
Performance Evaluation of Extended Storage
Architectures for Transaction Processing

Erhard Rahm
University Kaiserslautern, Germany
E-mail: rahm@informatik.uni-kl.de

Abstract:
The use of non-volatile semiconductor memory within an ex­
tended storage hierarchy promises significant performance im­
provements for transaction processing. Although page-addres­
sable semiconductor memories like extended memory, solid­
state disks and disk caches are commercially available since
several years, no detailed investigation of their use for transac­
tion processing has been performed so far. We present a com­
prehensive simulation study that compares the performance of
these storage types and of different usage forms. The following
usage forms are considered: allocation of entire log and data­
base files in non-volatile semiconductor memory, using a so­
called write buffer to perform disk writes asynchronously, and
caching of database pages at intermediate storage levels (in ad­
dition to main memory caching). Simulation results will be
presented for the debit-credit workload frequently used in
transaction processing benchmarks.

1. Introduction
Disk I/0 is a significant performance factor for transaction process­
ing. Typically, a large portion of a transaction's response time is de­
termined by synchronous disk I/0, e.g., for reading in a database
page or writing log data. Furthermore, the overhead for disk I/Os
(process switches, etc.) reduces the effective CPU utilization and
thus throughput. What is more, long I/0 delays may prevent full
utilization of the available CPU capacity. This danger increas­
ingly becomes a reality since CPU speed is improving at a high rate
while only modest improvements in disk latency could be achieved
so far [PGK88]. A consequence of this growing speed mismatch is
that faster CPUs require much higher multiprogramming levels to
overlap 1/0 deactivations. High multiprogramming levels, howev­
er, cause increased data contention and potentially lock thrashing
that may prevent full CPU utilization [BHR91].
There are numerous approaches to improve 1/0 performance.
Database management systems (DBMS) typically offer a vari­
ety of access methods like index structures, hashing schemes
or clustering to optimize the physical database structure ac­
cording to the application's access characteristics. DBMS also
cache database pages in main memory to limit the number of
disk accesses. Increasing the size of the main memory database
buffer together with the CPU speed is a simple means to im­
prove 1/0 performance since hit ratios may be increased (fewer
disk reads). On the other hand, the number of disk writes (log­
ging, database writes) is not improved by a larger main memo­
ry buffer. In addition, it is unlikely that the l/0 delay per trans­
action can be reduced by an increased main memory buffer as
much as the CPU speed improves. This is also because the da-
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish. requires a fee
and/or specific permission.
1992 ACM SIGMOD- 6/92/CA, USA
e 1992 ACM 0-89791-522-4/92/0005/0308 ... $1.50

308

tabase size on disk grows constantly and the database buffer
must cache pages for more concurrent transactions.
Main memory databases (e.g., [GL V84, De84, Le86, Ei89])
promise a complete solution to the l/0 problem by storing the
entire database in main memory. One problem of main memory
databases is cost. While the cost per megabyte declines faster
for main memory than for disks, disks still have a significant
cost advantage particularly for mainframe architectures. Apart
from technical problems, keeping large databases of hundreds
of gigabytes memory-resident is simply not cost-effective for
the foreseeable future [GP87, CKS91]. Mixed solutions where
only some databases are kept memory-resident while others re­
side on disk incur a high DBMS complexity to support both ac­
cess modes (e.g., different types of access paths, different que­
ry optimization strategies, etc.).
Another approach to improve 1/0 performance is the use of
disk arrays [PGK88, GHW90]. The main idea is to replace a
single large disk drive by an array of many smaller drives to
improve 1/0 bandwidth and I/0 rates. On the other hand, access
to a single page (which is the dominating access type in trans­
action processing) is not improved, but likely to be slower. In
proposals like RAID (redundant arrays of inexpensive disks)
[PGK88] up to four disk accesses are needed to update a single
page because parity information stored on separate disks must
be accessed and updated (for fault tolerance reasons). Higher II
0 latency, however, increases transaction response time and
therefore data contention (longer lock holding times).
In this paper, we consider the use of extended storage hierar­
chies with intermediate storage levels between main memory
and disk to improve 1/0 performance for transaction process­
ing. Non-volatile semiconductor memories are particularly at­
tractive as they provide not only fast access times but can also
reduce the number of disk writes. In [CKKS89], the use of a so­
called "safe RAM" has been proposed to improve transaction
processing performance. Safe RAM is supposed to be a DRAM
memory with enough backup power to copy the memory con­
tents to a disk after a power failure. All write 1/0s (database
and log writes) should be directed to this store so that database
reads remain the only l/0 delays for transactions. The authors
argue that a comparatively small store is sufficient to signifi­
cantly improve performance compared to a disk-based archi­
tecture. They also provide cost estimates to demonstrate the
cost-effectiveness of such an approach.
There have been some performance studies on the use of disk
caches, but these studies were not specifically concerned with
transaction processing applications. In [Sm85], for instance,
the use of disk caches was investigated for three I/0 traces
from large IBM installations for which the disk caches were
found to be very effective. This study used the cache miss ra­
tios as the primary performance metric and did not consider
caching at multiple levels of the storage hierarchy.
We present a detailed performance study that analyses the use­
fulness of three different types of intermediate storage for

transaction processing: disk caches, solid-state disks and ex­
tended memory. We are not aware of any other performance
analysis that compares these storage types side by side. We
consider caching of database pages in main memory, in extend­
ed memory and in volatile or non-volatile disk caches. Fur­
themore, our simulation sytem supports the use of a write buff­
er in extended memory or in disk caches; portitions of the da­
tabase may be kept resident in main memory or can be
allocated to extended memory, solid-state disks or regular
disks. Our study is not limited to internal performance metrics
like miss ratios but directly determines throughput and re­
sponse time results.
Some of the questions we try to answer with our simulation
study are:
• What is the relative performance improvement for each type

of intermediate storage compared to disk-based configurati­
ons?

• Can less expensive storage types (e.g., disk caches) achieve
comparable performance than expensive ones (e.g., extended
memory)?

• Does it make sense to use two or even three of the interme­
diate storage types together ?

• How does caching of database pages at more than one stora­
ge level affect performance ?

• Is a FORCE update strategy [HR83] where all modified pa­
ges are written from main memory to the permanent databa­
se at commit time affordable in the presence of non-volatile
semiconductor memory1 ?

The rest of this paper is structured as follows. The next section
discusses the use of extended storage hierarchies in more de­
tail. In section 3, we describe our simulation model. Section 4
presents the experiments conducted and analyses the simula­
tion results. Finally, we summarize our main findings in sec­
tion 5.

2. Extended Storage Architectures
In this section, we focus on the use of an extended storage hi­
erarchy to improve I/0 performance for transaction processing.
For this purpose, we consider three types of page-addressable
semiconductor memories: disk caches, solid-state disks (SSD)
and extended main memory (Fig. 2.1). They are based on semi­
conductor memory thus permitting substantially better access
times and l/0 rates than disks. In contrast to main memory,
these memories cannot directly be addressed by machine in­
structions but are page-addressable similar to disks. This
means that in order to read data from such an intermediate
memory, the corresponding page must be read into main mem­
ory. Similarly, data cannot directly be modified in the interme­
diate memory but pages are altered in main memory and writ­
ten back at a later point in time. This page-oriented access in­
terface offers better failure isolation than main memory against
processor failures and software errors. In addition, the simpler
access interface permits a lower cost per megabyte than for
main memory. SSDs are always non-volatile (as the name im­
plies) while disk caches and extended memories are currently
mostly volatile. However, non-volatility can be achieved for
all three memory types by using a battery backup or uninter­
ruptable power supply.
Approximate values for cost per megabyte and access latency
1

" FORCE pernuts simpler logging and recovery yrocedures compared
to the NOFORCE alternative requiring specia checkpointing tech­
niques and redo recovery after a system crash [HR83]. In disk-based
J?BMS1 FO~CE is. generally n~~ acceJ?table fo~ high-volume applica­
ttons smce It can mcur a Significant mcrease m response time, data
contention and I/0 overhead. Meanwhile, most DBMS adopt the NO­
FORCE approach, but FORCE is still used in several existing DBMS
including IMS (Full Function).

