated by the di�erent GAN architectures. For each signal
type, the real distribution from the WESAD dataset, shown in blue, is compared to
the synthetic signal, shown in orange. The density of the normalized signals is plotted
in the range [0,1].
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6.2.3. Indistinguishability testing

Figure 6.5 shows our evaluation by indistinguishability testing using five machine learning classi-
fiers: Logistic Regression, KNN, Naive Bayes, Support Vector Machine (SVC), and a Multilayer
Perceptron (MLP). The figure shows the accuracy achieved by each binary classifier in classifying a
sequence from a synthetic dataset or original dataset. It is important to note that a high accuracy
means that the classifier is often able to distinguish the synthetic from the real sample. The optimal
accuracy for this test is 0.5. If a classifier has an accuracy of 0.5 in a binary classification problem,
it is equivalent to chance, similar to a coin toss. This would indicate that, the synthetic dataset
is indistinguishable from the original dataset. We test the classifiers on both stress and non-stress
data individually.

cGAN. The cGAN synthetic data is consistently recognized as synthetic data for the stress label
with a high accuracy of 0.83 to 1 across all classifiers, and the non-stress data, which can be identified
with an accuracy of 0.73 to 0.9, less frequently. This indicates that the sequences generated by the
cGAN are easy to distinguish from the original dataset and thus do not identically mimic the
WESAD dataset.

DGAN. We find that the DGAN performs decisively better. Thus, the accuracy across the di�erent
classifiers is moderate low between 0.66 and 0.79 for the stress data and 0.62 to 0.86 for the non-
stress data. These values indicate that the binary classifiers have moderate to strong di�culty
in correctly identifying the origin of the DGAN generated synthetic sequences and the original
sequences.

TimeGAN. The TimeGAN performs much more volatile, while it achieves the lowest result on
the Naive Bayes classifier for stress sequences of 0.64. The other classifiers recognize the stress
sequences with an accuracy of 0.94 to 0.99. For the non-stress data, the accuracy of the di�erent
classifiers is similarly unstable. Thus, it achieves moderate accuracy from 0.66 to 0.7 for the Logistic
Regression, KNN and Naive Bayes, but the synthetic samples are detected by the SVC and MLP
classifiers with an accuracy of 1.0.

The synthetic data that most consistently fooled the machine learning classifier was generated by
the DGAN, followed by the inconsistent results for the TimeGAN, and finally the cGAN, which
was consistently identified with high accuracy.
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Figure 6.6.: Indistinguishability testing results comparing the performance of multiple binary clas-
sifiers: Logistic regression, KNN, Naive Bayes, Support Vector Machine (SVC), and
a Multi Layer perceptron (MLP). Each bar shows one accuracy result on a specific
dataset. The optimal accuracy is 0.5, which is represented by the dashed black line.

6.3. Usefulness: Stress Detection

We examine stress detection results for two di�erent experiments. First, we evaluate the augmenta-
tion of the initial data with the synthetic data. Second, we apply the TSTR framework, where we
train the stress detection model based only on the respective synthetic datasets and then evaluate
it on the real data.

6.3.1. Augmentation

With this evaluation approach, we want to test whether augmenting the WESAD dataset with a
synthetic subject increases stress detection over the other subjects. Table 6.1 depicts results over
all subjects for the di�erent GAN architectures, with an additional synthetic subject added to the
original WESAD dataset. The synthetic subject has the size of an average subject with multiple
60-second stress windows with the shape (72, 60, 7). To perform this evaluation, we applied the
LOSO procedure and averaged the metrics subsequently obtained.

Among the evaluated GAN architectures, the model cGAN-FCN model achieves the highest ac-
curacy with 0.912, followed by the cGAN-LSTM with 0.896. Both the DGAN and the TimeGAN
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Augmented cGAN-LSTM cGAN-FCN TimeGAN DGAN original

S2 0.971 0.941 0.824 0.971 0.971
S3 0.794 0.794 0.765 0.765 0.824
S4 0.971 0.971 0.971 1.000 0.971
S5 0.971 0.971 0.914 0.971 1.000
S6 1.000 0.971 0.971 0.943 0.943
S7 0.657 0.829 0.657 0.829 0.943
S8 0.914 0.971 0.914 0.943 0.943
S9 1.000 1.000 0.971 0.971 1.000
S10 0.944 0.944 0.972 0.944 0.972
S11 0.861 0.778 0.833 0.583 0.806
S13 1.000 1.000 1.000 0.917 0.972
S14 0.639 0.806 0.556 0.528 0.278
S15 0.972 0.944 0.972 0.972 0.972
S16 1.000 1.000 1.000 1.000 1.000
S17 0.750 0.750 0.500 0.500 0.667

