
Using Link Features for Entity Clustering in Knowledge
Graphs

Alieh Saeedi, Eric Peukert, Erhard Rahm

University of Leipzig & ScaDS Dresden/Leipzig

Abstract. Knowledge graphs holistically integrate information about entities from
multiple sources. A key step in the construction and maintenance of knowledge
graphs is the clustering of equivalent entities from different sources. Previous
approaches for such an entity clustering suffer from several problems, e.g., the
creation of overlapping clusters or the inclusion of several entities from the same
source within clusters. We therefore propose a new entity clustering algorithm
CLIP that can be applied both to create entity clusters and to repair entity clusters
determined with another clustering scheme. In contrast to previous approaches,
CLIP not only uses the similarity between entities for clustering but also further
features of entity links such as the so-called link strength. To achieve a good scal-
ability we provide a parallel implementation of CLIP based on Apache Flink.
Our evaluation for different datasets shows that the new approach can achieve
substantially higher cluster quality than previous approaches.

1 Introduction
Knowledge graphs physically integrate entities from multiple sources with their prop-
erties, relationships and concepts in a graph-like structure [16, 14]. Popular knowledge
graphs in the Web of Data include DBpedia and Yago that combine information about
millions of real-world entities (such as persons or locations) of different domains from
Wikipedia and other sources. Web search engines such as Google or Bing also integrate
information from web pages into their knowledge graphs and use this information to en-
hance the search results for web queries. The automatic construction and maintenance
of such large knowledge graphs faces substantial challenges regarding data quality [5].
One main task is entity resolution to identify different representations referring to the
same real-world entity in order to fuse the knowledge about such an entity within the
knowledge graph.

While entity resolution and the corresponding problems such as link discovery are
intensely investigated research topics (see related work), this problem is still not suffi-
ciently solved for the large-scale integration of data from many sources as needed for
knowledge graphs. For more than two sources a binary linking of entities is not suffi-
cient but all matches of the same entity should be clustered together to derive a fused
entity representation in the knowledge graph. There are several known approaches for
such an entity clustering [8]. At the University of Leipzig, we have recently developed a
scalable tool called FAMER (FAst Multi-source Entity Resolution system)[18] that in-
tegrates parallel implementations of six such clustering schemes, including Connected
Components as the baseline, Correlation Clustering and Star clustering [1]. Clustering

is applied on a similarity graph where entities are represented as vertices and edges
link pairs of entities with a similarity above a predefined threshold. FAMER can con-
struct such similarity graphs for entities of multiple sources based on different linking
schemes; existing links from the Web of Data could also be used to build the similarity
graph. The clustering schemes use this graph (with the similarity values) to determine
groups of matching entities aiming at maximizing the similarity between entities within
a cluster and minimizing the similarity between entities of different clusters. We have
also developed a tool to visually analyze the similarity graphs and clusters determined
by FAMER [17].

Analyzing the clusters determined by the different clustering schemes, we observed
some common problems in particular overlapping clusters and so-called source-inconsis-
tent clusters. Algorithms like Star clustering can associate entities to more than one
cluster leading to cluster overlaps and thus wrong clusters. For cleaned data sources
without duplicates as assumed in FAMER1 each cluster should contain at most one
entity per source. We call clusters violating this restriction source-inconsistent. While
the similarity graphs determined by FAMER never link entities from the same source
the transitive clustering of linked entities, e.g., with the baseline approach Connected
Components, can easily lead to source-inconsistent clusters which should be avoided or
repaired.

In this paper, we propose and evaluate new algorithms to create high-quality entity
clusters or to repair clusters determined by other approaches so that the observed cluster
problems are avoided. Specifically, we make the following contributions:

– We propose a new clustering approach called CLIP (Clustering based on LInk Pri-
ority) to determine high quality, overlap-free and source-consistent entity clusters.
Its cluster decisions are based on a link prioritization considering not only link
similarities but also the so-called link strength and link degree.

– We propose an approach called RLIP (cluster Repair based on LInk Priority) to
repair entity clusters such that the overlap and source inconsistency problems are
resolved. It includes a component to resolve overlapping clusters and uses CLIP to
produce source-consistent clusters.

– We develop parallel implementations for both approaches based on Apache Flink
and integrate them into the FAMER framework for multi-source entity resolution.

– We comprehensively evaluate the cluster quality and scalability of the new ap-
proaches for different datasets and compare them with previously proposed cluster-
ing schemes.