309

priceperMB avg. access time
(for large systems) per page (4 KB)

extended memory 500- 1500$ 10- 100 microsec
SSD 200-800$ 1-3 ms

disk cache ? 1-3 ms
disk 3-20 $ 10-20ms

Table 2.1: Storage costs and access times
(as of 1991) are given in Table 2.1. The storage costs refer to
mainframe systems and llfe therefore much higher than for PCs
or workstations. Solid-state disks improve the access time per
page by about a factor 10 compared to disks, however at a 20-
to 50-fold cost per MB. Extended memory is about twice as ex­
pensive than solid-state disks [Ku87], but about 50- to tOO­
times faster. Typically, main memory is twice as expensive as
extended memory (per MB).
Disk caches [Sm85, Gro85, Gro89] are completely managed by
the disk controllers and their existence is thus transparent to
the accessing systems. That is, data in the disk cache is ac­
cessed via the conventional channel-oriented disk interface
with access times largely determined by the speed of the chan­
nel and disk controller. While volatile disk caches can only im­
prove read performance, non-volatile caches also speed up disk
writes. Solid-state disks are functionally equivalent to disks
but keep the entire data (all files) in non-volatile semiconduc­
tor memory [Ku87]. The channel-oriented interface results in
about the same access time than for disk caches. However, disk
caches keep only the 'active' data in semiconductor memory so
that for some fraction of accesses the slow disk accesses re­
main. Thus, the average access time for a SSD is better than for
disks with a disk cache. On the other hand, a comparatively
small disk cache may already be sufficient to save many disk
accesses thereby reducing cost compared to solid-state disks.
Extended memory is used in IBM 3090 mainframe computers
as a volatile main memory extension [CKB89]. In contrast to
disk caches and SSDs, this so-called expanded storage (ES) has
no channel-oriented interface but is largely managed by soft­
ware in the operating system (MVS, VM). Special machine in­
structions are provided to move pages between main memory
andES. Currently, access times are two to three orders of mag­
nitudes faster than for SSDs and disk caches (about 75 mi­
crosec per 4 KB page including OS overhead). Since a process
switch (typically costing several thousand instructions) would
be more expensive than this delay, accesses toES are synchro­
nous, i.e. the CPU is not released during the page transfer.
While conceptually the ES sits between main memory and the
disk subsystem in the storage hierarchy, pages cannot directly

page­
addressable

semiconductor
stores ,A;,;;;;;.;,~~

magnetic tape

disk arrays

optical disk
(e.g., WORM)

Fig. 2.1: Extended storage hierarchy

migrate from ES to disk. Rather all data transfers between ES
and disk must go through main memory since page transfers
are controlled by the accessing system rather than by a separate
ES controller.
Originally, the ES has only been used as a fast paging and
swapping device controlled by the operating system (LRU re­
placement of pages in ES). Meanwhile more flexible OS ser­
vices have been provided to permit programs (in particular, the
DBMS) to maintain data in ES [Ru89]. Fujitsu offers an ES­
like store called SSU (System Storage Unit) which is non-vol­
atile, has a capacity of up to 2 GB and supports a transfer rate
of 300 MB/s between main memory and SSU. In [BHR91,
Ra91a], a special type of non-volatile extended memory has
been considered for use in centralized and locally distributed
transaction systems. In our performance study here, we will
only consider non-volatile extended memory (NVEM).

NVEM SSD disk cache
non-vol. volatile

resident files
(database, log) + + - -
write buffer + + (database, log) - -
database buffer + - + +
Table 2.2: Usage forms of intermediate storage types

As shown in Table 2.2, there are three basic usage forms of the
storage types for transaction processing. The first one is to
keep entire (database or log) files resident in non-volatile semi­
conductor memory (NVEM or SSD) thereby eliminating all
disk l/Os for the respective files. The second possibility is to
keep a write buffer in non-volatile semiconductor memory
(NVEM or disk cache). This approach fastens page writes since
the respective transaction can continue processing as soon as
the page has been written to the write buffer in semiconductor
memory. The disk copy of the corresponding page is updated
asynchronously, i.e. without increasing response time. Finally,
the number of disk reads can be reduced by caching database
pages in a second-level database buffer (extended memory,
disk cache) which may be volatile. Database reads could also
be reduced by an increased main memory buffer, but at a higher
storage cost. Table 2.2 illustrates that only NVEM supports all
three usage forms, while SSDs are limited to keep entire files
and disk caches may be used as a write buffer and/or for cach­
ing database pages.

3. Simulation model
We developed a comprehensive simulation system called
TPSIM for studying a variety of storage architectures for trans­
action processing. TPSIM has been implemented using the
DeNet simulation language [Li89]. While TPSIM supports
centralized and distributed transaction systems, we concentrate
on the central case in this paper. In our model, a transaction
system consists of three major parts (Fig. 3.1): a SOURCE
which generates the workload of the system, a computing mod­
ule (CM) that is responsible for processing the transactions,
and a set of peripheral devices for storing database and log
files. In 3.1, we describe the SOURCE component as well as
our database model. Subsections 3.2 and 3.3 cover the CM
model and external storage model, respectively.

3.1 Database and load model
For database performance evaluation, the database and work­
load model is of great importance since it largely determines
the performance results and the value of a study. To cover a
wide range of applications, we have built three workload gen-

310

Fig. 3.1: Gross structure of the TPSIM system
erators supporting synthetic workloads and the use of database
traces. One SOURCE modul creates general synthetic transac­
tion loads with a high flexibility for studying different load
profiles. In particular, our synthetic model supports flexible
definition of non-uniform access pattern by means of a so­
called relative reference matrix. Dedicated SOURCE modules
support the use of database traces and the generation of Debit­
Credit transactions according to the benchmark definition in
[An85, Gr91]. Unfortunately, we can only present simulation
results for Debit-Credit in this paper due to space constraints.
As a result we restrict the describtion of the workload and da­
tabase model to this case. The reduced set of parameters for the
Debit-Credit workload is shown in Table 3.1. Workload gener­
ation and simulation results for the other load types are de­
scribed in an extended version of this paper [Ra91b].
The Debit-Credit workload consists of a single transaction type
that accesses/updates four record types (ACCOUNT,
BRANCH, TELLER and HISTORY). The arrival rate is pro­
vided as a simulation parameter. Each record type is stored in
a separate database partition. Partitions are used to allocate the
database to external devices and to specify a concurrency con­
trol strategy (see below). A partition consists of a number of
database pages which in turn consist of a specific number of
objects (e.g., records). The number of objects per page is deter­
mined by the blocking factor which can be specified on a per­
partition basis. Differentiating between objects and pages is
important in order to study the effect of clustering which aims
at reducing the number of page accesses (disk I/Os) by storing
related objects into the same page. Furthermore, concurrency
control may now be performed on the page or object level.
There is a many-to-one relationship between ACCOUNT and
BRANCH reoord" and between TELLER and BRANCH
records. The number of objects for these partitions determine
how many ACCOUNT and TELLER records belong to the
same BRANCH record. While the BRANCH record is random­
ly selected for a transaction, the TELLER record is (randomly)
selected from the set of TELLER records associated with the