Average 0.896 0.912 0.855 0.856 0.884
Table 6.1.: Overview of experiment results for GAN models for the augmentation case with adding

one single synthetic subject to the real dataset. Depicted are the accuracy results
achieved by training the stress detector using synthetic data over the individual sub-
jects.

achieve an accuracy that is worse than the baseline model. This means that augmented data actu-
ally worsens the result in this case. When considering the other metrics such as F1-score, precision
and recall, these metrics are similar to the accuracy on the corresponding GAN datasets as can be
seen in detail in Table 6.2. Overall, these findings suggest that augmenting the dataset can improve
the stress detection model, choosing the proper architecture such as cGAN-FCN or cGAN-LSTM.
Moreover, the cGAN architectures succeed over the other models.

Augmented Accuracy F1 Score Precision Recall

cGAN-LSTM 0.896 0.895 0.895 0.895
cGAN-FCN 0.912 0.912 0.912 0.913
TimeGAN 0.855 0.855 0.855 0.857
DGAN 0.856 0.855 0.854 0.856
original 0.884 0.882 0.885 0.878

Table 6.2.: Overview of experiment results for GAN models for the augmentation case with adding
one single synthetic subject to the real dataset. Depicted are the average results over all
metrics achieved by training the stress detector using synthetic data. REAL represent
the original baseline stress detection model trained on the 15 subject WESAD dataset.

This approach, as described in 4.3, is prone to train-test leakage. Therefore, it is di�cult to argue
that the addition of synthetic data improves the generalizability of stress detection. To address this
issue, we separately trained a GAN dataset without Subject 14 to assess the generalizability of our
synthetic data and show that the overall explainable improvement is not solely due to a possible
train-test leakage. We only trained the cGAN with FCN and LSTM discriminator and the DGAN
models on the WESAD dataset without Subject 14. We made this decision because of the significant
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time required to train the TimeGAN models, for both cases stress and non-stress, and accordingly
did not include it in this evaluation. The results for stress detection on the augmentation by 1
synthetic subject that was generated by a GAN model that did not previously see Subject 14 are
in Table 6.3.

The use of synthetic data by the models that have not yet seen Subjects 14 in the GAN training
process shows that the addition of a single synthetic subject already significantly improves per-
formance to the original stress detection accuracy of 0.278. Thus, the addition of one synthetic
subject generated by the cGAN-LSTM model achieves an improved accuracy of 0.556 in the stress
detection.

Subject cGAN-LSTM cGAN-FCN DGAN original

S14 0.556 0.486 0.417 0.278
Table 6.3.: Accuracy of cGAN-LSTM, cGAN-FCN, and DGAN compared to baseline on Subject

14 in the augmentation evaluation. It is important to note that the GANs were trained
on a WESAD dataset without Subject 14 and then tested separately to address the
training test leakage problem.

One motivation for this work is to address the scarcity of health data. We investigated how many
synthetic subjects we could add to improve stress detection for Subject 14. We added synthetic
subjects in the range [1,100] in increments of 10. The results are shown in Figure 6.7 for the
cGAN-LSTM, cGAN-FCN, and DGAN. For the cGAN-LSTM, the best accuracy is achieved by
adding 10 synthetic subjects. The accuracy of stress detection can be increased from 0.278 in the
original stress detection model to 0.611. Adding more synthetic subjects does not improve stress
detection performance for the cGAN-LSTM. The poorer performing cGAN-FCN and DGAN does
not benefit from the augmentation by more synthetic subjects, and reaches a maximum accuracy
value of 0.486, and 0.528 for one additional subject. The F1-score values are almost identical to the
accuracy values for all GAN architectures.

