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Abstract 
Parallel database systems have to support the effective paral- 
lelization of complex queries in multi-user mode, i.e. in com- 
bination with inter-query~mter-transaction parallelism. For 
this purpose, dynamic scheduling and load balancing strate- 
gies’ are necessary that umsider the current system state for 
dekrminhg the degree of intra-query parallelism and for se- 
lecting the processors for executing subqueries. We study 
these issues for parallel hash joinprocessing and show that 
the two subproblems should be addressed in au integrated 
way. Even more importantly, however, is the use of a multi- 
mannce load balancing approach that considers all potential 
bottleneck resources. in particular memory, disk and CPU. 
We discuss basic performance tradeoffs to consider and eval- 
Gate the performauce of several load balancing strategies by 
means of a detailed simulation model. Simulation results will 
be analyzed for multiuser configurations with both homoge- 
neous andheterogeneous (query/OLTP) workloads. 

1 Introduction 
A signifiiant trend in the comme rcial database field is the in- 
creasing support for parallel database processing [6,3 11. This 
trend is both technology-driven and application-driven. 
Technology supports large amounts of inexpensive process- 
ing capacity by providing “super servers” [ 111 consisting of 
tens to hundreds of fast standard microprocessors intercon- 
nected by a scalable high-speed in@conuec tion network 
Theaggregatememolyisintheorderof~sto~~sof 
gigabytbs, while databases of multiple terabytes am kept on- 
line within a paraRe disk subsystem. New application areas 
requiring parallel database systems for processing massive 
amounts of data and ,complex queries include data mining, 
digital libraries, new multimedia services like video on de- 
mand, geographic information systems, etc.. Even traditional 
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DBMS applications increasingly face the need of parallel 
query processing due to growing database sixes and query 
complexity. In addition, high trausaction rates must be sup- 
ported for standard OLTP applications. 
The effective use of super-serve& for database processing 
poses many implementation challenges that am largely un- 
solved in current products 128.113. One key problem is the 
effective use of inuaquery parallelism in multi-user mode, 
i.e., when complex queries am executed concurrently with 
OLTP transactions and other complex que&s. Multi-user 
mode (inter-trausactio&mter-query parallelism) is mandato- 
ry to achieve acceptable throughput and cost-effectiveness, 
in particular for super-servers wherea high numberof pro- 
cessors must efgectively be utilii. While proposed algo- 
rithms for parallel query processing also work in multi-user 
mode. their perfcrmance may be substantially lower than in 
single-user mode. This is because multi-user mode inevita- 
bly leads to data and resource contention that can significant- 
ly limit the attainable response time improvements due to 
&a-query parallelism. Resource contention is particularly 
uitical because of the high resource demands (CPU cycles, 
memory space, disk bandwidth, communication bandwidth) 
of complex queriesl. Furthermore, &a-query parallelism 
causesincreasedcommunicationoverheadcompatedtoase 
quential query execution on one node. Berxz, the effective 
CPU utilization and thus (OLTP) thrcnrghput are reduced. 
ILI order to limit and catrol resource contention in multi-user 
mode, dynamic strategies for resource allocation (schedul- 
ing) aud parallel query processing become necessary. Within 
a prccessing node: local scheduling components have to be 
extended to control local resource comention, e.g., by adding 
support for transaction priorities [2, 81. To limit resource 
contention in a distributed system, the workload must be al- 
located among the processing nodes such that the capacity of 
different processing nodes be evenly utilized (load balauc- 
ing). At the same time, workload allocation should support a 
compromise with respect to communication and I/O over- 
head such that both i&a-query parallelism and a sufficiently 
high throughput can be achieved. This requires a dynamic 
query processing approach where the degree of intra-query 
parallelism as well as the determination of which processing 

1. Data contention problems between read-only queries and update 
tfansactions may be solved by a multiversion concurrency con- 
trol scheme 141. 
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nodes should process a given query are made dependent on 
the current system state at query run time. 
Despite the high practical relevance of such dynamic sched- 
uling and load balancmg strategies to effectively support in- 
ter- and intra-query parallelism, very little research has been 
performed in this area (see Section 6). In a previous paper, 
we have begun to address these problems with respect to 
cPuresource ccntention 1261. The study focused on parallel 
join processing in parallel Shared Nothing 161 database sys- 
tems. Join processing was based on a dynamic redistribution 
of both input relations among multiple join processors. With 
such an approach there is high potential for dynamic load 
balancing since both, the degree of join parallelism as well 
as the selection of join processors, constitute dynamically 
adjustable parameters. In this paper, we investigate themuch 
mom complex problem of dynamic load balancing for mul- 
tiple bottleneck resources. while considering cmJy a single 
bottle& rt3somw is appropriate as a first step, such an ap- 
proach is clearly ineffective if performance problems are 
caused by other rescurces. Dealing with multiple bottleneck 
rewurces is complicated by the fact that there are typically 
many .sded&g and load balancing alternatives per re- 
source type. Hence, the total solution space increases with 
thenumberofresomcetypestoconsider.Furthermore,ina 
parallel database systems resource utilization often varies 
largely at different nodes. As a result, the current bottleneck 
may constantly change and multiple bottlenecks may exist at 
the same time complicating dynamic scheduling and load 
balancii. 
The present study primarily deals with memory and CFTJ as 
bottleneck resources and focuses on parahel hash join pro 
cessing in Shad Nothing (SN) systems. Disks constitute 
another critical bottleneck resource, in particular because 
BUS am becoming faster at a high pace while disk access 
times improve only slowly WI. Unfcatunately, the potential 
to dynamically infl- disk contention is limited. This is 
because disk access fmquencies to pemMnentdataarepri- 
marily de&mined by the chosen database allocation2. How- 
ever, the database allocation on disk is largely static and can- 
not be chauged for individual queries (x based on temporary 
overload situations. On the positive side, our load balancii 
schemes are able to limit disk contention for temporary files 
by optimixing usage of the available memory. 
Theremainderafthispaperisorganizedasfollaws.The~xt 
sectiondiscussessomebasicperformance tradeoiffs to moti- 
vate the choice of our dynamic multi-resomce load balanc- 
ing schemes. The various load balancing approaches that 
have been implemented within a detailed simuhition model 
of a SN database system are described in Section 3. Section 
4umtainsanoverviewofoursimulationmodelandhash 
join implementation. In Section 5 we present aud analyze 

2. In SN systems the database allocation further reduces the poten- 
tisl for workload allocation since it prescribes at which proces- 
aors scan operations have to be processed. Forhmately. dynamic 
load balancing is feasible for operations (e.g.. joins) on interme- 
diate results that can dynamically be reditibuted. 

simulation experiments for various database and workload 
conQurations. In particular, we are studying multi-user ex- 
periments with homogeneous workloads (concurrent join que- 
ries) and heterogeneous (query/OLTp) workloads. Finally, we 
discuss related studies (Section 6) and summarize the major 
fmdmgs of this investigation. 