Parameter Meaning
ArrRate arrival rate
K fraction of local ACCOUNT accesses
Clustering clustering of BRANCH{fELLER records

Per-Partition Parameters
NumObjects number of objects in the partition
BlockFactor blocking factor for the partition

Table 3.1: SOURCE parameters for Debit-Credit workload

selected BRANCH record. K% of the ACCOUNT accesses are
to an account associated with the selected branch, while the re­
maining accesses go to an account of another branch (in
[An85], K=85). The HISTORY partition is sequentially ac­
cessed by all transactions. A separate parameter permits clus­
tering of BRANCH and TELLER records. In this case, TELL­
ER records are stored in the same page where their associated
BRANCH record is stored. This reduces the number of page
accesses per transaction to three and is likely to improve hit ra­
tios; in the case of page-level concurrency control data conten­
tion is also reduced.
Every transaction references the four record types in the same
order so that no deadlocks can occur. The small TELLER and
BRANCH record types are accessed last to keep lock holding
times for them as short as possible.

3.2 CM model
The CM is responsible for processing the transactions assigned
to it by the SOURCE component. As indicated in Fig. 3.1, a
CM is represented by a transaction manager (TM), a buffer
manager (BM), a concurrency control component (CC) and
CPU servers. The main parameters of these components are
shown in Table 3.2.
The transaction manager TM controls execution of the trans­
actions. Its multiprogramming level (MPL) only determines
the maximal number of concurrently active transactions as we
use an open system. In the case that all MPL 'processing slots'
are occupied, newly arriving transactions must wait in an input
queue until they can be served. To account for the execution
cost of a transaction, TM requests CPU service at the begin of
a transaction (BOT), for every object access and at the end of
a transaction (EOT). The actual number of instructions for each
of these services is exponentially distributed over a mean spec­
ified as a parameter. Processing an object access also entails
requesting an appropriate (read or write) lock from the CC
component and asking the buffer manager to bring the corre­
sponding database page into the main memory buffer (if not
there already). Commit processing consists of two phases. In
phase 1, the BM is requested to write log data and possibly to
force modified database pages to non-volatile storage. In phase
2, the CC is requested to release the transaction's locks.

Parameter
MPL
InstrBOT
InstrOR
InstrEOT
CCmode;

Meaning
multiprogramming level
average number of instructions for BOT
avg. no. of instructions per object reference
avg. no. of instructions for EOT
no CC, page-level CC, or

object-level CC for partition i
NumCPU number of CPUs
MIPS MIPS rate per CPU
BufferSize size of main memory database buffer
UpdateStrategy FORCE or NOFORCE
Logging yes I no
InstrlO avg. no. of instructions per I/0
InstrNVEM avg. no. of instructions per NVEM access
MemResident;. memory residence of partition i (yes/no)
AccessModej. synchr. or asynchr. access to partition i
CacheSizeNvEM size of NVEM cache
CachingNVEM; NVEM caching mode for partition i
WriteBufferNV'EM; Use ofNVEM write buffer for partition i (y/n)
WrBufferSizeNVEM Size of write buffer in NVEM

Table 3.2: CM parameters

For concurrency control, we use strict two-phase locking (long
read and write locks) together with a deadlock detection
scheme. Deadlock checks are performed for every denied lock
request; the transaction causing the deadlock is aborted to
break the cycle. Our simulation system provides a choice be-

311

tween page- and object-level locking. For comparison purpos­
es, it is also possible to switch off concurrency control (no lock
conflicts). These choices are offered on a per-partition basis.
This flexibility is desirable since real DBMS also use different
locking strategies for different object types. For instance, we
can now use page-level locking for 'normal' database objects,
object-level locking for frequently accessed administration
data, and no locking for objects for which accesses are syn­
chronized by using latches or tailored protocols (e.g., HISTO­
RY accesses for Debit-Credit).
CPU requests are served by a single CPU or multiple CPUs
(multiprocessor). The number of CPUs and the capacity per
CPU in MIPS are provided as simulation parameters. Model­
ling synchronous accesses to storage devices required a special
CPU interface to keep the CPU busy until after an access has
been completed.
The buffer manager (BM) is responsible for caching of data­
base pages in main memory, for logging and for managing a
write buffer and/or database cache in extended memory
(NVEM). The database buffers in main memory and extended
memory are managed according to a global LRU (least recently
used) replacement strategy. Logging is modelled by writing a
single page per update transaction to the log file2. In the case
of a FORCE update strategy, all pages modified by a transac­
tion are also written out at commit time. In the case of NO­
FORCE, we have ignored the checkpointing overhead assum­
ing a fuzzy checkpointing scheme [HR83] which incurs little
overhead during normal processing.
Database partitions can be kept memory-resident (to simulate
main memory databases) or they can be allocated to a number
of different storage devices (see below). For memory-resident
partitions, obviously no caching is necessary (100% hit ratio)
and a NOFORCE scheme for update propagation is assumed
(i.e. only logging is performed at commit time). If a database
partition resides on an external (non-volatile) storage medium,
it is accessed either synchronously or asynchronously. In both
cases the buffer manager requests CPU service to account for
the I/0 overhead. For asynchronous accesses the CPU is re­
leased before the I/0 is actually performed, while synchronous
accesses keep the CPU busy until the read or write access is
completed.
The use of a write buffer and/or a 2nd-level database cache in
extended memory is also managed by the buffer manager as it
could be perfomed by the DBMS buffer manager in a real im­
plementation. In TPSIM, the use of the NVEM write buffer and
of the extended database buffer can be selected on a per-parti­
tion basis. Different modes of NVEM caching can be chosen
depending on which pages should migrate to the extended da­
tabase buffer when being replaced from the main memory
cache (only modified pages, only unmodified pages or all pag­
es). Management of the NVEM cache also depends on the cho­
sen update strategy (NOFORCE or FORCE). In the case of
NOFORCE, we ensure that every page is cached at most once
either in main memory or in NVEM. Therefore, whenever a
page migrates from main memory to NVEM because of a re­
placement decision (or from NVEM to main memory because
of a main memory miss and a NVEM hit), the page copy in

z Possible optimizations like group commit or asynchronous buffer
replacement from main memory are not yet supported. Although
they are imj??.rtant for disk-based DBMS, they would reduce the per­
formance differences for the new 1/0 devices. One conclusion we
will draw from our performance study is that the use of non-volatile
semiconductor memory reduces the need for such optimizations
thereby simplifying buffer management.