(a) Accuracy (b) F1-score

Figure 6.7.: Comparison of accuracy and F1-score for the three GANs: cGAN-LSTM (blue), cGAN-
FCN (red), and DGAN (green). The x-axis represents the number of synthetic subjects
added to the stress detection training for the left out Subject 14. The y-axis shows the
achieved values for accuracy and F1-score using this stress detection.
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6.3.2. TSTR

For the TSTR evaluation method, we trained one model per synthetic GAN dataset. We then
evaluated these models on each subject in turn. By training only on synthetic data and testing on
real data, we can test whether the data is suitable for the real-world application of stress detection.
The results suggest that they are: Table 6.4 shows the averaged values across all 15 subjects for
the various metrics. The cGAN-LSTM performs best with an accuracy of 0.906 and an F1-score
of 0.906. This is worse than the result obtained by data augmentation in section 6.3.1, but better
than the original result, suggesting that it both mimicked and improved upon the distribution of
the original dataset. Looking more closely at the results for individual subjects in Table 6.5, it is
clear that they have improved, as previously poorly performing subjects such as Subject 14 were
detected much better.

The DGAN is also capable of generating synthetic data that, when used as training data for a
stress detection model, performs 0.11 better than the stress model trained on the original data.

However, the TimeGAN achieved an accuracy of 0.3 and performed significantly worse than the
baseline model. This is due to the fact that the stress model trained on the TimeGAN data classifies
almost every sequence sample of the WESAD dataset as stress.

TSTR Accuracy F1 Score Precision Recall

cGAN-LSTM 0.910 0.912 0.913 0.910
cGAN-FCN 0.872 0.869 0.874 0.864
TimeGAN 0.300 0.300 0.300 0.300
DGAN 0.904 0.903 0.903 0.903
original 0.893 0.890 0.892 0.888

Table 6.4.: Overview of experiment results for GAN models for the TSTR case where the synthetic
dataset comes in size of the WESAD dataset. Depicted are the average results over all
metrics achieved by training the stress detector using synthetic data. REAL represent
the original baseline stress detection model trained on the 15 subject WESAD dataset.
DGAN stands for DGAN.
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TSTR cGAN-LSTM cGAN-FCN TimeGAN DGAN original

S2 0.897 0.765 0.309 0.941 0.941
S3 0.783 0.739 0.304 0.739 0.797
S4 1.000 0.943 0.286 1.000 1.000
S5 0.958 0.901 0.310 1.000 0.986
S6 0.986 0.972 0.310 0.986 1.000
S7 0.873 0.958 0.169 0.958 0.986
S8 0.972 0.972 0.282 0.986 0.986
S9 0.986 0.958 0.286 0.986 0.972
S10 0.986 0.986 0.315 0.986 0.986
S11 0.875 0.708 0.320 0.736 0.833
S13 0.986 0.861 0.320 1.000 0.986
S14 0.556 0.667 0.375 0.694 0.278
S15 0.986 0.972 0.319 0.972 1.000
S16 0.958 0.944 0.319 0.931 0.958
S17 0.863 0.740 0.274 0.644 0.685

Average 0.910 0.872 0.300 0.904 0.893
Table 6.5.: Overview of experiment results for GAN models for the TSTR evaluation. Depicted are

the accuracy results achieved by training the stress detector using synthetic data over
the individual subjects.

6.4. Evaluating first attempts on di�erential privacy

According to Jordon et al. [84], there is a natural trade-o� between fidelity of synthetic data and
the provided privacy guarantees. As the fidelity of the synthetic samples increases, the guaranteed
privacy decreases. Jordon et al. [84] ask how private can the data be made while still maintaining
fidelity and usefulness.

We followed this idea and tested the cGAN for di�erent privacy guarantees ‘ = {0.1, 1, 10, Œ}. We
evaluate these analogous to the previous evaluation on the di�erent GAN architectures in the three
facets diversity, fidelity, and usefulness. As a GAN architecture, we use the best performing GAN
from the previous evaluation, the cGAN-LSTM, and apply the di�erent privacy guarantees to it.

However, it should be noted that the results of the training could not be optimally hyperparameter
tuned depending on the epsilon value. Instead, the number of epochs, which becomes a hyperpa-
rameter in the training of GANs, was used to calculate the noise. Thus, this value is fixed, and if
it is changed, the noise and thus the rest of the training process changes with it. In addition, this
fixed calculation of the noise does not allow early stopping, because otherwise the noise calculation
and the associated privacy guarantee would not be allowed.

6.4.1. Diversity evaluation on the DP-cGAN

Figure 6.8 presents 50 stress sequence samples per signal type for the di�erent privacy guarantees.
The plot shows that the signal profile could not be captured for all signal types by all DP-cGAN
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models. The DP-cGAN with ‘ = 0.1 covers the whole range [0,1] for all signals, it is therefore diverse
in its sample sequences, but cannot capture the signal profile, only for BVP where it captures the
erratic, jumping trend. The DP-cGAN with ‘ = 1, on the other hand, is less diverse and occurs
mainly for all signal types outside the range [0,1]. The sequences of the DP-cGAN with ‘ = 10
are also less diverse, while this one covers the primary range of [0.6,1] for the EDA. The same is
true for ACC_x and ACC_y, where the primary range of [0.6,1] and [0.1,0.5] is well captured and
reproduced.