2 Basic Performance Tradeoffs 
We study the load balancii problem for parallel shash join 
processing and the most general case where both input rela- 
tions are distributed among several join processors .[lO]. In a 
f~tphase(buildingphase),aparallelscanisperformed~~ 
smaller (inner) relation at the data processors owning fiag- 
ments of this relation The scan output is dynamically distrib- 
uted among severaljoinprocessors according to a partitionmg 
fun&m (range or hash) on the join at@bute. The joinnroces- 
sors maintain a memory-resident hash table for the inner mla- 
tion and support au overflow mechanism (leading to 
temporalymolllocal~sks)ifnotall~oftheimlerre- 
laticur fit into memory (see Section 4). Jn the second phase 
@robii phase), the outer relation is read in parallel at its data 
processors an distributed among the join processors. By using 
the same partiticmmg fuuction for both join inputs, it is guar- 
anteed that all matching tuples arrive at the same join proces- 
SOT. At the join processors, arriving tuples fmm the outer 
relationareprobed~$ainstthehashtabletofindmatchingtu- 
ples from the inner relation. 
*performance of such a joinmethod is infhrenccd by many 
factors like the chosen database allocation (number of data 
processors, fragmentation, etc.), relation sizes, selectivity of 
scan operations, number of join processors, memory sixes, 
CPU speed, communication bandwidth, disk characteristics 
etc. Given a fixed database allocation and hardware configu- 
ration however, the optimal join strategy that minimizes the 
response time far a given join query is mainly de&mined by 
+ number of join processors p and selection of these p join 
processors from the set of eligible processors3. hr single~user 
mode, i.e., when them is only one join query in the system, the 
optimal number of join processors can be determined fairly 
easily by meatis of an analytical model. As &&red in [34, 
171, this cau be achieved by developing &,.analytic formula 
forcalculatingtheaver~join~~‘~efoi~givenn~- 
lx3 of join processors. The typic@ ms+nse time curve is 
shown in Fig. la indicating that response time can only be im- 
proved until a certain degree of parallelism. This is because 
the actual work per processor decreases, white the communi- 
cation overhead for starting the subqueries. redistributing the 
scau output, merging the results and fcr termination (commit) 
increaseswithahighernumberofjoin~.Theopti- 
mal degree of join parallelism in single-user mode, p,.,, is 
obtainedbysettingthe~vativeaftherespcnsetimeformula 
to zero. For selecting the join processors, simple strategies like 
random or round-robin are sufficient since all processors are 
lightly loaded in singleuser mode. 

3. We assume that any processor may act as join processor. 
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Fig.1: Parallel join processing in single-and multi-user mode: basic response time development and optimal number of join processors 

The study 1261 showed however, that this changes signifi- 
cantly in multi-user mode. It was found that under high CPU 
utilixation the optimal number of join processors is lower 
than in single-user mode (Fig. lb) and that it is generally the 
lower the higher the system is utilized. This is because the 
communication overhead associated with a high degree of 
i&a-query parallelism is less affordable when processors 
are highly utilized. Furthermore, the least lltilized CPUS 
should be selected for join processing. 
In [261 we used sort-merge as the local join method and did 
not consider memcry utilization for load balancing. Howev- 
er, for hash joins optimizing memory usage is likely to be 
more significant thau CPU load balancing in marry cases and 
must therefore be considered for dynamic load balaucii in 
multi-user mode. As our simulation results will show it is of 
high importance fcr hash joins to avoid overflow I/O as 
much as possible, i.e. to keep as much as possible of the inner 
relation memory-resident. Hence, the optimal degree of join 
parallelism in single-user mode is at least as high as required 
to avoid temporary file I/O. If the aggregate memory of all n 
processors is too small for keeping the inuer relation memo- 
ry-resident, thennccnstitutes the single-user optimum. Mul- 
ti-user mode leads to memory contention so that only a 
subset of a node’s memory may be available for join pro- 
cessing. Hen&, the optimal number of join processors is ex- 
pected to be the higher the less memory is available. ‘As a 
result, under high memory (disk) utilization the optimal de- 
greeafjoinparallelisnistypic~yhigherthaninsingle-user 
mode (Fig. lc). 
The discussion ilhtstrates some basic tradeoffs to consider 
for memo and CPU load balancing (Fig. 2). On one hand, 
the degree of join parallelism must be high enough to limit 

cPubottleneck memory (disk) bottleneck 

reduce dost for 
cQmmlmication, -x- =duce’w=y G.0 

startup&terminatron / \ l!ixEg& 

Fig. 2: Dynamic load balancing with multiple bottlenecks 

memory and disk contention. On the other hand, it should be 
low enough to limit CPUcontention. Hence, the degree of join 
parallelism must be chosen dynamically based on the current 
memory, disk and CPU utilization. As with all dynamic multi- 
resource scheduling strategies then2 is a certain danger of in- 
stability because removal of bottleneck 1 may create bottle- 
neck 2 and vice versa (Fig. 2). 
3 Load Balancing Strategies 
The previous discussion showed that effective support for 
multi-user mode requires dynamic strategies for determining, 
the degree of join parallelism as well as for se1ectiug the join 
processors that consider both CPU and memory/disk bottle- 
necks. For CPU bottlenecks, the approaches proposed in [26] 
can be used that reduce the degree of join parallelism accord- 
ing to the average CPU utilization and select the least utilized 
processors for join processing. Determining the optimal num- 
ber of join processors under memory bottlenecks is more in- 
volved since it requires consideration of the available memcry 
at the individual processors. For instauce, is it better to allo- 
cate a join to 5 processors with at least 30 MB unused memory 
perIwocessorortol0processarswithaminimumdlOMB 
available memory? In the former case, the aggregate memory 
size is higher thus reducing the number of I/OS to temporary 
files. The latter case, on the other hand, allows a higher degree 
of I/O and processing parallelism that may outweigh the in- 
creased number of I/OS. Dynamic load balancii is most com- 
plex for situations with both CPU and memory bottlenecks 
and if ahnost all processors are affected (global overload). For 
partial overload situations when only some processors suffer 
from bottlenecks, load balancing strategies that select the less 
utilized processors for join processing are likely to be very ef- 
fective. 
In the following we describe the load balancing strategies that 
have been implemented in our simulation system (Section 4) 
and that will be used in the performance evaluation (Section 
5). We consider static and dynamic strategies as well as iso- 
lated and integrated policies. Isolated strategies operate in 
two cunsecutive steps. In a first step the number of join pro- 
cesses (degree of join parallelism) is de&m&d. In a second 
step these join processes are allocated to processing nodes 
based on some criterion. Megrated strutegie~, on the other 
had determine both the number of join processes aud their 
allocation in a single step. The dynamic policies base their de- 
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cisions on the current CPU utilization and memory availabil- 
ity. For this purpose we assume that a designated control node 
is periodically informed by the processors about their current 
utilization. During the execution of a query, information on 
the current CF’U and memory utilization is requested from the 
control node to support dynamic load balancing. 
We first describe the substrategies used iu the isolated control 
approaches for determiuing the degree of join parallelism and 
for selecting the join processors. Afterwards, the integrated 
policies are presented. 

