
Comparative Evaluation of Distributed
Clustering Schemes for Multi-source

Entity Resolution

Alieh Saeedi(B), Eric Peukert, and Erhard Rahm

Database Group, Department of Computer Science,
University of Leipzig, Leipzig, Germany

{saeedi,peukert,rahm}@informatik.uni-leipzig.de

Abstract. Entity resolution identifies semantically equivalent entities,
e.g., describing the same product or customer. It is especially challenging
for big data applications where large volumes of data from many sources
have to be matched and integrated. Entity resolution for multiple data
sources is best addressed by clustering schemes that group all match-
ing entities within clusters. While there are many possible clustering
schemes for entity resolution, their relative suitability and scalability is
still unclear. We therefore implemented and comparatively evaluate dis-
tributed versions of six clustering schemes based on Apache Flink within
a new entity resolution framework called Famer. Our evaluation for dif-
ferent real-life and synthetically generated datasets considers both the
match quality as well as the scalability for different number of machines
and data sizes.

1 Introduction

Entity resolution (ER) – also called deduplication, record linkage or object
matching - is the task of identifying records that refer to the same real-world
entity, such as specific costumers, products or publications. This problem is of
key importance for improving data quality and for integrating data from multi-
ple sources. Numerous approaches for entity resolution have been developed and
investigated [4,13]. They derive match decisions typically based on the combined
similarity of several attribute values and possibly on the contextual similarity of
entities (for example, two publications may match if they have both highly sim-
ilar titles and co-authors). To achieve high efficiency for large datasets, one has
to avoid comparing each entity to all other entities. This is achieved by so-called
blocking strategies [4] where only records within the same block (partition) need
to be compared with each other, e.g., only publications from the same year.
Entity resolution can also be performed in parallel on multiple processors and
computing nodes to achieve additional performance improvements [12].

Most previous ER approaches compare pairs of entities and determine binary
match mappings consisting of all correspondences or links between two matching
entities. This is a natural approach when one has to integrate only a few data
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 278–293, 2017.
DOI: 10.1007/978-3-319-66917-5 19



Comparative Evaluation of Distributed Clustering Schemes 279

sources but it does not scale well since the number of binary mappings grows
quadratically with the number of sources. As a result, integrating data from 200
sources would require the determination (and maintenance) of 19.900 mappings
which is not practically feasible with today’s ER tools. Grouping all matching
entities within single clusters is a better approach for integrating data from
multiple data sources as it allows a more compact match representation than
with binary links [15,17]. It also simplifies the fusion of the matching entities
for data integration by combining and consolidating the attributes values of the
different cluster members. Furthermore, it allows an incremental integration of
additional entities and data sources by comparing them with the set of previously
determined clusters.

In our research, we aim at scalable ER approaches for Big Data that are
able to deal with large data volumes and multiple data sources. We therefore
need ER approaches that support clustering matching entities and exploit both
blocking and distributed (parallel) processing. For this study, we implemented
distributed versions of six previously proposed clustering techniques to analyze
their quality and scalability. The considered clustering schemes require as input
a so-called similarity graph containing all links between matching entities and
try to find additional links by considering indirect matches and to eliminate
weaker links in favor of more plausible ones. The clustering schemes are part of
a new framework called FAMER (FAst Multi-source Entity Resolution system)
for distributed multi-source entity resolution. Famer is implemented on top of
the distributed dataflow framework Apache Flink to achieve a high scalability
to large amounts of data and many machines.

In the next section, we briefly discuss related work. In Sect. 3, we provide
an overview about our ER framework Famer. Section 4 describes the considered
clustering algorithms and their distributed implementation. In Sect. 5, we eval-
uate the match quality and scalability of the approaches for different datasets.
Section 6 concludes.

2 Related Work

There is a huge literature about ER and there are several books and surveys to
provide an overview about the main methods and tools, e.g., [4,13]. The parallel
implementation of ER methods has also been studied but mainly for MapRe-
duce (e.g., [12]). Only few studies considered more recent Big Data frameworks
such as Apache Flink or Apache Spark [14] but not yet for clustering-based
ER schemes. Our distributed ER framework will build on known blocking and
matching techniques (see next section) and their parallel implementation using
Apache Flink.

Previous clustering approaches for ER [2,3,7,8,16] first determine a pairwise
matching between entities and apply clustering within a post-processing step.
The most straight-forward clustering approach is computing connected compo-
nents based on the transitive closure of binary match links. This approach can
often improve recall by identifying indirectly matching entities but may lead to



280 A. Saeedi et al.

poor precision since indirect matches may not be similar enough to really repre-
sent the same real-word object. For our evaluation, we use connected components
as the base strategy and consider five additional clustering schemes that have
proven to be effective in previous studies. In particular, we study parallel ver-
sions of correlation clustering [3], Center [8], Merge Center [8], and two versions
of Star [1] clustering. Previous evaluations such as in [7] did not consider parallel
clustering schemes and focused on clustering within single datasets rather than
across multiple data sources.