These plots suggest that the models are not capable of reproducing visual similar sequences. The
training requires further hyperparameter tuning and especially training over more epochs to initially
obtain the [0,1] range for all signal types, as in the case of DP-cGAN ‘ = 1.

Figure 6.8.: Shown are 50 stress sequences from the original WESAD dataset and synthetic sample
sequences generated by the di�erent DP-cGAN models. These samples are plotted
per row for each signal type: BVP, EDA, ACC_x, ACC_y, ACC_z, and TEMP. The
columns show the corresponding dataset. This overview allows comparing the influence
of privacy guarantees to the generation of samples.

The same conclusion is reinforced by the visual representation of the sequences in the PCA and
t-SNE plots in Figure 6.9. On the one hand, the DP-cGAN with ‘ = 0.1 in the PCA analysis shows
that the synthetic sequences are clustered around the distribution of the original dataset, while some
data points overlap. On the other hand, the synthetic dataset may somehow represent the diversity
of the original dataset by covering most of the blue original data points. The DP-cGAN with ‘ = 1
has all its values far from the original dataset clustered, for both PCA and t-SNE analysis. This
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visual information is consistent with the impression from the signal sequence in Figure 6.8 that the
DP-cGAN is not capable of producing similar synthetic sequence samples. The synthetic sequences
of the DP-cGAN with ‘ = 10 are clustered in one spot over the range of the original dataset in the
PCA analysis and cannot represent the diversity of the original dataset well. The same can be seen
in the t-SNE analysis, where the data points are strictly separated. The sequences of DP-cGAN
with ‘ = Œ in the PCA plot align quite well with the original data points in the PCA analysis and
are thus able to reproduce the diversity of the dataset, but the t-SNE analysis can clearly separate
the original and synthetic data.

Figure 6.9.: The figure shows the PCA and t-SNE analysis to compare the synthetic stress
dataset with the original stress WESAD dataset. The four di�erent privacy guarantees
‘ = {0.1, 1, 10, Œ} are shown per column. The plots show the relative distribution of
the synthetic GAN datasets (orange) compared to the original dataset (blue) in the
two-dimensional feature space to see how well the GAN models mimic the original
distribution.

6.4.2. Fidelity evaluation on the DP-cGAN

To determine the fidelity for the DP-cGAN, we look at the statistical distribution of the synthetic
datasets generated by the DP-cGAN. Figure 6.10 shows the distributions for the di�erent signal
types in the stress state. First, the point already made in the diversity evaluation shows that
some DP-cGANs generate signal sequences outside the range [0,1]. This is especially true for the
DP-cGAN with ‘ = 1, which generates clearly distinguishable data. The DP-cGAN with ‘ = 0.1
generates more data points around near the mode of the signal distribution. The DP-cGAN with
‘ = 10, is also pretty distinguishable from the original dataset.

6.4.3. Usefulness evaluation on the DP-cGAN

To determine the usefulness of the di�erent privacy guarantees ‘ = {0.1, 1, 10, Œ}, we trained
the stress detection model as described in Section 5.5 on the synthetic datasets of the DP-cGAN
models. The results were obtained using the TSTR method. The result of this experiment can be
seen in Table 6.6.
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‘ = 0.1. The model surprisingly performs better than the models with ‘ = {1, 10} compared to
the baseline, the stress detection model trained on the original dataset. The stress detection model
trained on privacy-preserved dataset achieves an accuracy of 0.811 This is less expected with this
high privacy guarantee of ‘ = 0.1.

‘ = 1. What is interesting about the result of this DP-cGAN model is that it performs worse than
the DP-cGAN with ‘ = 0.1 and and only slightly better than a naive majority classifier. This is a
classifier that can serve as a baseline and intuitively always yields the majority class result, in our
case the non-stress class classification. In our case, applied to the WESAD dataset, this classifier
achieves an accuracy of 0.705, while the DP-cGAN model achieves an accuracy of 0.708 and an
F1-score of 0.708.