In the next section we discuss related work. Section 3 provides an overview of FAMER
and the new approaches. In Section 4 we define concepts and describe the new algo-
rithms. Section 5 is the evaluation. Finally, we conclude in Section 6.

2 Related Work
Entity resolution and link discovery have been the subject of much research and several
surveys and books provide overviews about the main methods, e.g., [6, 4, 12]. Most

1 If necessary, the individual sources could be deduplicated before the entity resolution with
other sources.

of these previous approaches focus on finding duplicates in a single source or matching
entities in only two data sources. Scalability is mainly supported by blocking techniques
to reduce the search space for finding possible matches. Some tools also support parallel
matching, but mainly for MapReduce (e.g., [10, 12]) and not yet for newer execution
platforms based on Apache Spark or Apache Flink.

There is already a substantial number of entity clustering schemes, mainly to group
duplicates in a single data source [4]. Hassanzadeh and colleagues comparatively evalu-
ated several of these entity clustering algorithms in [7]. Our FAMER tool [18] includes
distributed versions for a subset of the best algorithms from [7] and supports their use
for clustering entities from multiple sources. While the problem of cluster overlaps
was already observed in [7], considering multiple sources also leads to the problem of
source-inconsistent clusters that we address in this paper. Clustering entities from mul-
tiple sources of course leads to increased difficulties to achieve high performance and
effectiveness compared to considering only one or two data sources. We are aiming at
supporting scalability and efficiency by applying both blocking and parallel processing.
Furthermore we are proposing advanced clustering methods that avoid the problems of
previous clustering schemes and achieve a better match and cluster quality. We are not
aware of other tools supporting a parallel entity clustering for multiple sources.

Repair was already studied in pairwise ontology matching, e.g., to ensure that map-
pings only contain 1:1 matches (which can be achieved by computing stable marriages)
or to correct other mapping-induced inconsistencies [2, 15]. However, repair for mul-
tiple source mappings was not covered. For entity resolution, [19] and [13] already
investigated repair techniques mainly by exploiting the transitive closure of matches
to add or remove match links. The repair of entity clusters proposed in [19] depends
on manual user feedback which is difficult to provide for very large datasets. Ngonga
et. al. are not concerned with entity clusters but focus on finding missing/wrong links
and also try to repair entities replicated in different sources [13]. By contrast, CLIP and
RLIP avoid/repair overlapping and source-inconsistent clusters in multi-source entity
resolution utilizing different link features. Moreover, CLIP and RLIP are implemented
as parallel algorithms on Apache Flink to allow for large-scale entity resolution.

3 Overview
Fig. 1 illustrates the main components of the FAMER framework for holistic entity clus-
tering. The input are entities from multiple sources and the output is a set of clusters
containing matching entities. The first part is a configurable component to generate a
similarity graph where similar entities are linked pairwise with each other. As outlined
in [18], this phase starts with blocking, e.g. using Standard Blocking on a specific prop-
erty, so that only entities of the same block need to be compared with each other. Pair-
wise matching is typically based on the combined similarity of several properties and a
threshold for the minimal similarity. A future version of FAMER will also support the
use of learned models for binary match classification. In this paper, we focus on the sec-
ond part of FAMER to use the similarity graph to determine entity clusters. In the initial
version, we support six approaches that will also be considered for comparison in this
paper: connected components, correlation clustering (CCPivot) [3], Center [8], Merge
Center [8] and two variations of star clustering [1] that can lead to overlapping clusters.

Fig. 1: FAMER workflow for multi-source entity clustering (new components in gray)

There is also a specific clustering method based on already existing links from the Web
of Data as input [11] which is not further considered here. To this system we add the
components shown in gray in Fig. 1. First, we provide a new clustering scheme CLIP
as an alternative to the previous clustering schemes that avoids both overlapping and
source-inconsistent clusters. Second, we provide the RLIP approach to repair clusters
determined by one of the previous clustering schemes. RLIP first resolves overlapping
clusters, if necessary, and then applies CLIP to eliminate source-inconsistent clusters.

FAMER is implemented using Apache Flink so that the calculation of similarity
graphs and the clustering approaches can be executed in parallel on clusters of variable
size. For the implementation of the parallel clustering schemes we also use the Gelly
library of Flink supporting a so-called vertex-centric programming of graph algorithms
to iteratively execute a user-defined program in parallel over all vertices of a graph [9].
The vertex functions are executed by a configurable number of worker nodes among
which the graph data is partitioned, e.g., according to a hash partitioning on vertex ids.