3.1 Determining the number of join processors 
We consider two static schemes that determine the number of 
join processors at query compile time and one dynamic ap- 
Po=h. 
Static degree of join parallelism 
In the first policy, we simply choose the optimal number of 
join processors in single-user mode pscr-opt as the degree of 
join parallelism. However, since -ding to [26] such a high 
number of join processors may cause performance problems 
if the system is CPU-bottlenecked we additionally study an al- 
ternative with a smaller number of join processors. In this ap- 
proach, we use the number of join processors psu-nozo 
avoiding temporary I/O in single-user mode (if at all feasible 
with the given memory sizes). This number of join processors 
can be deteti as follows: 

(3.1) Pawn010 = ImJ 6, r(bi*F> / m>l > 

In this formula, n represents the total number of processors, bi 
then~~afpagesofthe~~~tion,Ftbe~~for 
the hash table (“fudge factor”) and m the memory size (inpag- 
es) per processor. Temporary file I/O is avoided if the aggre- 
gate memory size of the psu-noIo processors exceeds the size 
of the smaller join input relation and if this relation is equally 
distributed among the join processors (no or only little redis- 
tribution skew). 
Dynamic degree of join parallelism 
We use the dynamic strategy aheady presented in 1261. It de 
termines the degme of parallelism for multi-user mode pmum 

,, by reducing the single-user optimum psu+t,t according to 
lie current CPU utilization: 

(3.2) Pmu-cpu = Psu-opt (1 - uq3z 

Here, uqu denotes the current average CPU utilization of all 
processors obtained from the control node. With this formula, 
a reduction takes place primarily for higher utilization levels 
(t~,.+,~ > 0.5) when a high ccmmunication overhead for paral- 
lehzation is not acceptable. 

3.2 Selection of join processors 
We support three strategies (R%DOM, LUC, LUM) that 
may be combined with any of the three approaches above for 
determining the degree of join parallelism. 
RANDOM 
This strategy selects the join processors at random. RAN- 
DOM is expected to spread the workload equally across all 
available nodes. Since RANDOM does not consider informa- 

tion about the current system state, it represents a static ap- 
proach. 
Least Wked C-PUS (LUC) 
In this approach, we select the processors with the lowest CPU 
utilization as join processors. For this purpose, the adaptive 
variation suggested in [261 is used that artificially increases the 
CPU utilization of a processor selected for join processing at 
the control node. This avoids that subsequent join queries are 
assigned to the same processors due to the delayed updating of 
information on CPU utilization. 
Least Wized Memory (LUM) 
Join processes are assigned to the nodes with the most avail- 
able main memory. Again, the control node’s information is 
directly adapted for newly selected join processors. 

3.3 Integrated strategies 
Simulationresults willbeprovidedforthreeintegratedanddy- 
namic load balancing strategies. We have investigated several 
additional approaches; however, since they tmued out to be 
less effective and due to space constraints we omit them from 
further consideration. The integrated schemes primarily use 
the control node’s information on the current memory avail- 
ability to determine the number of join processors and to select 
them according to the LUM strategy. For this purpose, we as- 
sume that the control node maim&s the following data struc- 
tUE AVAIL-MEMORY [1 ..n] of (no+-ID, free). 
This array indicates for each of the n processing nodes the 
available memory pee) and is sorted on the amount of free 
memory, i.e. AVAIL-MEMORY Cl1 refers to the processor 
with the most free memory, etc. 
All strategies try to avoid temporary file I/O by selecting pmu 
join processors with a minimum of bfages so that pm,,*b ex- 
ceeds thesizeofthe smallerjoiniuput . Notethatfr~mthe~,, 
selected processors the one with the minimum amount of 
available memory is critical since it is likely to cause the high- 
est I/O delays from all subt&ries. Hence, it is the one that de- 
terminesresponsetimesundermemoryordiskbottlenecks.As 
a result, it is desirable to find a processor selection so that tem- 
porary file I/o can be avoided even at the processor with the 
least available memory. The three strategies differ when there 
are several selections avoiding temporary I/O and in how CPU 
utilization is additionally considered. 
MIN-IO 
This strategy tries to find the minimal number k of join proces- 
sors that avoids temporary file r/o. Mom formally, h,, is de- 
termhedsuchthat 
(3.3) Pm” = MIN (k I AVAIL-MEMORY [kImfree “k > bl*F) 

k = 1.2. . . . . n 
If the available memory does not allow avoidance of all tem- 
porary file I/OS, the number of join processors is selected so 
thattheamountofoverflow~Oisminimized5.Joinprocessing 

4. Assigning large amounts of memory to complex hash joins as- 
sumes a memory allocation strategy that gives priority to OLTP 
transactions. For this purpose, we have implementkd a memory- 
adaptive hash join approach (Section 4). 
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takes place on the processors specified in the first pmu posi- 
tions of AVAIL-MEMORY (LXJM policy). MIN-IO does not 
consider the current CPU utilization. 
MIN-IO-SUOPT 
This strategy is different from MIN-IO only if there are mul- 
tiple selections that avoid temporary file I/O. MD&IO selects 
the minimal number of PE in this case, which limits the CPU 
overhead for parallel processing but may also uuuecessarily 
restrict the degree of parallelism. To avoid this potential prob- 
lem MIN-IO-SUOPT selects the number of processors closest 
to psumopt for which temporary file I/O is avoided. 
OPT-IO-CPU 
This strategy is an extension of the previous ones that explic- 
itly considers the current CPU utilization. MU+10 and MJN- 
IO-SUOm can sele& high degrees of join parallelism under 
high memory utilization which can lead to significant CPU 
contention. To avoid this problem, OPT-IO-CPU restricts the 
number of join processors to at moat pmu-,.+, based on the cur- 
rent CPU utilization (formula 3.2). Within&s range. the max- 
imal number of processors avoiding (or nmGni&g) 
temporary I/O is selected. Such au approach is likely to be ef- 
fective under higher CPU utilization. It also supports a low 
number of temporary file J/OS under light CPU load where the 
number of processors is only restricted by psu+. 

4 Simulation model 
For the present study, we have extended our SN simulation 
system aheady used in [261 by adding implementations for 
parallel hash join processing and for the various load balanc- 
is& schemes. The gross structure of this simulation system is 
depicted in Fii. 3. In the following, we briefly describe the 
used database and workload models, the processing model as 
well as our hash join implementation. The simulation system 
is highly parameterixed. In Section 5.1, we will provide an 
overview of the major parameters and their settings used in 
this study. 
Database and workload model 
Thedatabaseismodeled as asetofpartitions. Apartitionmay 
be used to represent a relation, a relation fragment or an index 
structure. It consists of a number of database pages which in 
turn consist of a specifii number of objects (tuples, index en- 
tries). The number of objects per page is determined by a 
blocking factor which can be specifii on a per-partition ba- 
sis. Each relation can have associated clustered or unclustered 
B+-tree indices. Relations and iudices can be horizontally de- 
clustered across an arbitrary number of disks and processors. 
We support heterogeneous (multiclass) workloads consisting 
of several query and transaction types. Queries correspond to 
trausactions with a single database operation (e.g., SQL state- 
ment). Currently we support the following query types: rela- 