However, the analysis of the sample sequences in Figure 6.8 shows that this model produces many
more uniform samples, mainly outside the range [0,1], and does not learn the time-dependent signal
profile of the signals better than ‘ = 0.1, which explains this worse performance. Nevertheless, this
model still performs better than the majority classifier.

‘ = 10. The stress detector model trained on the DP-cGAN data with ‘ = 10 achieves an accuracy
of 0.780 and an F1-score of 0.780.

These results of the usefulness evaluation show that it is possible to use a synthetic dataset with
privacy guarantees to train a stress detection model. With a surprisingly low value of ‘ = 0.1, a good
stress detection performance in terms of accuracy and F1-score can be obtained. Here, the stress
model has only seen synthetic data with privacy guarantees. However, these results do not support
the claim the higher the privacy guarantees, the more the performance decreases, not confirming
the trade-o� between privacy and performance.

However, it is also evident that the results of the previous visual and statistical evaluation for the
DP-cGAN with ‘ = 1 are confirmed here in its poor performance. It only achieves an accuracy
of 0.709 because the stress detection model trained on this data classifies the non-stress class for
almost every test sequence. At the same time, interestingly, the DP-cGAN with ‘ = 0.1 achieves
a good utility performance, although the visual representation of the stress sequences does not
suggest this. Only the representation of the non-stress sequence data in the Appendix 8.1 in Figure
1 gives an indication of the successful reproduction of the non-stress state of a range for the BVP
signal, which is initially reproduced in its central fluctuation, and the TEMP signal, which occurs
mainly in the upper range [0.5,1].
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TSTR Accuracy F1 Score Precision Recall

original 0.893 0.890 0.892 0.888
DP-cGAN-‘ = 0.1 0.811 0.812 0.811 0.813
DP-cGAN-‘ = 1 0.708 0.708 0.708 0.708
DP-cGAN-‘ = 10 0.778 0.780 0.775 0.785
DP-cGAN-‘ = Œ 0.901 0.900 0.901 0.900

Table 6.6.: Overview of DP experiments in the TSTR training setting, where the synthetic dataset
comes in size of the WESAD dataset. Depicted are the average results over all met-
rics achieved by training the stress detector using the di�erent privacy guarantees
‘ = {0.1, 1, 10, Œ} on the cGAN-LSTM architecture. Original represents the baseline
stress detection model trained on the 15 subject WESAD dataset.
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Figure 6.10.: Shown are the distributions of the stress signals from the original WESAD dataset
and the synthetic signals generated by DP-cGAN with di�erent privacy guarantees
‘ = {0.1, 1, 10}. For each signal type, the real distribution from the WESAD dataset,
shown in blue, is compared to the synthetic signal, shown in orange. The density of
the data is not plotted in the range [0,1] because some DP-cGANs have not learned
this range and plot values outside this range.
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7. Discussion

In the following chapter, we will examine the results of the previous chapter. We will highlight
several advantages of GANs in general that have been shown by our experiments, but also di�culties
related to our processes of training, evaluation, and ensuring di�erential privacy. Then, we further
consider the impact of the GAN models and our synthetic datasets on the smartwatch use case and
stress detection on smartwatches in particular.

7.1. Advantages and Limitations of GANs

In this work, we were able to train several GANs that are able to learn the statistical distribution
features of the original WESAD dataset. This allows us to generate synthetic data at di�erent sizes.
Our evaluation shows that both generating a synthetic dataset at the scale of the initial dataset in
the TSTR evaluation setting and generating a synthetic subject for augmenting the original dataset
improved the baseline stress detection results based on the WESAD dataset.

However, the models do not all perform equally well. The performance of TimeGAN is only slightly
worse than the other models at 0.873, but it degrades the baseline model, which is not useful for
the augmentation case. For the TSTR evaluation, it only achieves a result of 0.3, as it classifies
all sequences of the WESAD dataset as stress. This is probably due to the poorly trained non-
stress data, which, as in Section 6.1, poorly represent the diversity of the original dataset. This is
a di�culty that has been confirmed in the use of TimeGAN, namely the training of the TimeGAN
model twice for the split datasets to capture the conditional aspect. It ended up producing good
stress data, while it failed in learning the non-stress data distribution.

The results of the evaluation via the LOSO procedure requires further verification. Since the syn-
thetic datasets were trained on the complete WESAD dataset, it is possible that certain improve-
ments in accuracy result from a train-test-leakage. To address this and verify the improvement
based on the synthetic data augmentation, we trained an additional GAN model for the cGAN-
LSTM, cGAN-FCN and DGAN that, unlike the previous models, did not see Subject 14 of the
WESAD dataset in training, as a case study. We then performed the LOSO stress detection train-
ing on the respective synthetic datasets and were able to significantly improve the stress detection
with all GAN models on this subject.