4 Approach
We first define the main concepts and then describe the CLIP and RLIP algorithms.

4.1 Concepts

Similarity graph: A similarity graph SG = (V,E) is a graph in which vertices of V
represent entities and edges of E are links between matching entities. There is no direct
link between entities of the same source. Edges have a property for the similarity value
(real number in the interval [0,1]) indicating the degree of similarity.
Cluster: A cluster groups a set of entities that are assumed to represent the same real-
world entity. In our implementation, we also include the similarity links between cluster
members from the originating similarity graph. Hence a cluster Ci is represented by a
cluster graph Ci = (Vi, Ei) with the clustered entities in Vi and intra-cluster similarity
links in Ei.
Maximum link: An entity from a source A may have several links to entities of a source
B. From these links, the one with the highest similarity value is called maximum link.
For example, for entity a1 in Fig. 2-a the maximum link with respect to source B is the
one with similarity 0.95 to entity b1.
Based on this concept we define the strength of links and classify links into strong,
normal, and weak links. Considering a link ` between entity ei from source A and
entity ej from another source B we define these link types as follows:

a) Link features b) Cluster Types c) Cluster association degree

Fig. 2: Clustering concepts

Strong link: Link ` is classified as a strong link, if it is the maximum link from both
sides, i.e. for ei to source B and for ej to source A. In Fig. 2-a, entity a1 from source
A has a strong link, colored in green, to b1 in source B. Note that an entity can have
several strong links to different sources; e.g., a1 is also strongly linked to c2 from source
C.
Normal link: Link ` is called a normal link, if it is the maximum link for only one of
the two sides. In Fig. 2-a, the link between a1 and b2 is a normal link (colored in blue)
as it is the maximum link from b2 to source A, but not the maximum link from a1 to
source B.
Weak link: Link ` is a weak link, if it is not the maximum link for any of the two sides.
In Fig. 2-a, the link between a1 and b0 is such a weak link and shown with a red dashed
line.
Link Degree: The link degree is the minimum vertex degree of its two end point ver-
tices. In Fig. 2-a, the vertex degree of a1 is 4 and the vertex degree of b1 is 3, so that the
link degree between a1 and b1 is min(4, 3) = 3.
Link prioritization: Our clustering approach is based on the introduced link features to
prioritize links based on their link similarity value, link strength (strong, normal, weak),
and link degree. Links with higher similarity value, higher strength and lower degree
have priority over links with lower similarity, lower strength and higher degree.
Source-consistent cluster: A cluster that contains at most one entity per source is
called a source-consistent cluster. In Fig. 2-b, the red-colored cluster is source-inconsis-
tent since it contains two entities (b1 and b2) from source B. The other clusters colored
in blue and green are source-consistent.
Complete cluster: A source-consistent cluster that contains entities from all sources is
called a complete cluster. The green-colored cluster in Fig. 2-b is a complete cluster for
four sources A, B, C, and D as it contains one entity from each source.
Cluster association degree: An entity e that is shared between two or more clusters
will be in some cases assigned to the cluster with the highest association degree. The
association degree of e for cluster C of size k corresponds to the average similarity of
e to the k − 1 other entities ei in C, i.e., it is determined by the ratio of the sum of
similarity values of the intra-cluster links involving e and k − 1. In Fig. 2-c, entity b1

is member of the gray and black clusters of sizes 4 and 5, respectively. Assuming a
link similarity of 1 for the shown links, the association degree for b1 is 2/3 for the gray
cluster and 1/4 for the black cluster. Hence, b1 will be preferably assigned to the gray
cluster.

4.2 Entity clustering with CLIP

The proposed CLIP algorithm favors strong links for finding clusters while weak links
will be ignored. This helps to find good clusters even when the similarity graph contains
many links with lower similarity values. The approach works in two main phases. In
the first phase, CLIP determines all complete clusters based on strong links between
entities from all sources. The second phase also considers normal links and iteratively
clusters the remaining entities based on link priorities such that no source-inconsistent
or overlapping clusters are generated.