main memory (NVEM) is deleted. As a result, the NVEM
cache corresponds to a real extension of the main memory
cache with the most frequently accessed pages in main memo­
ry. With FORCE such an approach is not appropriate since all
page updates are written to the NVEM cache at EOT. If pages
written to NVEM would be eliminated from main memory at
EOT, we could get a very low buffer utilization and poor hit ra­
tios in main memory. Hence, we leave pages that are written to
the NVEM cache in main memory resulting in some replication
of pages.
For both update strategies (NOFORCE and FORCE), we did
not model a deferred propagation of modified pages from
NVEM to disk. Rather, whenever a modified page is written
from main memory to NVEM we directly start an asynchro­
nous disk write for the respective page. The main advantage of
this simple approach is that volatile memory can be used for
the cache thereby reducing overall cost. Non-volatility is only
needed for a small write buffer. With such an implementation,
modified pages are written to both the cache and the write buff­
er. Writes occur at the speed of extended memory since the
disk is updated asynchronously from the write buffer. All pag­
es in the NVEM cache can therefore be considered unmodified
so that they can be replaced from the cache without delay.
A deferred update strategy could reduce the I/0 overhead and
frequency of disk writes if a modified page in NVEM is updat­
ed multiple times before being replaced from NVEM. On the
other hand, if the page is not modified again extra overhead is
introduced since the page must be read from NVEM to main
memory before it can be written to disk. For NOFORCE, the
chosen approach seems reasonable since when a modified page
is written to NVEM (replaced from main memory) this indi­
cates that it has not been referenced for some time so that the
likelihood that the page will be modified again in the near fu­
ture is small. For FORCE, on the other hand, a deferred update
strategy is clearly desirable for frequently modified pages. On
the other hand, the write traffic to NVEM is expected to be
much higher than for NOFORCE permitting only a compara­
tively short residence time of pages in NVEM before a replace­
ment becomes necessary to make room for new pages. Hence,
for the majority of pages the simple update strategy may also
be a good choice for FORCE.

3.3 External devices
Database and log files can be allocated to a variety of external
storage devices. Currently we support the use of conventional
disks, disks with volatile or non-volatile disk caches, solid­
state disks and the use of non-volatile extended memory
(NVEM).There are numerous possibilities for allocating ada­
tabase partition using up to four levels of the storage hierarchy
(main memory, NVEM, disk cache I SSD, disk)3• A database
partition is stored either on a regular disk, a solid-state disk, in
NVEM or in main memory. Caching of database pages is sup­
ported at three levels, namely in main memory, in extended
memory and in volatile or non-volatile disk caches. Further­
more, a write buffer may be used either in NVEM or in a non­
volatile disk cache. The log file can be allocated in one of the
following ways: NVEM-resident, SSD, disk with a write buffer
either in NVEM or in disk cache, or on disk without using a
write buffer.

3
• Not all combinations that could be chosen are meaningful. For in­
stance, a write buffer for a partition should be used either in NVEM
or in a volatile disk cache, but not in both storage types. Similarly,
when NVEM caching is employed for a partition there is no further
need for a write buffer in the disk controller.

312

Table 3.3 shows the major parameters for defining the external
storage configuration. There can be at most one NVEM and an
arbitrary number of so-called disk-units. Disk-unit is used as a
generic term for devices that offer a disk interface such as sol­
id-state-disks, and disks with or without cache. The parameter
"DB allocation" specifies for every partition whether it is stored
in NVEM or, if not, to which disk-unit it is assigned. Similarly,
the log file is assigned to NVEM or to one of the disk-units.
A NVEM access is modelled by keeping a NVEM server busy
for a specified service time. This access time includes the time
to transfer the page between main memory and NVEM (NVEM
is directly accessed by the CM). Multiple NVEM servers may
be selected to permit concurrent NVEM access by different
transactions (in the case of synchronous NVEM access, the
number of CPUs determines the maximal concurrency).
Disk-units have in common that they are managed by one or
more disk controller(s) and that there is a transmission delay
for exchanging pages between main memory and disk-units.
The number of controllers per disk-unit and the average page
service time of the controller are provided as parameters. We
did not explicitly model a channel subsystem, but assumed suf­
ficient capacity so that page transfers do not cause a bottle­
neck.
If a disk-unit is used as a SSD, the I/0 delay is determined by
the transmission time and the queuing and service time at the
controller assuming that the entire partition or log file is kept
in semiconductor storage. For the other disk-unit types, one or
more disk server(s) are modelled to account for the disk access
time. The use of multiple disk servers represents the case
where a partition is (uniformly) spread across multiple disks.
In the case of regular disk-units (no SSD or disk cache), every
I/0 results in a disk access in addition to the controller delay
and transmission time.
For the mangement of disk caches we followed the realization
of IBM's disk caches. We employ a LRU replacement scheme
for both volatile and non-volatile disk caches. For disk-units
with volatile cache, every write 1/0 results in a disk access as
in the case without cache. If the page to be written is found in
the disk cache ('write hit'), the copy in the cache is refreshed
(conceptually) and the LRU information is updated; on a write
miss the cache contents remains unaffected. For read 1/0s the
disk access can be avoided, if the respective page is found in
the disk cache ('read hit'). If a read miss occurs, the page is
read from disk, stored in the disk cache and transferred to the
requesting CM.

Parameter Meaning
I NumUiskUmts number of disk umts
DBallocation i allocation of database partition i
LogAllocation allocation of log file
NumNVEMservers number of NVEM servers (controllers)
NVEMdelay average NVEM access time per page

Per-Disk-Unit Parameters
Disk Unit~ regular, vol. cache, non-vol. cache, SSD
NumContro ers number of disk controllers
ContrDelay average controller service time
TransDelay average transmission time per page
NumDisks number of disks
DiskDelay average disk access time per page
CacheSize size of disk cache I write buffer

Table 3.3: Parameters for external storage devices
In the case of a non-volatile disk cache, it is tried to satisfy all
write I/Os in the disk cache and to update the disk copy of a
modified page asynchronously, i.e. after the '1/0 done' signal
has been returned to the CM. This is always possible for a write
hit since no other page needs to be replaced from the cache in

this case. If a write miss occurs, we select the least recently ac­
cessed unmodified page from the cache as the replacement can­
didate (a page is considered as unmodified as soon as its disk
copy has been updated). When there is no unmodified page in
the cache, i.e. for all cached pages the disk update is not yet
completed, we cannot satisfy the write I/0 in the cache but di­
rectly go to the disk. To reduce the likelihood of this case, we
immediately start the disk update when a modified page is
stored in the disk cache. As for volatile disk caches, read I/Os
are satisfied in the cache if possible (read hit) and a page is
stored in the cache after a read miss.
If a disk-unit with non-volatile cache is solely used for logging,
we do not employ LRU replacement, but simply use the disk
cache as a write buffer to avoid synchronous disk writes if pos­
sible.
The described use of disk caches corresponds to the manage­
ment of currently available caches, specifically the ffiM 3990
disk cache [MH88]. To reduce cost, however, the 3990 cache
uses non-volatile memory only for a write buffer (called non­
volatile store, NVS) while the cache itself is volatile. The per­
formance should be the same than with our method because
they also bring every modified page (write hit or write miss)
into the cache [MH88].

4. Experiments and Results .
In this section, we present our performance results for a vanety
of storage configurations. Response time will be the primary
performance metric in this study since our simulation system
uses an open queuing model. (TPSIM also computes detailed
statistics on the composition of response time and device utili­
zation, waiting times, queue lengths, lock behavior, hit ratios,
etc. in order to explain the results). In 4.1, the main parameter
settings for the experiments are described. We study different
allocation schemes for the log file (4.2) and database partitions
(4.3). In addition we investigate the impact of the update strat­
egy (FORCE vs. NOFORCE, 4.4) and of caching at different
levels (4.5). Additional experiments using real-life database
traces and other synthetic workloads are described in [Ra91b}.