We then incrementally added another 10 synthetic subjects until we reached 100. We wanted to see
if adding more synthetic unseen data would increase performance and when accuracy might reach a
tipping point and level o�. We found that the highest accuracy in stress detection was achieved after
adding 10 synthetic subjects. We were able to show that the addition of 10 more synthetic subjects
improved the baseline accuracy from 0.278 to 0.611. The addition of more synthetic subjects ensured
that the accuracy always remained better than in the case of no synthetic data. This suggests that
the ratio of real data to synthetic data may be critical. Since we have a dataset of 15 real subjects,
adding 10 more synthetic subjects based on them is already a large proportion of the total dataset.
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Furthermore, it is clear that we cannot add as many subjects as we want until we reach a desired
accuracy.

Thus, we can show that the generation of synthetic data can improve the performance of the
stress detection model without the need to measure new real data in the laboratory, which is very
time-consuming and expensive.

In addition to data augmentation, GANs provide the possibility of ensuring DP. This can be a key
advantage among researchers who want to share datasets for reproducibility or further research.
This is especially valuable when the original dataset contains highly sensitive data, such as patient
medical data. Thus, given the right DP parameter, a certain level of privacy is guaranteed, while
other research institutions can work on the synthetic equivalent of a privacy-protected dataset. The
evaluation of the application of DP to the cGAN from Section 6.4 has shown that the extension of an
existing cGAN architecture in the discriminator with a DP optimizer is both an easily integrable
and successful introduction of DP to a GAN architecture. We could not confirm the trade-o�
between privacy and performance, as our DP-cGAN with ‘ = 0.1 produced better synthetic data
for the use case of stress detection than the DP-cGAN with ‘ = {1, 10}. On the other hand, we
found that the fixed calculation of the noise parameter based on the number of epochs in a highly
fluctuating training between generator and discriminator leads to di�culties in determining the
optimal model.

While GANs provide these significant benefits, there are also di�culties in handling and training
these GANs. The training of our GAN models has su�ered from well-known GAN training di�cul-
ties, such as mode collapse, i.e., the learned mapping of noise to one or a few output samples, or
the di�culty of estimating the performance of a GAN during training. We were only able to adapt
to these problems by performing a time-consuming hyperparameter sweep for each GAN. Only in
the training of the DGAN we had no di�culties with the mode collapse.

Considering the evaluation metrics we used, we were able to estimate the performance via the
visual and statistical output of the samples. However, this form of evaluation is time-consuming
and otherwise cumbersome, since across all epochs this output must be examined in correlation
with the losses of the generator and discriminator. It is also di�cult to determine the optimal
number of epochs, since GANs tend to train in equilibrium from a point in time above generator
loss and discriminator loss, which degrades the output, making the determination of the optimal
epoch another hyperparameter to optimize. The training stopping conditions by e.g., early stopping
is di�cult to implement if the actual evaluation of a synthetic dataset can only be determined
in the usefulness evaluation case, i.e., the use of our dataset for stress detection. Besides, this
raises the question of how the synthetic datasets we generate should look like. Should the GANs
primarily learn the statistical distribution and correlations within the original data particularly
well, as the case of the DGAN shows, or should it improve the performance in the use case of stress
detection, as the cGAN does. Since in our case, the research question is whether the performance
of the stress detection can be improved by adding synthetic data. With this question in mind,
further evaluation metrics can be developed. Thus, an optimal evaluation pipeline would trigger
the training of the stress detector model during the training after a certain number of epochs. This
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would be automatically evaluated to produce a usefulness metric measure after this epoch in terms
of accuracy or F1-score.

Another limitation of GANs and the resulting dataset are ethical concerns. A synthetic dataset
learns only the underlying distribution of statistical features from the original dataset. This also
means that a synthetic dataset is always as biased as the underlying dataset. Researchers show
that popular machine-learning datasets that are the fundament for important machine learning
insight can contain di�erent biases [85]. This a�ects both computer vision task datasets such as
ImageNet [81] and OpenImages [86], which are a�ected by representation bias. Additionally, writes
Mehrabi et al. [87] about existing representation biases in knowledge base, which are used as a
basis for various Natural Language Processing (NLP). Thus, biases which are present in datasets
are replicated via the synthetic dataset. This leads to gender or demographic imbalances, which
then leads to unfairness in machine learning systems build on these datasets.