The pseudocode of CLIP is shown in Algorithm 1. Its input is a similarity graph
SG and the output is the cluster set CS. Fig. 3 illustrates the algorithm for entities from
four data sources A, B, C, and D. Entities with the same index are assumed to belong
to the same cluster, e.g. entity a0 from source A and b0 from source B. The sample
similarity graph in the example already links most matching entities but also contains
wrong links, e.g. (b0, c1). In phase 1, we start with determining the strength of all links
(line 1 of Algorithm 1). Then we only use strong links to determine graph G′ (line 2).
We then apply ConnectedComponents on G′ to identify complete clusters and add
these to the output (lines 3-4). In the example of Fig. 3, the second graph in the upper
half differentiates between strong, normal, and weak links by showing them as green,
blue and dashed lines, respectively. Focussing on strong links, we obtain four connected
components in the example, one of which (for index 0) results in a complete cluster that
is added to the output of phase 1.

For phase 2, we remove the vertices and edges from the complete clusters. Fur-
thermore, we ignore weak links and only consider strong and normal links in the up-
dated graph G′ (lines 5-6 of Algorithm 1). Again we use ConnectedComponents to
consider the resulting connected components as possible clusters (line 7). Afterwards
these components Clusteri are processed in parallel (line 8). If the cluster Clusteri
is already a source-consistent cluster, it is directly added to the CLIP output (lines 9-
10). Otherwise the component/cluster is source-inconsistent and will be iteratively pro-
cessed as outlined below. In the example of Fig. 3, phase 2 is illustrated in the lower part
which starts with a reduced similarity graph that has no longer the entities from the com-
plete cluster determined in phase 1 and that only contains strong and normal links. We
then obtain two connected components one of which (with index 3) is already a source-
consistent cluster that is thus added to the ouput. The remaining source-inconsistent
component/cluster needs further processing.

In the processing of source-inconsistent clusters/components we initially consider
each entity of component Clusteri as a cluster Ci of its own (lines 12-13). We then
iteratively process the intra-component links (lines 15-21) in the order of their maximal
link priority and merge linked entity pairs from different sources into larger clusters
such that no source inconsistency is created (line 17). For merged clusters, the cluster set

Algorithm 1: CLIP
Input : SG = (V,E)
Output: Cluster set CS = {}
/* PHASE 1 */

1 DetermineLinkStrength(E)
/* Links are classified so that E = EStrong ∪ ENormal ∪ EWeak */

2 G′ = (V,EStrong)
3 Cluster set CS′ ← ConnectedComponents(G′)
4 CS ← getCompleteClusters(CS′)
/* PHASE 2 */

5 V ′ ← V − VComplete, E
′ ← (EStrong − EComplete) ∪ ENormal

6 G′ = (V ′, E′)
/* Vertices and links of the complete clusters are removed from the current

graph G’ */

7 CS′ ← ConnectedComponents(G′)
8 for (Clusteri ∈ CS′) in Parallel do
9 if (IsSourceConsistent(Clusteri)) then

10 CS ← CS ∪ Clusteri

11 else
12 Assume vt ∈ VClusteri as a cluster t = 1, 2, ..., n
13 Cluster set CSi ← {C1, C2,, Cn}
14 IntraLinks← EClusteri

15 repeat
16 `Ci,Cj ← getMaxPriority(IntraLinks)
17 MergeClusters(Ci, Cj)
18 UpdateClusterSet(CSi)
19 RemovedLinks← RemoveConflictingLinks(IntraLinks)
20 IntraLinks← IntraLinks−RemovedLinks

21 until (IntraLinks 6= {})

22 CS ← CS ∪
m⋃

i=1

CSi

is updated accordingly (line 18). Links from the newly formed cluster to entities of the
same sources already present in the formed cluster (conflicting links) are removed from
the intra-component link set (lines 19-20). The process for each component terminates
when the corresponding intra-component link set is empty (line 21). The union of all
cluster sets CSi determined in this way for the different components combined with the
previously determined clusters in phase 1 form the final output of CLIP (line 22). In the
example of Fig. 3, we start with the link between a2 and b2 in the third graph for phase 2
and merge these entities into a new cluster. The link to a1 from this newly formed cluster
is considered as a conflicting link and therefore removed. In the next iterations the link
priorities are updated and a new link with maximum priority is selected and clusters
are merged. In the example this leads to adding entities c2 and d2 to the previously
determined cluster while the link of this cluster to entity a1 is in conflict and will be

Fig. 3: CLIP example

removed. Similarly, the cluster with index 1 can be generated. Together with the output
of phase 1, four clusters are found in the example.