4.1 Parameter settings
Table 4.1 shows the default parameter settings for the Debit­
Credit experiments. In all experiments, we used clustering of
BRANCH and TELLER records (see 3.1) so that BRANCH and
TELLER records reside in the same partition and only three
different pages are accessed by a transaction. The database
consists of 500 BRANCH/TELLER pages and 5 million AC­
COUNT pages. The size of the HISTORY partition is immate­
rial here since every transaction adds a new record at the end
of this sequential file. We did not set locks for HISTORY as­
suming an implementation that synchronizes accesses to the
current end of this file by latches. The average pathlength of a
transaction is 250.000 instructions (BOT, four object referenc­
es, EOT) excluding I/0 overhead. Given an aggregate CPU ca­
pacity of 200 MIPS, a theoretical maximum of 800 TPS (trans­
actions per second) can be processed. CPU processing ac­
counts for 5 ms per transaction in the case of 50 MIPS CPUs.
The multiprogramming level has been chosen high enough to
avoid queuing delays at the TM. Without I/0 queuing delays,
the average access time per page is 50 microseconds for
NVEM, 1.4 ms for SSD and disk cache, 6.4 ms for log disks
and 16.4 ms for disks storing database partitions. For log disks,
a reduced access time has been assumed since the log file is se­
quentially accessed shortening disk seek times. The default ac­
cess mode is synchronous for NVEM-resident data, and asyn-

313

l'arameter
NumObjects

BlockFactor

K
Oustering
InstrBOT
InstrOR
lnstrEOT
CCmode

NumCPU
MIPS
BufferSize
Logging
InstriO
lnstrNVEM
AccessMode

;settmgs
500 (BRANCH partition), 5.000 (TELLER),

50.000.000 (ACCOUN'I)
1 (BRANCH), 10 (TELLER),
10 (ACCOUN1), 20 (HISTORY)
85
True
40.000
40.000
50.000
page-level CC (BRANCH, TELLER,

ACCOUN'I), no CC (HISTORY)
4
50
2000pages
yes
3000
300
synchronous for NVEM-resident files,
asynchronous otherwise

NumNVEMservers 1
NVEMdelay 50 microseconds
ContrDelay 1 ms
TransDelay 0.4 ms
DiskDelay 15 ms for DB disks, 5 ms for log disks

Table 4.1: Parameter settings for Debit-Credit
chronous for data stored on disk-units.
Parameters that are changed include the arrival rate, the alloca­
tion of log and database files, the update strategy (FORCE,
NOFORCE), cache sizes, and the number of controllers and
disk servers per disk-unit.

4.2 Allocation of log file
In our first experiment, we considered four alternatives for al­
location of the log file: 1) the log file resides on a single disk,
2) log file is on a single disk with non-volatile cache used as a
write buffer (cache size: 500 pages), 3) the log is kept in solid­
state disk, and 4) the log is stored in non-volatile extended
memory. In all cases, the database partitions are stored on a
sufficient number of regular disks so that no bottlenecks are in­
troduced. NOFORCE was employed as the update strategy.
Fig. 4.1 shows the average transaction response time for the
four log file allocations. Arrival rates from 10 to 700 transac­
tions per second (TPS) have been used, resulting in a CPU uti­
lization of about 90% for 700 TPS. As expected, a single log
disk creates a bottleneck and limits the maximal transaction
rate to about 180 to 200 TPS for our parameter settings (due to
the chosen disk service time of 5 ms). In the case of a single
log disk without cache, queuing delays at the log disk cause a
steep response time increase for arrival rates of more than 100
TPS. The use of a non-volatile disk cache (write buffer) helps
to keep response time low and almost constant over the entire
range from 10 to 200 TPS! This is because in this range all log
writes could be satisfied in the cache while the disk was asyn­
chronously updated. For 200 TPS, the log disk is fully utilized
and the disk writes for all cached pages are queued so that no
more cache writes were possible. Still, the value of non-vola­
tile disk cache is quite impressing since even for a higher disk
utilization asynchronous I/Os are possible supporting better
transaction rates and significantly shorter response times than
without such a cache.
The two other log allocations did not have a log bottleneck so
tha.t 700 TPS could be processed. The best response times were

observed for the NVEM-resident log file which incurred an al­
most negligible log delay. Slightly higher response times were
achieved for the SSD-based log. The response time increase for
700 TPS is mainly because of increased CPU waits.
The simulation results show that a write buffer primarily im­
proves response times since the log writes occur at the speed of

80

~
regular

70
dlSk

'1)

.§
~ 60 disk with non-vol. cache

8.
"' ~ 50

~ SSD

40 NVEM

0 100 200 500
Arrival rate (TPS)

600 700

Fig. 4.1: Influence of log file allocation

the respective type of semiconductor memory. The maximal
throughput is still limited by the disk I/0 rate, although a high­
er disk utilization can be supported than without write buffer.
Group commit would permit significantly higher transaction
rates since the log data of multiple transactions can be written
in one I/0. However, such transaction rates can also be
achieved without group commit if the log is completely allo­
cated to SSD or NVEM. Hence, these storage types supporting
high I/0 rates reduce the need for optimizations like group
commit and permit simpler logging strategies.
Higher transaction rates than with a single log disk could also
be achieved by using a disk-array with a declustering of the log
file across several disks [De84]. In a RAID-like implementa­
tion [PGK88], however, the updating of parity information
would result in higher response times and could also lead to
bottlenecks. The use of non-volatile disk caches or write buff­
ers could largely improve the write performance of disk arrays.

4.3 Allocation of database partitions
We studied the following six alternatives for allocating the da­
tabase partitions: 1) all partitions (and the log) on disks without
cache, 2) all partitions and log on disks with non-volatile cache
used as a write buffer, 3) like 2 but with the write buffer in
NVEM, 4) all partitions and log on SSD, 5) all partitions and
log in NVEM, 6) all partitions main memory-resident, log on
disk. Database partitions and the log have been assigned to the
same device type to emphasize the relative differences. In all
cases we used a sufficiently high number of disk servers and
controllers to avoid bottlenecks. Again, the update strategy
was NOFORCE.
Fig. 4.2 shows the response time results for the above listed
configurations. Although the absolute values are small in all
cases, the relative differences are significant. All configura­
tions are CPU-bound since we eliminated potential 1/0 bottle­
necks and the amount of lock contention was modest. The best
results were again reached in the case of NVEM-resident data;
in this case response time is almost exclusively determined by
the queuing and service times at the CPU. The SSD-based con­
figurations also achieved very short response times. For mem­
ory-resident partitions response times are higher than for
NVEM-resident partitions because of the disk 1/0 for logging.
If the log had been allocated to NVEM in this case, about the
same response times than for NVEM-resident partitions were
achieved. Memory-resident partitions have an advantage at
higher transaction rates since they do not incur 1/0 overhead
for database accesses but only for logging permitting reduced
CPU waiting time and slightly higher throughput. This is also
the reason why response time for main memory-resident parti-

314

tions is better than for SSD-based partitions at 700 TPS in Fig.
4.2. Still, one can conclude that keeping the database in NVEM
or SSD brings performance comparable to main memory data­
bases, but at a lower cost. In addition, NVEM- and SSD-resi­
dent files can be supported by the operating system without af­
fecting the DBMS, while memory-resident databases require
explicit DBMS support4.