5. Note that this does not necessarily imply a join processing on all n 
processors. For example, assume a storage requirement of 10 MB 
for the hash table, n=4, and a current memory availability of 8.1, 
0. and 0 MB. MIN-IO s&&a pm=1 and chooses the processor 
with 8 MB available memory for loin processing. This is because 
inthiscasewecanhmitoverflowI/Oto2MBcemparedtoatleast 
2.5 ME4 per processor with other choices (pm&). 

tion scan, clustered index scan, non-clustered index scan, two- 
way join queries, multi-way join queries, and update state- 
ments (both with and without index support). We also support 
the debitcredit benchmark workload (IX-B) and the use of 
real-life database traces 1181. The simulation system is an 
open queuing model and allows definition of an individual ar- 
rival rate for each transaction and query type. 
Workload allocation takes place at two levels. First, each in- 
comiug transaction or query is assigued to one processor act- 
ing as the coordinator for the transaction/query. For this 
placement we support different strategies, in particular ran- 
dom allocation. The second form of workload allocation deals 
with the assignment of suboperations to processors during 
query processiug and depends on the operators to be executed. 
For scan operators, the processor allocation is always based 
on a relation’s data allocation. For join processing, we support 
several static and dynamic strategies for determining the de- 
gree of join parallelism and for allocating the join processes 
to processors as described in the previous section. 
Workioad processing 
Each processor or processor element (PE) of the SN system is 
represented by a transaction manager, a query processing sys- 
tem, CPU servers, a communication manager, a concurrency 
control component and a buffer manager (Fig. 3). The trans- 
action manager controls the (distributed) execution of trans- 
actions. The maximal number of concurren t transactions 
(inter-transaction parallelism) per PE is controlled by a mul- 
tiprogramming level. Newly arriving transactions must,wait 
in an input queue when this maximal degree ofinter-transac- 
tion parallelism is already reached. The query processing sys- 
tem models basic relational operators (sort, scau, join) as well 
as a parallelization meta-operator (PAROP) that is used for 
dynamically mdistributiug data among processors and for 
merging multiple inputs. Different parallel execution strate- 
gies have been implemented for the various operators, in par- 
ticular parallel hash joins (see below). 
The number of CPUs per PE and their capacity (in MIPS) are 
provided as simulation parameters. The average number ofin- 
structions per request can be defined separately for every re 
quest type. To accurately model the cost of query processing, 
CPU service is requested for all major steps, in particular for 
transaction initialixation (BOT). object accesses in main 
memory (value comparisons, operations on hash tables, etc.), 
T/O overhead, communication overhead, and commit process- 
ing. The comuumication network models transmission of 
message packets of fixed sixe. Messages exceeding the pa&et 
size (e.g., large sets of result tuples) are disassembled into the 
requimd number of packets. 
For concurrency control, we employ distributed strict two- 
phase locking (long read and write locks). Global deadlocks 
are resolved by a central deadlock detection scheme. Distrib- 
uted two-phase commit is supported and involves all proces- 
sors that have participated during execution of the respective 
transaction/query. We support the read-only optimization 
where only one distributed commit phase is mquired for read- 
only sub-transactions (to release the read locks). 
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Fii. 3: Gross structure of the simulation system 

Database partitions can be kept memory-resident (to simulate 
main memory databases) or they can be allocated to a number 
of disks. Disks and disk controllers have explicitly been mod- 
elled as servers to capture potential I/O bottlenecks. Purther- 
more, disk controllers cau have a LRU disk cache. The disk 
controllers also provide a prefetching me&a&m to support 
sequential access patterns. If prefetching is selected, a disk 
cache miss causes multiple succeeding pages to be read from 
disk and allocated into the disk cache. Sequentially reading 
multiple pages is only slightly slower than reading a single 
page, but avoids the disk accesses for the pmfetched pages 
when they am referenced later on. The munberofpages to be 
read per prefetch I/O is specified by a simulation parameter. 
The database buffer iu main memory consists of a global buff- 
er for all transactions/queries as well as private working spac- 
es used for query processing (e.g., hash tables far hash joins). 
The global buffer is managed according to a LRU replacement 
strategy and a no-force update strategy with asynchronous 
disk writ&. Private working spaces are dynamically assigned 
by reserving a certain number of pages for processing a given 
(sub)qw. 
Hash join processing 
For parallel hash join processing, the input relations can be 
distributed among an arbitrary number ofjoin processor@. Se- 
lection of the join processors depends on the respective ap- 
proach for load balancing. For local join processing, we have 
implemented a niemory-adaptive hash join algorithm, called 
Partially Preemptible Hash Join (PPHJI, that was shown to 
outperform traditional join methods like GRACE and hybrid 
hash join for mixed query/OLTP workloads [231. This is be- 
cause it adapts the memory assigmnent for a join query ac- 
cording tp the memory requimments of higher-priority OLTP 
trausactions.,The PPHJ algorithm partitions both join inputs 
into p partitions with p =m where F ist the fudge factor 
and bi the number of pages for the inner relation A. TO make 

sure that each A partition cau be held in memory, a minimum 
af p pages must be available for join processing. 
ThealgorithmtriestokeepasmanyApartitionsaspossiblein 
memory to allow a direct join processing with the outer rela- 
tion. In the case that memory has to be taken away Corn the 
join due to higher-priority transactions, one or more memory- 
6. If the input relations are already declustenxl on the join atirib$es, 

join proceking may also take place at the data processors. lIus re- 
ducea the communication overhead but offers little potential for 
dynamic load balancing. 

resident A partition are written to disk. If more memory be- 
comes available for join processing, one cr more disk-resi- 
dent A partition are brought into memory to support a direct 
join processing. Arriving tuples from the outer relation B can 
only be processed directly if the cormsponding A partition is 
in memory. Otherwise, the B tuple is inserted into a tempo- 
rary B partition that is written to disk. For disk-resident par- 
titions the act&d join processing is deferred until all tuples 
from the outer relation have been received, The delayed join 
processing starts with reading in the respective A partition 
and storing it in a hash table. Afterwards the associated B 
partition is read and probed against the hash table. 
A join query is only started at a node if the minimal space re-. 
quiremeuts of p pages are available. Otherwise. the join que 
ryisforcedtowaitiriamemoryqueuethatismanaged 
acmrding to a FCFS (first come, first served) scheduling pal- 
icy. Similarly,,~xecuting hash joins are s$spended ifmemq 
frames are stolen by higher-priority transactions and fewer 
than the minimal number of pages remain for join process- 
ing. Since all hash join queries are assumed to have equal prii 
ority, the memory allocation of ‘a running query is not 
chauged due to newly arriving joins. 