In terms of the WESAD dataset we used, this means that we reproduce the inequality in the gender
distribution, 12 males and 3 females, and even amplify it when generating additional data points
over the size of the dataset. For example, it can be seen in Table 6.1 that generating a synthetic
dataset does not achieve the same improvement across genders. Thus, while for the females in the
dataset Subject 8 and Subject 11 average stress detection performance worsen for certain GANs,
the male of Subject 14 improves significantly. Thus, the average improvement on female subjects
for the cGAN-LSTM architecture is 0.013, while for male character it is 0.018. The same applies
for the DGAN model, which has an average improvement of 0.02, while the female stress detection
decreases by 0.04. However, these changes cannot solely be attributed to gender, as other subjects
also showed reduced performance after the augmentation of the dataset by synthetic data. This
should be further investigated in future studies.

7.2. Insights Regarding Practical Smartwatch Users

In the following, we consider the implications for our application area of wearable smartwatch stress
data. Thus, synthetically generating the WESAD dataset means enabling data augmentation that
primarily saves time and costs beyond one and a half hours and research personnel for 15 subjects.
It thus o�ers the possibility of taking a small dataset as a starting point and augmenting it with
synthetic samples. At the same time, our TSTR experiments have shown that this very use of a
synthetic dataset is able to improve the generalizability of the final stress model. As a consequence,
it is possible to place small parts of the population for new datasets in comparable lab situations as
the subjects in the WESAD laboratory scenario, in order to subsequently improve stress detection
decisively.

Furthermore, we were able to achieve a stress detection performance with a high privacy guarantee
of 0.811 . Using DP, this could mean that for further Empatica E4 stress detection data collections,
data that is actually privacy-preserving could be transferred from research institution to research
institution. These data could accelerate specific research areas in the form of synthetic privacy-
preserving data. For example, stress research could develop better approaches based on bigger
benchmark datasets and address the individuality and di�cult generalizability of stress through
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collaborative research on larger stress datasets. These datasets might not be publicly available
without applying DP because of their sensitive individual health data

Improved stress detection rolled out via many commercial wearable smartwatch devices, such as
the Fitbit or the Apple Watch, could provide crucial medically relevant information on a person’s
health status through support via the additional synthetic data. As chronic long-term stress is an
increasingly common cause of illness, depression, and absenteeism, the ability to expand the dataset
and generate synthetic samples from it provides a small service of education and measurement to
curb stressful events.
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7.3. Development of a Frontend Interface for Data Synthesis using
GANs

To make the results of this work more easily available, we have developed a prototype frontend for
generating synthetic stress and non-stress data based on the WESAD dataset for two model types,
cGAN and the DP-cGAN. To implement the frontend, we used the Streamlit23 library. Figure 7.1
shows the user interface of the application, which is currently running on the user’s localhost. The
user can select one of the GAN models cGAN and DP-cGAN with di�erent ‘ = {0.1, 1, 10} privacy
guarantees, from a drop-down menu. Then the number of synthetic samples to be generated can
be specified, and the length of the sequence in seconds, which can be selected in the next input
field. As a reminder, the WESAD dataset has a total of 545 unique 60-second sequences over the
15 subjects, with each subject containing an average of 36 60-second windows. Another option is
to select whether to generate stress only, non-stress only, or both. Clicking the Generate samples
button will generate the desired synthetic dataset, while providing basic statistical information
about the data distribution of each signal and plotting the windows of the dataset. The data can
then be downloaded in .csv format.

Figure 7.1.: Shown is the user-friendly interface of the frontend application that helps the generation
of synthetic stress and non-stress data across di�erent GAN models. Drop-down menus
are used to customize the data synthesis parameters. The GAN type, the number of
synthetic sample sequences, the desired sequence length, and the stress type can be
selected.

23
https://streamlit.io
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We have developed and trained several GAN models capable of generating synthetic datasets based
on the original WESAD dataset. For this purpose, we first considered the characteristics of the
dataset to develop appropriate GANs. We implemented several state-of-the-art GAN architectures
to generate multiple synthetic datasets: TimeGAN, cGAN, and DGAN. Not all GANs performed
equally well, both in handling the training and in tuning the hyperparameters until a stable training
was established. For example, TimeGAN training takes significantly more time than cGAN and
DGAN training.