A significant response time improvement could already be ob­
tained by the use of a write buffer either in NVEM or with non­
volatile disk caches. Since a small write buffer is already suf­
ficient to achieve these improvements, such an approach is
clearly more cost-effective than keeping entire files (in partic­
ular, the ACCOUNT and HISTORY relations) resident in
semiconductor memory. The NVEM write buffer is only slight­
ly better than a disk cache write buffer so that the latter would
be sufficient. On the other hand, a single NVEM write buffer
can be used for multiple disks and disk controllers so that less
non-volatile memory may be needed than with a separate write
buffer in each disk controller.
The response time values can largely be explained by the 1/0
behavior. The average hit ratio in main memory was about
72.5%5 for all arrival rates and configurations (except for
memory-resident partitions, of course) resulting in slightly
more than 1 miss per transaction (on ACCOUNT). Since all
pages are modified for Debit-Credit, every buffer miss resulted
in an additional l/0 to write back the page to be replaced. As a
consequence, about 2 database 1/0s and 1 log I/0 occur per
transaction. In the disk-based configuration, all three 1/0s oc­
cur at disk speed accounting for about 40 ms. The use of a write
buffer largely eliminated the delays for the two writes so that
response times could be cut by a factor 2. If the ACCOUNT
partition is also kept resident in semiconductor memory, there­
maining read disk 1/0 can also be eliminated.
A more sophisticated buffer manager than the one used in
TPSIM would have achieved better response times for the disk­
based configuration by asynchronously writing modified pages
to disk (before their replacement). In this case, only two syn­
chronous 1/0s would have remained per transaction (read l/0
for ACCOUNT and the log write) thus considerably reducing
the difference to the configurations using a write buffer. On the
other hand, one can argue that there is no real need any more
to support asynchronous writes in the DBMS buffer manager
since the same performance improvements can be achieved by
a write buffer in non-volatile semiconductor memory. The
write buffer can be managed outside the DBMS, e.g., by the
operating system's file manager in the case of a NVEM write
buffer or by the disk controllers, so that not only log and data­
base writes benefit from it but also other applications than
transaction processing. Hence, using non-volatile semiconduc­
tor storage in this way permits simpler DBMS buffer manage­
ment without sacrificing performance.
Our results suggest that it may be good idea to use more than
one type of the intermediate memories together. For instance,
the log and the small BRANCH/TELLER partition could be
kept resident in non-volatile memory (SSD or NVEM), while
the ACCOUNT and HISTORY relations may be stored on reg­
ular disks with a write buffer.

4· However, main memory DBMS would achieve better performance if
t~ey could sig_nificantly cut transaction pathlengths. In particular,

5
htgher tran~actwn rates per MIPS would then be possible.
· For a mam memory buffer size of 2000 pages, the hit ratio was
about 0% for ACCOUNT, 95% for IDSTORY (due to the blocking
factor 20), 95% for BRANCH and 100% for TELLER (due to the
clustering with BRANCH records).

4.4 FORCE vs. NOFORCE update strategy
To study the impact of the update strategy, we used the storage
allocations from the last experiment for the case of a FORCE
update strategy. We obtained the same order of the different al­
location alternatives than for NO FORCE, but the relative dif­
ferences changed significantly. This is illustrated in Fig. 4.3,
where the response time results for three storage allocations
are compared with each other.
Response times for FORCE are generally higher than for NO­
FORCE since there are more 1/0s per transaction due to forcing
modified pages to the database at commit6. While this causes a
considerable response time penalty for the disk-based configu­
ration, the differences shrink with increasing speed of the used
storage devices (Fig. 4.3). So even with a limited amount of
non-volatile memory used as a write buffer, response times for
FORCE are almost as good than for NO FORCE. This indicates
that high performance is achievable even for a FORCE strategy
since FORCE gains more from non-volatile semiconductor
memory than the more optimized NOFORCE alternative. It can
also be seen from Fig. 4.3 that FORCE using a write buffer sup­
ports even better response times than NO FORCE without using
non-volatile semiconductor memory.
However, FORCE still causes more disk 1/0s so that the 1/0
overhead is higher and 1/0 bottlenecks are more likely than for
NOFORCE. The increased 1/0 overhead caused a steeper re­
sponse time increase for FORCE in the case of 700 TPS since
CPU utilization was higher than for NOFORCE. In addition,
we had allocated the small BRANCH/TELLER partition to
multiple disks to avoid an 1/0 bottleneck. If this partition were
stored on a single disk, throughput for FORCE would be limit­
ed to less than 70 TPS in the disk-based configuration or when
a write buffer is used. Keeping the BRANCH/TELLER parti­
tion resident in SSD or NVEM also avoids this bottleneck for
FORCE.

4.5 Influence of caching for Debit-Credit
In addition to main memory caching, we considered buffering
of database pages in NVEM and in volatile or non-volatile disk
caches . In a first experiment, we varied the main memory buff­
er size for the different configurations indicated in Fig. 4.4.
These simulation runs were conducted for the NOFORCE strat­
egy and an arrival rate of 500 TPS. Results for FORCE will be
discussed later in this subsection.
The response time results in Fig. 4.4 refer to main memory
buffer sizes from 200 to 5000 pages. In addition to the main
memory buffer, we studied the use of a 1000 pages second-lev­
el buffer in a volatile and non-volatile disk cache and in
NVEM. Furthermore, the results for using a disk cache write
buffer and a NVEM cache of 500 pages are shown in Fig. 4.4.
Since the main memory buffer is used for all partitions of the
database, the second-level cache was also shared for the four
partitions. In the configurations using non-volatile disk caches
or NVEM, these storage types were also used for logging.
Increasing the main memory buffer is most effective for a size
of less than 2000 pages since in this range many misses oc­
curred for the frequently accessed BRANCH/TELLER pages.
A buffer size of 2000 pages was needed to keep the 500
BRANCH/TELLER pages in main memory; a larger main
memory buffer (5000 pages) did not permit any significant re-

6
· There are three write I/Os to force out the modifications at commit.
On the other hand, no write I/0 was necessary on a buffer miss be­
cause there were always unmodified pages to replace. Since we had
the same hit ratios than for NOFORCE, there are about two disk
writes more per transaction than in the NO FORCE configurations.

315

sponse time improvements any more. The use of a volatile disk
cache was only helpful for small main memory buffers where
some misses on BRANCH/TELLER could be satisfied in the
disk cache. As soon as the main memory buffer had reached the
size of the volatile disk cache (1000 pages), no further hits oc­
curred in the disk cache (Table 4.2) so that the same response
times than without disk cache resulted. The use of non-volatile
semiconductor memory permits substantially more 1/0 savings
since all synchronous disk writes can be eliminated. So the use
of a write buffer alone (no read hits) accounted already for the
largest improvements compared to the disk-based configura­
tion. The difference from the results with a non-volatile disk
cache of 1000 pages to the results for a write buffer correspond
to the l/0 savings due to read hits in the non-volatile disk
cache. Most effective was the use of a NVEM cache. Even a
NVEM cache of 500 pages permitted better response times
than with a non-volatile disk cache of 1000 pages.