CLIP creates disjoint clusters since it operates on connected components which
are by definition disjoint. Furthermore, the iterative processing of source-inconsistent
components adds each entity to at most one cluster thereby avoiding cluster overlaps.

4.3 Cluster repair with RLIP

As explained in Section 3, RLIP aims at repairing the output of clustering algorithms
by first resolving overlapping clusters, if necessary, and second by using CLIP to repair
source-inconsistent clusters. We thus focus on overlap resolution.

The RLIP approach to resolve overlapping clusters also uses the intra-cluster links
between entities2 and favors strong links to select the cluster to which an overlapped
entity should be assigned. In particular, overlapped entities that have only strong links
to one cluster are assigned to this cluster and for overlapped entities with strong links
to several clusters we choose the cluster with the highest association degree for this
entity. Overlapped entities with no strong link are kept as singletons. The cluster deci-
sion cannot be made directly if an overlapped entity is only strongly linked to another
overlapped entity since the best result will depend on the cluster decision for the other
overlapped entity. We therefore treat such cases in a second iteration of the algorithm.
If in the second iteration the entity still is linked to only overlapped entities, all of them
will become singletons.

2 RLIP could also repair cluster results determined outside FAMER by computing the similarity
links between entities within clusters beforehand.

Algorithm 2: Overlap Resolution

Input : Cluster set CS =
m⋃

i=1

CSi(Vi, Ei)

Output: Cluster set outputCS
1 outputCS ← DetermineLinkStrength(CS)
/* Links are classified so that Ei = Ei(Strong) ∪ Ei(Normal) ∪ Ei(Weak) */

2 for (iterationNo := 1 to 2) do
3 OV ← getOverlappedV ertices(outputCS)

/* OV : Vertices that belong to more than one cluster */

4 for v ∈ OV in Parallel do
5 adjacentV ertices← StronglyLinkedPairs(v)
6 if (adjacentV ertices.Size() = 0) then
7 UpdateClusterSet(outputCS, v)

/* remove v and its associating links from all clusters. */

8 outputClusterset← outputClusterset ∪ (newCluster(v))
/* v is a singleton. */

9 else
10 associatedClusters← {}
11 for (vn ∈ adjacentV ertices) do
12 if (vn /∈ OV) then
13 associatedClusters← associatedClusters ∪ getCluster(vn)

14 if (associatedClusters.Size() = 0 ∧ iterationNo > 1) then
15 UpdateClusterSet(v)
16 outputClusterset← outputClusterset ∪ (newCluster(v))

17 else
18 resolvedCluster ← argmax

associatedClusters
(association(clusteri, v))

19 UpdateClusterSet(v)

20 iterationNo++

21 return outputCS

Algorithm 2 outlines overlap resolution in more detail. The input is a set of cluster
graphs CS and the output is a set of disjoint clusters outputCS. The cluster graphs
in the output can be merged into a similarity graph as input for the subsequent execu-
tion of CLIP. In line 1, we first determine and store the strength of links in the input
cluster graphs. Then, we determine the overlapped entities and process them in parallel
in one or two iterations. For overlapped entity v, we store all strongly linked entities
in adjacentVertices (line 5). If there is no such entity, the overlapped entity is kept as
a singleton (lines 6-8). Otherwise, the clusters of non-overlapped entities (line 11) of
adjacentVertices are determined and stored in the set associatedClusters (lines 10-13).
If there is no such cluster, i.e., all strongly linked entities are overlapped entities, and
we are in the first iteration we wait and this entity will become a singleton in the sec-
ond iteration (lines 14-16). Otherwise, the cluster association degree of the overlapped
entity v to all members of associatedClusters is determined and v is assigned to the

cluster with the maximal association degree (lines 17-19). Obviously, if there is only
one element in associatedClusters, v will go to this cluster.