5 Performance Analysis 
Our experiments concentrate on the performance of parallel 
join processing in multi-user mode. The focus of the study is 
tocompamtheeffectivenessofthevarious staticauddynam-’ 
ic load balancing alternatives imrodn& in Section 3 ford& 
termin@thedegmeofjoinparaWismandforselectionof 
the join pmcessors. Two types of multi-user load profiles are 
considered: ahomogm workload consistingofjoinque- 
ries only as well as a heterogeneous (mixed) workload with 
both short OLTP transactions and join queries. 
Iu the next subsection, we provide an overview of the param- 
eter settings used in these experiments. Multiuser experi- 
ments for the homogeneous and heterogeneous workloads 
are analyzed in 5.2 and 5.3, respectively. Many additional 
experiments have been conducted but cannot be d&&bed 
due to space restrictions. However, these experiments con- 
firm the main findings of the selected experiments. 

5.1 Simul@on Parameter Settings 
Pii. 4 shows the major database, query and configuration pa- 
rameters with their settings. Moat parameters are self-- 
planatory, some will be discussed when pmsentiug the 
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Configuration settings Database/Queries settings 

lumber of PE (#PE, n) 10,20,40,60,80 relations A: 
ZPU speed per PE 

(100 MB) 
20 MIPS #tuples 250.000 

ng. no. of instructions: tuple size 400 B 
initiate a query/transaction 25ooo 20 
terminate a query/transaction 

blocking factor 
25000 index type clustered B+-tree 

I/O storage allocation disk 
send message ZE alloaction to PE 
receive message 10000 

partial declustering (20% of #PE) 

copy 8 KB message 5000 
read a tuple from memory page 

relations B: (400 MB) 

hash a tuple 
~55 #tuples 1.000.000 

insert a tuple into hash table 
write a tuple into output buffer :g 

tuple size 
blocking factor 4Ip” 

probe hash table 200 
index type clustered B+-tree 

mffer manager: 
storage allocation 

page size 8KB 
allocation to PE p”& declustering (80% of #PE) 

buffer size fi$sS (0.4 h4f.d joti que&: 

Ii& devices: access method via clustered index 

number of disk servers per PE 10 (varied) scan selectivity Vtllkd 

controller service time 1 ms (per page) no. of result tuples 100 % of the inner relation 

transmission time per page 0.4 ms fudge factor hash table 1.05 

avg. disk access time 15 ms arrival rate single-user, multi-user (varied) 

gFwyt deb per page 1 ms query placement random (uniformly over ah PE) 
200 pages join parallelism static /dynamic 

prefetchmg size 4Pages selection of join processors random /dynamic 
-. . I I . -. -_ 

simulation results. The join queries used in our experiments 
perform two scans (selections) on the input relations A and B 
aud johi the corresponding results. The A relation contains 
250.000 tuples, the B relation 1 million tuples’. The selections 
onAandBreducethesizedtheinputrelati~accordingt0 
the selection predicate’s selectivity (percentage of input tuples 
matching the predicate). Both selections employ clustered in- 
dices.Thejoin~sulthasthesamesizeasthescan~~tonA. 
Both relatiars am uniformly dechrstemd across disjoint sets of 
PE. To support a static load balancing for scanoperations, each 
PE is assigned the same number oftnples. As aresult the larger 
relation B is declustered across 80% of the PE, while the re- 
maining 20% of the FE hold tuples of relation A. The number 
of processing nodes is varied between 10 and 80. 
The relation and query sixes had to be chosen small for most 
experiments to limit simulation cost. As a consequence, we 
had to use unrealistically small memory sixes (0.4 MB per PE) 
to generate a masonably high memory utilization. However, 
the impact of huger query sixes on the effectiveness of the vat- 
ious strategies will be studied in a separate experiment. 
The dur&on of an I/O operation is composed of the controller 
service time, disk access time and transmission time. For all 
sequential I/OS, in particular relation scans, clustered index 
scans and scans on temporary files (partitions), prefetching is 
utilized by the disk controllers to improve I/O performance. 
Thediskaccesstimeforpiefetchingconsistsofabaseaccess 
time per I/O (15 ms) plus an additional delay per page (1 ms). 
For a prefetching of4 pages, the average disk access time is 19 
ms. The parameter settings for the communication network 
have been chosen according to the EDS prototype [291. 
7. As pointed out in[91, most decision support queries are joins be- 

tween a larger and a smaller relation. 

kig. 4: System configurahon, database and query profile 

Our OLTP workload is similar to the one of the debitcredit 
(TPC-B) benchmark. In particular, each OLTP transaction per- 
forms four non-clustered index selects on arbitrary input rela- 
tions and updates the corresponding tuples. 

5.2 Homogeneous wdrkloads 
The homogeneo& workload consists of a single (join) query 
type:,Inter-query parallelism is used to execute multiple queries 
at a time. Since we, want to support not only sheet response 
times but also good throughput, we increase the query arrival 
rate proportionally with the number of PF!I. We first present 
multiuser results for isolated load balancing strategies using a 
static degree of intraquery pa+lelism. Afterwards we analyze 
the effectiveness of isolated and integrated strategies that dy- 
namically dekrmine the number of join processors. Next, an 
experiment with a pronounced disk and memory bottleneck is 
described. Finally, we study the infl- of the join complex- 
ity on the effectiveness of dynamic load balancing. 
Isolated strategies with static dqree of join parallelism 
Fig. 5 shows the multi-user response times for static degrees of 
parallelism and three different allocation strategies. For com- 
parison pmposes, the single-user wsults obtained with p.&,, 
join prmsors are also shown. For the assumed join query, 3 
join processors are sufticient ,m single-user mode to avoid tern- 
pomry file ID, i.e., psu-nO~o = 3. The single-user optimum is 
substantially higher (pa-,; = 30). The systeni size is varied be 
tween 10 and 80 PE; the arrival rate is 0.25 queries per second 
(QW $r lx. 
For this workload, for up to 40 PE the system is only lightly 
loaded. Hence. using psu-opt join pnxessors provides the best 
multi-user performance wdh nqonse times not much higher 
than in single-user mode. In this range, restricting join process- 
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Pig. 5: Static degree of parallelism 
(multi-user join 0.25 QPS/pE; 1% scan selectivity) 

ing to psu-nOIo processors achieves suboptimal performance 
since CPU parallelism is not fully exploited. Furthermore, 
choosing only psu-nOIo join processors is not sufficient to 
avoid temporary file I/O in multi-user mode because the 
available memory per processor is smaller than in single- 
user mode. 
With a growing number of processors, performance is in- 
creasingly dominated by CPU bottlenecks due to higher ar- 
rival rates and increased overhead for the dynamic 
redistribution of both join inputs*. The redistribution over- 
head is particularly high for the strategies employing psu-Opt 
(30) join processors causing substantial msponse time dete- 
riorations due to CPU contention (more than 80% CPU uti- 
lization on an 80 PE system). On the other hand, using psu- 
noIo join processors results in a siguifiiantly lower CPU uti- 
lization (approx. 50% for 80 PE). However, this is achieved 
at the expense of iucmased I/O delays and higher disk utili- 
zation since 3 join processors am not sufficient any mom to 
avoid temporary file I/O. Still, the best static strategy using 
psu-n,,Io processors (in combination with LUM) outperforms 
the strategies using psumqt processors for more than 60 PE. 
The load balancing strategy for selecting the join processors 
alsohasaprafaundimpactontherespcwsetimeresults,in 
particular for higher utilization levels (number of PE). RAN- 
DOM exhibits the worst performance in all cases despite the 
fact that a homogeneous workload is relatively favorable for 
such a strategy. Still, the CPU and memory utilization of the 
individual processors varied substantially. in particular with 
only 3 (p,.,oIo) join processors per query. Since this strate- 
gysuffemdfrommemoryandI/Obo&necksforahigher 
number of PE, the LUM policy was much more efficient 
than the LUC alternative for selecting the join processors. In 
case of psumopt join processors memory contention was not a 
problem. Instead, CPU was the bottleneck for a higher num- 
ber of PE. Therefore, the LUC policy was (slightly) mom ef- 
‘ficient than LUM for the case of 30 (psu-Opt) join processors. 
However, there is no significant difference between the 
LUM and the LUC policy, since CPU utilization aud mem- 
ory utilization were closely correlated for the homogeneous 
workload and 30 join processors per query. 
8. The redistribution overhead per query increases with the number 