NO­
FORCE

FORCE

main memory
vol. disk cache 1000
nv disk cache 1000
NVEM cache 1000
NVEM cache 500

vol. disk cache 1000
nv disk cache 1000
NVEM cache 1000

main memory buffer size
200 500 1000 2000
53.7 59.6 66.7 72.5
12.8 5.6 0 0
13.0 7.4 3.8 0.8
14.8 11.0 5.7 1.1
9.2 7.1 3.9 0.8

12.4 6.9 0.1 0
12.8 7.0 0.1 0
13.1 7.2 3.4 0.6

Table 4.2: Main memory and 2nd-level cache hit ratios (in%)

To analyse the effectiveness of the different cache types in
more detail, Table 4.2 summarizes the hit ratios for the simu­
lation runs of Fig. 4.4 (NOFORCE). The main memory hit ra­
tios increase with growing buffer size, while the number of ad­
ditional hits in the second-level caches decreases (for a main
memory buffer size of 5000 pages, there were no more hits in
the second-level caches). The table shows that from the three
types of second-level caches, the NVEM cache supports the
best hit ratios, followed by the use of a non-volatile disk cache.
With a volatile disk cache lower read hit ratios than for both
non-volatile disk caches and NVEM caches were obtained!
Disk caches were less effective than the NVEM cache since
they are managed independently from the DBMS buffer in
main memory. A consequence of this was that the same pages
were frequently cached in main memory and in the disk caches.
This was particularly the case for the volatile disk caches: as
soon as the main memory buffer size reached the size of the
disk cache no more hits occurred in the disk cache holding
merely a subset of the main memory cache. The double caching
of pages comes from the fact that after a miss in main memory
and in the disk cache, the page is cached in the disk cache as
well as in main memory, although the hits will occur in main
memory in the first place. If the disk cache is larger than the
main memory buffer, more pages can be cached there so that
some hits in the disk cache can be achieved despite the double
caching of the most frequently accessed pages.
NVEM caching achieved better hit ratios than with disk caches
primarily because a double caching of pages could completely
be avoided for NO FORCE (see section 3.2). In particular, after
a main memory miss the respective page is only cached in main
memory and not in the NVEM cache. Only pages that are re­
placed from main memory migrate to the NVEM cache. A re­
sult of this technique is that the combined hit ratio for the main
memory and NVEM caches was the same than for a main mem­
ory buffer of the same aggregate size. For instance, the same

60

DB,log on disk FORCE: DB, log on disk

disk cache write buffer
NOFORCE: DB, log on disk

nv disk cache 1000
NVEM buffer 500

10

0~--~--._~~~--~--~

100 200 500 600 700
Arrival rate (fPS)

100

90

80

70

60

50

40

30

20

10

ol1~oo:=:2~oo~~3loo~~400~~soo~~~~~
NVEM buffer 1000

20
0 1000 2000 5000

Main memory buffer size
Arrival rate (fPS)

Fig. 4.4: Impact of caching for different
main memory buffer sizes (500 TPS) Fig. 4.2: Impact of database allocation Fig. 4.3: FORCE vs. NO FORCE

combined hit ratios are obtained for the combinations of main
memory/NVEM cache sizes of 1000/0 and 500/500, 2000/0
and 1000/1000 or 1000/500 and 500/1000 (Table 4.2). Further­
more, since NVEM accesses are very fast basically the same
response times can be achieved for NVEM hits than for main
memory hits (e.g., in Fig. 4.4 we had the same response times
for the combinations 500/1000 and 1000/500). This is an im­
portant observation since it indicates that for NOFORCE per­
formance only depends on the aggregate buffer size of main
memory and NVEM cache. In particular, more cost-effective
solutions can be obtained by choosing a small main memory
and a larger NVEM cache size than only having a main mem­
ory cache of the same aggregate size. Since this result refers to
read hits, it can also be achieved for volatile caches in extended
memory.
Non-volatile disk caches reached higher read hit ratios than
volatile disk caches not because of the non-volatility but be­
cause of the different handling of write misses. For a non-vol­
atile disk cache, a modified page replaced from main memory
is inserted into the disk cache for a write miss as well as for a
write hit. For volatile disk caches, on the other hand, the page
is not cached upon a write miss. Due to the NOFORCE strate­
gy, however, there were many write misses so that in contrast
to non-volatile disk caches only few pages migrated from main
memory to the volatile disk cache. This result suggests that the
effectiveness of (IBM's) volatile disk caches can easily be im­
proved by also caching pages on a write miss for files for which
an additional caching is performed in main memory. Similarly,
the effectiveness of disk caches could further be improved by
not caching a page after a read miss if it is known that the page
will be cached in main memory7. However, the applicability of
such an approach is limited since typically only modified pages
are written back from main memory to the disk controller (this
is no problem for Debit-Credit where all pages are modified).
When using a FORCE strategy, the effectiveness of the 2nd­
level caches is generally lower since more pages are written
from main memory to the 2nd-level cache than for NOFORCE.
As a result, the average cache residence time per page is re­
duced thus lowering the probability of a re-reference. This is
reflected in Table 4.2 showing that the hit ratios in the 2nd-lev­
el cache are generally lower for FORCE than for NOFORCE.
It can be seen from the table that the hit ratios for volatile disk
1• Caching pages after a miss in the disk cache would still be appropri­
ate for sequential files for which prefetching can be utilized.

316

caches are now very close to the values for non-volatile disk
caches. This is due to the fact that FORCE results in a high
write hit ratio in the disk cache since a page is written back (at
EOT) shortly after it has been read. The highest read hit ratios
were still obtained for a NVEM cache, although here the hit ra­
tios decreased most compared to NOFORCE. This was because
for FORCE a double caching of pages in main memory and
NVEM could not be avoided (see section 3.2).
We did not explicitly study caching at three levels for the same
partition, but the results can easily be predicted based on the
already presented findings. Disk caches used in addition to
NVEM and main memory caching would be similarly (in-)ef­
fective than their use in combination with an increased main
memory buffer. Since the NVEM already caches modified pag­
es, non-volatility would no longer be necessary for the disk
caches. On the other hand, the performance of a NVEM cache
could be approached by a database cache in volatile extended
memory used in combination with disk cache write buffers to
avoid synchronous disk writes.
Simulation experiments using traces from real-life applications
with a high share of read-only transactions confirmed the im­
proved effectiveness of NVEM caching over disk caches. In
these applications, the differences between using volatile and
non-volatile disk caches became very small [Ra91b].

5. Conclusions
We have presented a performance evaluation of extended stor­
age hierarchies to improve transaction processing perfor­
mance. We considered three types of page-addressable semi­
conductor memory (disk caches, solid-state disks (SSD) and
extended memory) that offer substantially lower l/0 latency
and higher I/0 rates than disks. Compared to main memory,
they are less expensive and provide better failure isolation due
to the page-oriented interface. Non-volatile semiconductor
memories can be used to keep entire files resident in them
thereby eliminating all (synchronous) disk 1/0s for log or da­
tabase files. A more space-efficient usage of the new memory
types results if they are used as a write buffer or for caching
database pages at an additional level of the storage hierarchy.
A write buffer permits log and database writes to be satisfied
in non-volatile semiconductor memory and performing the
disk write asynchronously. Caching database pages at an inter­
mediate storage level may reduce the number of disk reads at a
lower cost than by increasing the main memory buffer size.