Fig.4 illustrates overlap resolution for four input clusters (C1, C2, C3, and C4)
where entities a0, a5 and d4 belong to two clusters and entity b2 even to three clus-
ters. The algorithm starts by determining the strength of the links. In the second box
of Fig. 4, strong, normal and weak links are shown by green, blue and dashed red
lines. The output of the first iteration (third box) shows that entity a5 is considered as
a singleton because it is not strongly linked to any other entity. Entity a0 is assigned
to cluster C1 because of a higher association degree to C1 than to C2. Entity d4 is
strongly linked only to the overlapped entity b2 so we do not decide about d4 in this
iteration. Entity b2 has strong links to non-overlapped entities only to cluster C3 so it
is removed from clusters C2 and C4. In the second iteration (last box), the remaining
overlapped entity d4 is also resolved. It is linked to entity b2 which has been assigned
to cluster C3 in the previous iteration, so d4 is now also assigned to C3 and removed
from cluster C4. We have thus resolved all overlaps although the resulting clusters are
not necessarily source-consistent (e.g., cluster C3 has two entities from source D). So
the output of overlap resolution is then processed by CLIP to obtain both disjoint and
source-consistent clusters.

5 Evaluation
We now evaluate the effectiveness and efficiency of the proposed clustering and re-
pair algorithms CLIP and RLIP in comparison to the previous clustering schemes of
FAMER. We first describe the used datasets from three domains. We then analyze com-
paratively the effectiveness of the proposed algorithms. Finally, we evaluate runtime
performance and scalability.

5.1 Datasets and Similarity Graphs
We use the same evaluation datasets as in [18] to facilitate the comparison with the
previously studied clustering schemes. Table 1 summarizes the main characteristics of
these datasets as well as their properties and functions used for blocking and calculating
the similarity links. The smallest dataset DS1 is a real dataset with geographical entities
of type ’settlement’ from four sources (DBpedia, Geonames, Freebase, NYTimes). The
perfect clusters for DS1 are manually determined. The two larger datasets are based on
the real data from the MusicBrainz database (DS2) and the North-Carolina voter reg-
istry (DS3) but apply synthetic data generators to create duplicates and corruptions of
property values to make entity resolution harder. The DS2 dataset is heavily corrupted
and consists of five sources with duplicates for 50% of the original records in two to five
sources. The DS3 dataset consists of five sources with 1 million entities per source such
that 50% of the entities are replicated in all sources without any corruption. Moreover,
25% of the entities are corrupted and replicated in all sources, and the remaining 25%
are corrupted but present in only some sources. The degree of corruption is moderate so
that matches are easier to find than for DS2. For determining the similarity graphs with
FAMER, we first apply a standard blocking based on the prefix of a specific property
(specified in Table 1) so that only entities with the same prefix value need to be com-
pared. Pairwise similarity between entities is determined based on the string similarity

Fig. 4: Overlap resolution (example)

(JaroWinkler or trigram) of selected properties and, for DS1, the geographical distance
between settlements and a variable minimal similarity threshold θ.

Table 1: Dataset characteristics and linking details
- Data sets Similarity graph configuration

domain #entities #sources #clusters blocking key sim functions
DS1 3,054 4 820 PreLen1 JW(label),

(geographical) (label) distance
DS2 (music) 20,000 5 10,000 PreLen1(album) trigram(title)

DS3 5,000,000 5 3,500,840 PreLen3 JW(name),JW(surname),
(person) (surname) JW(suburb),JW(postcode)

5.2 Cluster Quality
CLIP quality: We first evaluate the cluster quality achieved with the new CLIP clus-
tering scheme in comparison with six known clustering schemes for the three datasets.
For this purpose we assume that all entities in the determined clusters match with each
other and determine the precision, recall and F-measure compared to the matches of the
perfect cluster result. Fig. 5 shows the achieved results for these metrics and different
similarity thresholds θ for the seven clustering schemes (CLIP, Connected Components,
CCPivot, Center, MergeCenter, Star-1, Star-2) as well as for the similarity graph used
as input to the clustering schemes (although this graph has only links but no clusters).
The results for the six previous approaches correspond to those reported in [18].

We observe that CLIP achieves an excellent quality result and outperforms all pre-
vious algorithms in terms of precision and F-measure for all three datasets. Recall is
comparable to the best approaches and only slightly worse compared to approaches
such as Connected Components achieving the best possible recall (albeit at the expense
of the poorest precision). A closer inspection of the CLIP behavior showed that its good
recall is already achieved by determining the connected components for finding com-
plete clusters and source-consistent clusters involving only strong and normal links.
By contrast, the CLIP iterations to split source-inconsistent components into several
source-consistent clusters is primarily helpful to improve precision. The excellent pre-
cision of CLIP, even for lower similarity thresholds, is further due to the ignorance
of weak links. This behavior is especially helpful for the relatively dirty dataset DS2

where we had to use very low similarity thresholds to achieve a sufficient recall. CLIP
here achieves a F-Measure of 82% compared to only 65-75% for the other clustering
schemes. Interestingly, the previous clustering schemes had even problems to outper-
form the link quality of the similarity graph due to wrong clustering decisions while
CLIP achieves clear improvements compared to the similarity graphs by correctly clus-
tering matching entities and removing wrong links between non-matching entities.