We have shown that augmenting the WESAD dataset with synthetic samples can improve stress
detection. We were able to improve the performance of a CNN stress detection model by adding
one, several, or 100 synthetic subjects to the LOSO training, answering our first research question.
We were also able to show in the TSTR evaluation that training on the synthetic generated data
and testing on the original WESAD dataset improved the generalizability of the stress detection
model across the subjects on average.

To compare the di�erent GAN models, we applied an evaluation method that considers three
di�erent facets of the synthetic data. We evaluated the diversity of the synthetic samples visually
based on their similarity to the original dataset. This allowed us to demonstrate that the GANs
could reproduce typical stress characteristics for the EDA and TEMP signals, with reference to
domain knowledge from stress research. In addition, PCA and t-SNE analysis were performed to
determine the similarity in diversity between the synthetic and original data.

We looked at the statistical distribution and correlation within signals to determine the fidelity.
Thus, we assess how well the synthetic generated data is indistinguishable from the original data
using various binary machine learning classifiers in an indistinguishability test. Finally, we inves-
tigated the usefulness of this synthetic data by training CNN stress detection models. From these
metrics, we were able to show that although synthetic sample sequences were visually or statisti-
cally more similar to the original data, this did not necessarily mean a better result for the stress
detection use case. This made training and hyperparameter tuning more di�cult.

Finally, we have shown that DP can be used to preserve the privacy of the synthetic data, thus
answering our second research question. To do this, we extended the cGAN model with a DP
optimizer for the discriminator. We were able to show that this privacy-preserving data achieved
good results in stress detection under the privacy-performance trade-o�, while preserving privacy
to a high degree. At the same time, we have also shown the di�culties in training DP in GAN,
which is mainly in finding the optimal balance of GAN in training.

8.1. Future Research Directions

Based on the results of this work, further research questions and tasks arise to improve the synthetic
generation of smartwatch data. In particular, the di�culty of determining the optimal model in the
training process has been demonstrated. To address this, the development of an end-to-end training
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pipeline that triggers the training and evaluation of the stress model after a certain number of epochs
during GAN training to better track performance would improve the training of these GAN models
for specific use cases.

As suggested by Ehrhart et al. [70] in their future work, the implementation of the Wasserstein loss
for cGAN model would be another possible improvement on the cGAN training. This also applies
to this work and the cGAN model used here.

Another important research that follows this work is the investigation of the synthetic data for
their stated DP guarantees. Among other things, performing an unintentional memorization attack
on the various synthetic DP datasets by placing a canary inside the synthetic dataset would be a
simple, meaningful attack. [78]

Another interesting investigation is the work and training of GANs using fewer signal types of the
WESAD dataset. More di�erent signals mean for the GANs to learn more complex relationships
and correlations between these signals. Furthermore, Siirtola et al. [34] and Gil-Martin et al. [4]
have shown for the WESAD dataset that stress detection can work better with fewer signal types,
which makes the explicit generation of more sequences of these signal types interesting.

Since it showed that synthetic datasets reproduce the biases in the underlying original dataset,
further work could address the imbalance in demographics, ethnicity, and gender within the original
dataset. Thus, synthetic samples could be generated to augment the original dataset, counteracting
this imbalance. This approach could be inspired by the work on FairGANs by Xu et al. [88] to
generate a fair dataset for smartwatches.
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Appendix

Appendix

Figure 1.: Shown are 50 non-stress sequences from the original WESAD dataset and synthetic
sample sequences generated by the di�erent DP-cGAN models. These samples are plotted
per row for each signal type: BVP, EDA, ACC_x, ACC_y, ACC_z, and TEMP. The
columns show the corresponding dataset. This overview allows comparing the influence
of privacy guarantees to the generation of samples.
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Appendix

Figure 2.: Non-Stress: The figure shows the PCA and t-SNE analysis to compare the synthetic
non-stress dataset with the original non-stress WESAD dataset. The four di�erent GAN
models are shown per column: cGAN, TimeGAN, and DGAN. The plots show the relative
distribution of the synthetic GAN datasets (orange) compared to the original dataset
(blue) in the two-dimensional feature space to see how well the GAN models mimic the
original distribution.
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Appendix

Figure 3.: Shown are the distributions of the non-stress signals from the original WESAD dataset
and the synthetic signals generated by the di�erent GAN architectures. For each signal
type, the real distribution from the WESAD dataset, shown in blue, is compared to the
synthetic signal, shown in orange. The density of the normalized signals is plotted in the
range [0,1].
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