Our performance study has shown that the use of non-volatile
extended memory, SSD and non-volatile disk caches signifi­
cantly improves response times compared to disk-based con­
figurations in almost all cases. Transaction rates are increased
in cases with otherwise low effective CPU utilization because
of I/0 bottlenecks (e.g., for logging) or lock contention.
We found that the use of a limited amount of non-volatile semi­
conductor memory reduces the need to employ sophisticated
buffer management strategies. This was illustrated by compar­
ing the performance of the FORCE and NO FORCE alternatives
for propagating modified database pages to the permanent da­
tabase. While the simpler FORCE strategy requires more I/Os
than NOFORCE, the resulting performance impact often be­
comes insignificant when all force-writes go to non-volatile
semiconductor memory (in fact, performance can be improved
compared to NOFORCE configurations without non-volatile
semiconductor memory). Similar conclusions apply for other
software techniques to limit the number of synchronous disk II
Os like asynchronous page replacement and group commit. On
the other hand, if a DBMS already supports these optimizations
high transaction rates and sufficiently short response times
may be achievable with little or no non-volatile semiconductor
memory.
From the intermediate storage types considered here, non-vol­
atile extended memory (NVEM) supports the best performance
for transaction processing albeit at the highest cost. If the log
and entire database are kept NVEM-resident, the performance
is comparable to main memory database systems with a non­
volatile log buffer. The use of solid-state disks is a less expen­
sive alternative for keeping entire files resident in semiconduc­
tor memory and reduces I/0 latency almost to the same degree
than NVEM. Similarly, a disk cache write buffer is almost as
effective than a NVEM write buffer. The main advantage of
NVEM is that it can be used in a more flexible way since it is
directly accessible by special machine instructions. So NVEM
can be used for storing entire files, but also for caching data­
base pages or as a write buffer (e.g., log buffer). In locally dis­
tributed systems, NVEM can be further utilized to speed-up in­
ter-system communication and to hold globally shared data
structures [Ra91a]. These extended usage forms require special
support by the DBMS or/and operating system, while SSDs and
disk caches offer a disk-oriented interface so that their use re­
mains transparent to the DBMS (device independence).
Caching of database pages in a second-level buffer in addition
to main memory buffering is most effectively supported by an
extended database buffer in NVEM. For NOFORCE, NVEM
caching was optimal in the sense that main memory and NVEM
caching together achieved the same combined hit ratios than
with a main memory buffer of the same aggregate buffer size
alone. Since extended memory is less expensive than main
memory, the cost-effectiveness of caching can be improved by
choosing a small main memory and a large extended memory
buffer. NVEM caching supported significantly better hit ratios
than the use of volatile or non-volatile disk caches. Current
disk caches are optimized for one-level caching so that their
use in combination with main memory caching results in a dou­
ble ~;a~;hing of the mo::~t frequently acce::~sed pages. Our results
suggest that all pages replaced from the DBMS buffer in main
memory should be kept in the second-level database cache for
future re-references. This can easily be achieved for the NVEM
cache if it is managed by the DBMS. The use of disk caches,
however, is transparent to the DBMS so that unmodified pages
do not migrate from main memory to the disk cache. Further-

317

more, modified pages replaced from main memory will not be
cached by current volatile disk caches if a write miss occurs.
Caching of pages in a second-level cache was found to be less
effective for FORCE than for NOFORCE because the high
write traffic resulted in short cache residence times per page.
In addition, the pages forced out of main memory and stored in
the second-level cache, also remained buffered in main memo­
ry causing a double caching for modified pages.
While NVEM alone supports all usage forms of intermediate
semiconductor memory to reduce the number of synchronous
disk I/Os, the reduced cost of disk caches and SSD can make
the combined use of two or even three of these storage types
desirable. For instance, one could use non-volatile disk caches
to implement write buffers and SSD to keep entire files resi­
dent in semiconductor memory. Extended memory can then be
used to hold a second-level database cache.

References
An85 Anon et al.: A Measure of Transaction Processing Power. Datama­

tion, 112-118, April1985.
BHR91 Bohn, V.; Harder, T.; Rahm, E.: Extended Memory Support for

High Performance Transaction Processing. Proc. 6th (German)
Conf. on Measurement, Modelling and Evaluation of Computer
Systems, Jnformatik-Fachberichte 286, Springer-Verlag, 1991.

CKB89 Cohen, E.I.; King, G.M.; Brady, J.T.: Storage Hierarchies. ffiM
Systems Joumal28 (1), 62-76, 1989.

CKKS89 Copeland, G.; Keller, T.; Krishnamurthy, R.; Smith, M.: The Case
for Safe RAM. Proc. 15th VLDB, 1989.

CKS9l Copeland, G.; Keller, T.; Smith, M.: Database Buffer and Disk
Configuring and the Battle of the Bottlenecks. Proc. 4th Int.
Worlcshop on High Performance Transaction Systems, Asilomar,
CA, Sep. 1991

De84 DeWitt, D. et al.: Implementation Techniques for Main Memory
Database Systems. Proc. ACM SIGMOD conf., 1-8, 1984.

Ei89 Eich, M.: Main Memory Database Research Directions. Proc. 6th
Int. Worlcshop on Database Machines, LNCS 368, Springer-Ver­
lag, 251-268, 1989.

GHW90 Gray, J.; Horst, B.; Walker, M.: Parity Striping of Disc Arrays:
Low-Cost Reliable Storage with Acceptable Throughput.
Proc. 16th VLDB, 148-161, 1990.

GLV84 Garcia-Molina, H.; Upton, R.J.; Valdes, J.: A Massive Memory
Machine. ffiEE Trans. on Computers 33 (5), 391-399, 1984.

GP87 Gray, J.; Putzolu, F.: The 5 Minute Rule for Trading Memory for
D_isk Accesses and the 10 Byte Rule for Trading Memory for CPU
TIDle. Proc. ACM SIGMOD conf., 395-398, 1987.

Gr91 Gray, J. (ed.): The Benchmarlc Handbook for Database and Trans­
action Processing Systems. Morgan Kaufmann 1991.

GroSS Grossman, C.P.: Cache-DASD Storage Design for Improving Sys­
tem Performance. ffiM Sys. Jouma124 {3/4), 316-334, 1985.

Gro89 Grossman, C.P.: Evolution of the DASD Storage Control. ffiM
Systems Joumal28 (2), 196-226, 1989.

HR83 Harder, T.; Reuter, A.: Principles of Transaction-Oriented Data­
base Recovery. ACM Comp. Surveys 15 (4), 287-317, 1983.

Ku87 Kull, D.: Busting the 1/0 Bottleneck. Computer & Communica­
tions Decisions, 101-109, May 1987.

Le86 Lehman, T.J.: Design and Performance Evaluation of a Main
Memory Relational Database System. Ph.D. Thesis, Comp. Sci­
ence Dept., Univ. of Wisconsin, Madison, 1986.

U89 Uvny, M.: DeNet User's Guide. Version 1.6, Comp. Science
Dept., Univ. of Wisconsin, Madison, 1989.

MH88 Menon, J.; Hartung, M .. : The ffiM 3990 Disk Cache. Proc. ffiEE
Spring CompCon, 146-151, 1988.

PGK88 Patterson, D.A.; Gibson, G.; Katz, R.H.: A Case for Redundant Ar­
rays of Inexpensive Disks (RAID). Proc. ACM SIGMOD conf.,
109-116, 1988.

Ra91a Rahm, E.: Use of Global Extended Memory for Distributed Trans­
action Processing. Proc. of the 4th Int. Worlcshop on High Perfor­
mance Transaction Systems, Asilomar, Sep. 1991.

Ra9lb Rahm, E.: Performance Evaluation of Extended Storage Architec­
tures for Transaction Processing. TR 216/91, Dept. of Comp. Sci­
ence, Univ. Kaiserslautem (extended version of this paper)

Ru89 Rubsam, K.G.: MVS Data Services. ffiM Systems Joumal28 {1),
151-164, 1989.

Sm85 Smith, A.J.: Disk Cache -Miss Ratio Analysis and Design Consid­
erations. ACM Trans. Comp. Systems 3 (3), 161-203, 1985.