RLIP quality: We now study the cluster quality achieved with the proposed re-
pair approach RLIP when applied to the cluster results of the six previous clustering
schemes. Fig. 6 summarizes the achieved F-Measure results (averages over all consid-
ered values for similarity threshold θ) for the three datasets with the original clustering
schemes only (blue bars on the left) and with additionally applying RLIP (red bars
on the right). On the right we also show the average F-measure results for CLIP. We

Precision Recall F-Measure

D
S1

D
S2

D
S3

Fig. 5: Cluster quality of CLIP vs other clustering approaches

observe that RLIP can improve F-measure for all algorithms indicating an excellent ef-
fectiveness of the proposed cluster repair. The biggest improvements are achieved for
the two poorest performing clustering schemes, Connected Component and MergeCen-
ter, that both achieve a high recall but low precision. Here the CLIP component of RLIP
achieves a substantial improvement in precision; the already high recall of the input en-
ables that the repaired results for ConnectedComponent and MergeCenter are among
the best overall. In fact, the repaired results for ConnectedComponent are essentially
identical to the CLIP results. Overlap resolution is only applied to the results of Star-1
and Star-2 and helps to also achieve very good quality for their repaired clusters. The
clusters determined with CCPivot and Center can be improved to a lesser degree since
these algorithms remove already many links thus hurting recall. The only exception is
DS3 for which all clustering schemes achieve a similarly high recall so that the repaired
results after applying RLIP are also close together for all algorithms.

DS1 DS2 DS3

Fig. 6: Cluster quality without and with repair using RLIP

5.3 Runtimes and Speedup
The runtimes of the clustering algorithms are determined on a Hadoop cluster with 16
worker nodes, each consisting of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM and two
4 TB SATA disks. The nodes are connected via 1 Gigabit Ethernet. The used software
versions are Flink 1.1.2, Hadoop 2.6.0 and openSUSE 13.2. We run Apache Flink with
6 threads and 40 GB memory per worker.

Table 2 shows the runtimes of CLIP for the biggest dataset DS3 with similarity
threshold θ = 0.8; Fig 7 depicts the corresponding speedup curve varying the number
of workers from 1 to 16. We observe that the parallel execution of CLIP achieves an
optimal speedup for up to 8 workers, while the speedup for 16 workers is 11.2 indicating
that the dataset DS3 might not be big enough for 16 workers. Comparing the execution
times of CLIP with those of the other algorithms (shown in the left part of Table 3),
we see that CLIP is relatively slow with the second highest runtimes. Most of the CLIP
execution time is spent for the iterative processing of source-inconsistent components in
phase 2 of the algorithm. While we process different components in parallel the runtime
is determined by the biggest such component which thus becomes a bottleneck.

Table 3 also includes runtimes of repairing clusters with RLIP (middle part) as well
as the sum of the execution times for clustering and repair (right part). The shown RLIP
execution times include both the times for overlap resolution (for Star-1 and Star-2)
and for the CLIP component. We observe that the RLIP runtimes are dominated by the
CLIP component while overlap resolution is much faster. The runtimes for the CLIP
component of RLIP differ for the different clustering schemes and are the highest for

ConnectedComponent and MergeCenter where precision is improved most by the itera-
tive processing of large components. Interestingly, the combined execution time for the
previous clustering schemes and their repair is in several cases lower than only apply-
ing CLIP while achieving similar cluster quality, especially for the two Star clustering
schemes.