of nodes since the two relations are declustered across 80% and 
20% of all processors, respectively. 

4 
- ~rnu-c,,+~DOM 

APT-IO-CPU 

’ ~nu,-c~u + LUM 

?I- 0 20 40 60 80 #PE 
Fig. 6: Dynamic degree of join parallelism 

(multi-user join 0.25 QPS/pE; 1% scan selectivity) 
Dynamic degree of parallelism 
As the discussed results have showc statically determiniug 
the degme of join paralleliim is not appropriate for multi-user 
mode due to changing levels of msource utilization. Therefore, 
wefocusnowontheresultsobtainedforadynamicctition 
of the number of join processors (Fig. 6). We consider two iso- 
lated approaches based on a dynamic determination of the de- 
gaze of join parallelism according to the current CPU 
utilization (p,,,qqp,) and using a RANDOM- or LUM-based 
selection of join processors. In addition, results for the three 
integrated approaches from Section 3.3 are shown. 
Inte~stiugly, the worst performance is achieved for the two 
integrated load balancimg strategies MINI0 and MIN-IO- 
SUOPT, in particular for a higher number of processors (Fig. 
6). This was because both strategies do not dder the cur- 
rentBuutilizaticwbutmerelytryto~nroid~~aryfileuO. 
However, for this purpose an increasing mnuber of join pro- 
cessors became necessary for larger system sizes leading to an 
even higher CPU contention (>85% CPU utilization) than with 
a static degree of pmwOPt join processors. For instance, more 
than 40 join prmsors were necessary for a system of 80PE 
to avoid temporary I/O. MIN-IO is superior to MN-IO- 
SUOPT for larger configurations since the latter strategy gen- 
erally chooses a hit&r number of join processors. For smaller 
configurations (lower CPU utilization), 011 the other hand, se- 
lecting the minimal number of join processors avoiding tem- 
porary file I/O (MYIN-IO) is sliitly less efficient since CPU 
parallelism is not fully utilized 
Most efficient were the strategies pmu-, and OPT-IO-CPU 
that reduce the degree of join parallehsm under high CPU 
load. They apply at most p,.,, join processors and reduce the 
degree of join parallelism wrth increasiug CPU utilization. 
Therefore, even for 80 PE CPU utilization could be kept below 
65% still permitting mptable msponse time. While the use 
of a RANDOM selection of join processors is again worse 
than a LUM-based selection of pmu-* join processors, such 
an approach was stih better than the two integrated schemes 
MD&IO and MIN-IO-SUOPI’. This shows that under high 
CPU load red~iug the degree of join parallelism is more im- 
portautthanminimiljne the amount of temporary I/O. 
The two best strategies pmu-qu + LUM and OPr-IO-CPU 
showed very similar performance characteristics for this ex- 
periment. For the heterogeneous workloads, the differences 
between these approaches will become more apparent. 
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Memory/disk bottleneck 
In the previous experiment that was largely influenced by 
CPU contention for larger system sixes, the strategies reduc- 
ing the degree of parallelism according to the current CPU 
utilization were most effective. We now focus on a memory- 

. bamd environment by reducing the memory size per proces- 
sor by a factor of 10 and reducing the query arrival rate. Fur- 
thermore, we assume only 1 disk per PE for temporary file 
I/O (dead of 10 disks). For this experiment., we only com- 
pare one of the worst strategies of the previous experiment 
(MIN-IO-SUOPT) with o&of the best strategies (pmuscpu + 
LUM) for both single-user and multi-user mode (Frg. 7). 

mul&userjoin(O.OSQPSIPE): 
-~mu-c~u+LUM - MIN-IO-SUOPT 

multi-userjoin (0.025QPSIPE): 
~Pm&4,u+LUM c* MIN-IO-SUOPT 

single-userjoiic 
o---o~mu,,,+LUM - MIN-IO-SUOPT 

20 30 40 60 #PE 8o 

Fig. 7: Memory-bound environment (1% scan selectivity) 

The assumed workload resulted in a low CFV utilization of 
under 20%. but caused a high buffer utilization (> !JO%). 
Since there was no CPU bottleneck, prn~-~~ was always the 
same as psu+. However, this degree of jom parallelism was 
not sufficient in multi-user mode to minimize the number of 
overflow I/OS causing an incmhg degtee of memory and 
disk utilization (Ao%) for growing system sixes. The same 
effect would have occurred for the OFT-IO-CPU strategy. 
The MIN-IO-SUOPI approach, on the other hand, was able 
to minim& the gmnmt pf overflow I/O by increasing the 
number of join processors with the system size. As indicated 
in Fii. 7, the average degree of join parallelism in multi-user 
modewasincre~toupto42for8OpEasopposedto33 
in single-user mode and 30 for P~~-~,,. The correspond@ 
savings iu the number of I/OS and the reduced disk conten- 
tion allowed drastically improved response times compared . . 
to usmg pmuwqu jam processors. 
These experiments illustrate that there is no single policy 
that performs best under all conditions, but that the load bal- 
ancingstrategy itselfshouldbeselected~~tothecur- 
rentloadandmsomce situatiun. 
Influence of join complexity 
To study the influence of the join complexity on the effec- 
tiveness of dynamic load balancing we vary the size of the 
join input by using different scan selectivities. This experi- 
ment was performed for a constant system size of 60 PE. 

Scan selectivity was varied between 0.1 and 5% for both input 
relations. For each join complexity, the arrival rate was deter- 
mined individually, so that at least one of the physical msourc- 
es (CPU, memory or disk) was highly loaded (>75%). Fig. 8 
shows the relative response time improvement using dynamic 
strategies compared to a static degree of join parallelism 
(MJWk Psu-opt )) and random selection of join processors. 

2 
t 60 -~n,u-f~u+LUM 

-MIN-IO-SUOPT 

-MIN-IO 

scan selectivity PO] ’ 

Fig. 8: Influence of join complexity 

We observe that the dynamic load balancing schemes autper- 
form the static approach in all cases, but that the relative per- 
formance improvementi shrink with increasing join complex- 
ity. This is largely because we use a constant system size while 
increasingthejoinsizeleadingtoan~aseintheoptimal 
number of join processors. In single-user mode, the optimum 
psumopt hxxeases from 10 for a scan selectivity of 0.1% to 70 (> 
n) for a selectivity of 5%; the minimal number of nodes needed 
to avoid overhead I/O, psumnoIO grows from 1 to 14. In multi- 
user mode, larger joins also require higher degrees ofparallel- 
ism not only to reduce the amount of temporary I/O but also to 
reduce the amount of procesSing per join processor. 
For small joins (scan selectivity 0.1%) avoiding temporary I/O 
is no problem so that performance is primarily limited by the 
CPU contention associated with higher degrees of join paral- 
lelism (unfavorable ratio between startup/termination cost and 
actual work). Hence, the best performauce is achieved for the 
strategies using few join processors (Psumnoro + LUM and 
MIN-IO), while the schemes using psu+ join processors 
(MIN-IO-SUOPI) achieve the lowest msponse time improve- 
ments. For larger joins (5%). on the other hand, startup and ter- 
miuation costs became less relevant and higher degrees of join 
parallelism am needed to liit temporary I/O and to fully ex- 
ploit CPU parallelism. The strategy psu-nOIo + LUM achieves 
the worst pelformauce since it utilizes only 14 processors 
which is not sufficient to avoid temporary I/O in multi-user 
mode. MINI0 avoids memory/disk bottlenecks, but also se- 
lects too few join processors so that no sufficient level of CPU 
parallelism is achieved. For large joins, the best performance 
is provided by the strategies pmu-cpu + LUM, OPT-IO-CPU 
and MIN-IO-SUOPT as they employ almost all processors for 
join processing. Still they are able to improve response times 
(by about 18%) compared to the static scheme p,,,-, + RAN- 
DOM .(which uses all processors) because the dynamic strate- 
gies avoid join processing at temporarily overloaded nodes. 
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The experiment confii the expectation that the potential for 
dynamic load balancing become small as soon as the optimal 
number of join processors approaches the total number of pro- 
cessors. In addition, the use of a homogeneous workload can 
be considenzd as a worst-case assumption for complex queries 
as it results in a relatively uniform resomce allocation even for 
random selection of the join processors. (Furthermore, the 
chosen database allocation allowed an equal distribution of 
the scan work.) In eal $ystems, the workload is expected to 
consist of trausactiou and query types with largely different 
resource requirements thus improving the load balancing po- 
tential. Such h&erogenous workloads will be considered in 
the next experiment. Furthermore, the potential for dynamic 
load balancing increases with the total number of processors, 
i.e., such schemes are essential for super-servers. 

5.3 Heterogeneous workloads 
We now study the effectiveness of dynamic load balancing for 
the case of heterw workloads cc&sting of OLTP 
transactions and join queries. For OLTP processing. we as- 
sume a simple transaction type with4 tuple accesses per trans- 
act@ and that au affinity-based routing ES] can achieve a 
largely local processing (similar to debit-credit). To avoid 
lock co&cts with join querys. OLTP transactions access dif- 
ferent relations than A and B. For the concurrent execution of 
join queries, we study multi-user join processing. 
Fig. 9 shows the average join response times for two mixed 
workloads differing in whether the OLTP transaction type is 
only running on the A nodes holding fragments of relation A 
(Fig. 9a) or on the B nodes (Fig. 9b). In both cases we use an 
OLTP transaction rate of 100 TPS (transactions per second) 
per A(B) node. The OLTP workload causes per A (B) node a 
CPU, disk, and memory ut&zation of about SO%, 60%. and 
45%. respectively. Join queries arrive at a rate of 0.075 QPS 
per PE. We consider two static load balancing schemes for 
join processing with a f&d degre42 of join parall&m of pm- 
opt or psu-nOIo processors that are randomly selected. For psu- 
no~~ processors we additionally investigate the LUM a&ca- 
tion strategy. Moreover, the two dynamic load balancing 
strate@es pmu-cpu + LUM and OPT-IO-CPU are examined. 

20 20 60 80 10 20 40 60 80 
#PE #PE 

Fig. 9: Static vs. dynamic load balancing for mixed workloads 
(multi-user loin 0.075 QPS/Ph 5 disks per PE) 

The results indicate that for mixed workloads dvnamic load 
balancing is indeed even more effective (and needed) .than 
for homogeneous workloads. The differences between static 
and dynamic approaches are particularly pronounced in the 
case when the OLTP load is processed on B nodes @ii. 9b). 
This is because we have the four-fold OLTP throughput 
compared totheotherconfigurationresultingin ahi*sys- 
tern utilization and longer response times. Static schemes 
based on RANDOM selection of join processors are particu- 
larly unsuited in such a situation as they frequently assign 
join work cm nodes that are highly utilized due to OLTP pro- 
cessiug. Using a small static degree of join parallel& (p,.. 
noI~) iu combination with a LUM-based selection of join pro- 
cessors is aheady much better since it largely avoids join pro- 
cessiug on nodes with high memory utilization. Still, such 
semi-static approaches are iusu6iient since they cause ei- 
ther an unnecessarily high l/O overhead @~-n0lo) or CPU 
contention (p,,~,~~. 
The dynamic approaches could largely avoid t&se deflcien- 
ties and provided much better performance than the static 
schemes. Inparticular,respansetimescouldbekeptv~iow 
for larger system sizes despite the’gowing query and trans- 
action throughput. This is pa&zulariy the case for the inte- 
grated policy OR-IO-CPU. The isolated strategy pmlr-cpu + 
LUM. however, suffered from pe&mance problems with a 
lower number of processors, in particular with OLTP pro- 
cessing on the A nodes (Fig. 9a). The problem comes from 
the fact that this strategy only considers CPU utilization for 
de&mining the number of join processors pmu, while mem- 
ory utilization~is solely used for selecting the join processors. 
For smaller system sizes of up to 30 PE when the average 
CPU utilization is comparatively low, pmu 

-T 
is not lower 

than Psu-opt so that join processing takes p ace on all PE. 
Htmce, jams ate also processed cm the processors that are 
highly utilized due to OLTP processh$ causing substantial 
performmce degradations. OPT-IO-CPU, on the other hadd, 
uses the current CPU utilization 6nly to determine the maxi- 
mal number ofjoin processors but selects a smaller &gtee of 
parallel&m if this allows for wduced I/o requirements ac- 
t3xdiug to the current memory utilization. In this way, this 
strategy was able to avoid join processing on the OLTP 
nodes permitting sub&&ally better response times. This 
demonstrates the importance of de&mining the number of 
join processors and selecting @ processing nodes in an in- 
tegrate4j way. 