Table 2: CLIP runtimes for DS3 (seconds)

#workers 1 2 4 8 16
runtimes 5477 2696 1303 711 486

Fig. 7: Speedup

Table 3: DS3 runtimes for clustering schemes and RLIP (seconds)

Method ER clustering RLIP Sum
#workers 4 8 16 4 8 16 4 8 16

OV CLP OV CLP OV CLP
ConCom 51 57 55 - 1303 - 711 - 486 1354 768 541
CCPivot 1530 1008 688 - 651 - 361 - 223 2181 1369 911
Center 390 208 117 - 440 - 228 - 144 830 436 261
MCenter 640 349 194 - 882 - 472 - 306 1522 821 500
Star-1 288 149 85 178 489 94 249 55 209 955 492 349
Star-2 214 124 67 202 424 97 236 61 283 840 457 411

6 Conclusion and Outlook
We have proposed a new method called CLIP to cluster matching entities from multiple
sources as well as a repair method called RLIP to improve entity clusters determined
by other clustering schemes. The approaches avoid or resolve overlapping and source-
inconsistent clusters and utilize several features of similarity links in a new way, in
particular the link strength. Our evaluation for three datasets shows that the new ap-
proaches achieve excellent cluster quality and outperform previous clustering schemes
to a large degree. The RLIP repair approach could improve the quality for all consid-
ered clustering schemes and achieve comparable quality than applying CLIP alone, in
some cases with even lower execution times. The parallel implementations for CLIP and
RLIP achieved good speedup values thereby supporting scalability to larger datasets.

In future work, we will investigate further performance optimizations in the itera-
tive portion of the CLIP algorithm. We further plan to make the FAMER tool with the
proposed clustering schemes publicly available and apply it in several applications, in
particular to build large, high quality knowledge graphs.

7 Acknowledgements
This work is partially funded by the German Federal Ministry of Education and Re-
search under project ScaDS Dresden/Leipzig (BMBF 01IS14014B).

References

1. J. A. Aslam, E. Pelekhov, and D. Rus. The star clustering algorithm for static
and dynamic information organization. In Graph Algorithms And Applications 5,
pages 95–129. 2006.

2. A. Calı̀, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt. A framework for rep-
resenting ontology mappings under probabilities and inconsistency. Proc. URSW,
2007.

3. F. Chierichetti, N. Dalvi, and R. Kumar. Correlation clustering in mapreduce. In
Proc. KDD, pages 641–650. ACM, 2014.

4. P. Christen. Data matching. Springer, 2012.
5. X. Dong et al. Knowledge vault: A web-scale approach to probabilistic knowledge

fusion. In Proc. KDD, pages 601–610, 2014.
6. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection:

A survey. IEEE Trans. Knowledge and Data engineering, 19(1), 2007.
7. O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller. Framework for evaluating

clustering algorithms in duplicate detection. PVLDB, 2(1):1282–1293, 2009.
8. O. Hassanzadeh and R. J. Miller. Creating probabilistic databases from duplicated

data. VLDB Journal, 18(5):1141–1166, 2009.
9. M. Junghanns, A. Petermann, M. Neumann, and E. Rahm. Management and anal-

ysis of big graph data: Current systems and open challenges. In Handbook of Big
Data Technologies, pages 457–505. 2017.

10. L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop.
PVLDB, 5(12), 2012.

11. M. Nentwig, A. Groß, and E. Rahm. Holistic entity clustering for linked data. In
Proc. ICDMW, pages 194–201. IEEE, 2016.

12. M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm. A survey of cur-
rent link discovery frameworks. Semantic Web, 8(3):419–436, 2017.

13. A.-C. Ngonga Ngomo, M. A. Sherif, and K. Lyko. Unsupervised link discovery
through knowledge base repair. Proc. ESWC, pages 380–394, 2014.

14. H. Paulheim. Knowledge graph refinement: A survey of approaches and evalua-
tion methods. Semantic web, 8(3):489–508, 2017.

15. C. Pesquita, D. Faria, E. Santos, and F. M. Couto. To repair or not to repair: Rec-
onciling correctness and coherence in ontology reference alignments. Proceedings
of the 8th International Conference on Ontology Matching, pages 13–24, 2013.

16. E. Rahm. The case for holistic data integration. In Proc. ADBIS. Springer, 2016.
17. M. A. Rostami, A. Saeedi, E. Peukert, and E. Rahm. Interactive visualization of

large similarity graphs and entity resolution clusters. In Proc. EDBT, 2018.
18. A. Saeedi, E. Peukert, and E. Rahm. Comparative evaluation of distributed clus-

tering schemes for multi-source entity resolution. In Proc. ADBIS. Springer, 2017.
19. Q. Wang, J. Gao, and P. Christen. A clustering-based framework for incrementally

repairing entity resolution. Proc.PAKDD, pages 283–295, 2016.

	Using Link Features for Entity Clustering in Knowledge Graphs