6 Related Work 
Dynamic scheduling and workload a&cation strategies f& 
database processing have found considerable interest recent- 
ly, but most studies concentrated on centralized DBMS. Fur- 
thermore, most studies only dealt with a single bottleneck 
resource. For instance, several researchers looked at the 
problem of controlling lock con&on by dynamically ad- 
justing the multiprogramming level [3,30,331. Other studies 
coped with dynamic memory allocation strategies for multi- 
class workloads consisting of complex queries and OLTP 
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transactions [15, 36,23, 1,51. [19] addressed the scheduling 
problem when multiple hash join queries are to be processed at 
the same time. Different alternatives to allocate memory to join 
queries were considered, but the memory allocation was left 
unchanged during query execution. 
The problem of dynamic load balancing in parallel database 
systems has mainly been considered for parallel Shared Every- 
thing (multiprocessor) DBMS so far [12,22,13,16]. In these 
systems. dynamic load balancing is easier to achieve since the 
operating system cau automatically assign the next ready pro- 
cess/subquery to the next free CPU. Furthermore, the shared 
memory supports very efficient interprocess commuuication so 
that the overhead for starting/terminating subqueries is much 
lower than for SN. Also, the memory load balancing problem 
does not exist for Shared Everything because there is no private 
main memory per processor. On the other hand, the number of 
processors is typically small for Shared Everything (< 30) thus 
restricting the degree of inter-/&a-query parallelism and the 
potential for dynamic load balancing. 
For SN dynamic forms of load balancing have been proposed 
for join processing in order to deal with data skew 132.35.7, 
141. However, all these studies assumed single-user mode cor- 
responding to a best-case situation with little or no msource 
contention. Hence, only it&a-query load balancing is supported 
and the effectiveness of the proposals in multi-user mode must 
be questioned. 
Most closely related to our work is a recent study by Mehta and 
Dewitt [201. As we have done in [261 and here, they concen- 
trate on dynamically determir& the degree of join processors 
as well as selecting the join processors for SN. The main con- 
tribution is a new algorithm called RateMatch for determining 
the number of join processors. This scheme is based on the ob- 
servation that the size of the join input is less significant for 
fiuding the optimal number of join processors than the rate at 
which the scan processors generate the join input. Thus the 
scheme tries to determine the munbe-r of join processors such 
that their aggregate join processing rate matches the rate at 
which the join input is provided by the scan processors. How- 
ever. the173 are several limitations both in the algorithm as well 
as in the accompanying simulation study. Fit. RateMatch is 
an isolated scheme that uses an independent algorithm for se- 
lecting the join processors. Moreover, the algorithm is based on 
a simplistic model for taking into account the effect of resource 
contenticm on the scan and join processing rates. In particular, 
the current memory availability is not considered at all and only 
the average CPU utilization and average disk access times are 
used to estimate the pmcessing rates in multi-user mode. This 
ignores the fact that there may be large differences in the utili- 
zation of individual nodes (which am considered by integrated 
schemes). Fmthermore, the communication overhead associat- 
ed with a selected degree of join parallelism is not taken into 
account. One consequence of this simplification is that the al- 
gorithm iuaases the degtee cd join parallelism as CPU utili- 
zation increases in order to compensate the reduced proceSsiug 
rate per join processor! This may be acceptable for low utiliza- 
tion levels, but can lead to severe performance problems for a 
higher CPU utilization (> 50%) as our results have shown. A 

main limitaticm of the simulation study is that only completely 
homogeneous hash-join workloads am considered favoring 
au even system utilization. As a result. the differem be- 
tween diffmnt approaches to select the join processors have 
been very small. The best performance was observed for our 
LUC scheme (originally proposed in 1261) although it only 
considers the cumnt CPU utilization. 
Iu [27]. we investigate the potential of Shared Disk database 
systems for dynamic load balancing. This architecture offers 
a higher flexibility than SN because even for scan operations 
the degree of in&a-query parallel&n cau dynamically be cho- 
sen. Furthermore, the scan processors are freely eligible since 
each processor can access any disk. 

7 Conclusions 
We have investigated the problem of dynamic load balancing 
for parallel Shared Nothing database systems. Such a load 
balancing is a critical prerequisite for effective utilization of 
“super servers”,, iu particular to support effective intra-query 
parallelism in multi-user mode, i.e.. in combination with in- 
ter-~ and inter-transaction parallelism. &major control 
decisions to draw dynamically inch& determining the de- 
gree of intraquery parahelism and selecting the processors 
for executing s&queries. We found that these two subprob- 
lems should be solved in an integrated way and that the cur- 
rent system state with respect to multiple resources, in 
particular CPU, memory and disk, needs to be considered. 
We have studied these issues for parallel hash join processing 
based on a dynamic redistribution of both join inputs among 
several join processors. While in single-user mode minimiz- 
~theamountofUOtotemporaryfiles(duetobsshtable 
overflow) is of prime imw. the perfonuince in multi- 
usermodemaybedominatedby~factoCsl~thedegree 
of8Uanddiskcontention.Tnp~,weobJervedabasic 
pelformance tradeoff with lespect to the optimal degree of 
join parallelism in multi-user mode. Under high CPU utiliza- 
tion we found it necessary to reduce the degree of join paral- 
lelism in order to limit C.BU contention (communication 
overhead for startup/termination and data redistribution). Un- 
der disk and memory bottlenecks, on the other hand, the de- 
gree of join parallelism should be &creased in order to reduce 
the memory and I/O requirements per subquery. 
We have investigated the performance of several single- and 
multi-resource load balancing strategies for homv 
and heterogeneous (query/OLTP) workloads by means of a 
detailed simulation model. We considered static and dynamic 
as well as isolated and integrated policies. Isolated policies 
de- the degree of join parallehsm independently from 
the policy used for selecting the join processors, while inte- 
grated strategy try to address both scheduling problems to- 
gether. We found that dynamic load balancing schemes 
clearly outperform static approaches, in particular for lk%ero- 
geneous workloads when the load situation at di&rent pro- 
cessors may vary significantly. However, simple integrated 
policies considering only the current utilization of a single re- 
some (e.g., memory) are not always better than isolated 
schemes considering multiple resources. This underlines the 
ueed to have a dynamic, integated and multi-resource load 
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balancing approach. As our results suggest, such an approach 
should be realized by a family of load balancing strategies so 
that the most appropriate policy can be selected according to 
the current system state. For instance, if the system suffers pri- 
marily from memory and disk bottlenecks an integrated policy 
like MIN-IO-SUOPT should be chosen that minimizes the 
amount of I/O based on the current memory availability. For 
situations with high CPU contention or with both CPU and 
memory bottlenecks. an huegrated policy like OPT-IO-CPU 
has proven to be very effective. 
While our study focussed on parallel hash join processing, we 
believe the principles behind our strategies are equally valid 
for other relational operators that use a dynamic redistribution 
of their input for parallel execution (e.g., sort). Furthermore, 
we believe that the proposed strategies are not limited to Sha- 
red Nothing but can equally be applied in Shared Disk data- 
base systems. Currently, we are studying the performance of 
different approaches to deal with data skew (in particular, re- 
distribution skew) in multi-user mode. Prelimimuy results in- 
dicate that the overhead of proposed skew handling techniques 
is a significant problem in multi-user mode. On the other hand, 
the skew problem may be reduced by dynamic load balancing 
strategies that do not try to generate equally-sized subjoins but 
select the join processors dependent on the size of the subjoins 
(by assigning larger subjoins to less loaded nodes, etc.). 
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