3 Famer Framework for Multi-source Entity Resolution

Figure 1 illustrates the main components and processing steps of the Famer
framework for distributed multi-source entity resolution. The components are
similar to the ones in previous entity resolution tools but support more than two
sources and are implemented in Apache Flink to achieve a parallel execution
for high scalability. The input of Famer are thus multiple data sources with
the entities to be matched and clustered. The output is a collection of clusters
where all entities within a cluster match with each other and different clusters
refer to different real-world objects. In this paper, we assume that all sources are
duplicate-free1 so that we only have to find matching entities between sources.
The final match clusters should thus only contain entities from different sources
so that the maximal cluster size is limited by the number of sources. All entities
of a cluster are assumed to match with each other, so that a cluster of m entities
represents m·(m−1)

2 match pairs.
Famer consists of two main parts (Fig. 1): generation of a similarity graph

based on pairwise matches and clustering. The first component has several steps
(blocking, pairwise comparison, match classification), which can be customized
according to a configuration input. We provide more details on the different steps
below. We also illustrate the workflow of our framework for the person records in
Table 1 that originate from four sources and contain erroneous attribute values
as typical for real-world data. The table groups already the duplicate records
referring to the same person.

In the first phase, we start with a blocking step to reduce the number of
comparisons compared to a näıve approach where each entity of a data source
has to be compared against all entities of any other source. We support different
blocking techniques such as Standard Blocking (SB) and Sorted Neighborhood
as well as single- and multi-pass blocking [4]. For SB, which we will use in our
evaluation, entities are partitioned into blocks by a predefined blocking key (to
be provided in the configuration input) on attribute values such that only entities
with the same blocking key need to be compared with each other. For the person
records in Table 1, we assume that the two initial letters of the surnames form
the blocking key. Table 2 shows the resulting blocking key values and blocks
sharing the same key value. For this example, blocking reduces the number
1 This is not a main restriction since we could first deduplicate the individual data

sources before applying the workflow.



Comparative Evaluation of Distributed Clustering Schemes 281

Fig. 1. Overview of the famer approach for multi-source entity resolution

of comparisons from 55 to only 16. On the other hand, we may now miss some
matches if similar entities are assigned to different blocks (e.g., entity with id 1 is
not paired with entities 0, 2, and 3). Multi-pass blocking can reduce this problem
(at the expense of more comparisons) by partitioning the entities according to
multiple blocking keys.

After blocking, all entities of a block from any of the input data sources are
pairwise compared with each other. For each entity pair we compute the similar-
ity of their attribute values for the attributes and similarity functions specified in
the configuration input. These similarity values are used in the following match
classification step to decide about whether or not a pair of entities is assumed to
match. The classification approach is also specified in the configuration input,
e.g., by match rules specifying the required minimal similarity for the consid-
ered attributes. The output of this step is the set of matching entity pairs (links)
together with a combined similarity value per link. This output is stored as a
similarity graph where entities are represented as vertices and match links as
edges.

The clustering step of Famer aims at grouping together all matching vertices
of the similarity graph based on the link structure of the graph and possibly the
similarity values. Clustering algorithms typically try to group entities such that
the similarity between entities within a cluster is maximized while the similarity
between entities of different clusters is minimized. Compared to the similarity
graph, the clustering algorithm can ideally add all missing matches (links) and
remove all wrong links. The clustering algorithms we implemented and evaluated
are described in Sect. 4.

Figure 2 illustrates the results of the described workflow for the sample enti-
ties of Table 1 and the blocking using SB as shown in Table 2. The entities are
pairwise compared within the blocks and a rule-based match classification is
applied resulting in the similarity graph shown in the middle of Fig. 2. Com-
pared to the matches assumed in Table 1, the graph misses some links between
matching entities, e.g., between 0 and 2. The final clustering determines five
fully connected graphs (clusters) which are meant to represent different enti-
ties. For the example, the clusters include links missing in the similarity graph.



282 A. Saeedi et al.

Table 1. Sample person entities from evaluation dataset DS3.

Id Name Surname Suburb Post code SourceId

0 ge0rge Walker winston salem 271o6 Src1

1 George Alker winstom salem 27106 Src2

2 George Walker Winstons 27106 Src3

3 Geoahge Waker Winston 271oo Src4

4 Bernie Davis pink hill 28572 Src1

5 Bernie Daviis Pinkeba 2787z Src2

6 Bernii Davs pink hill 28571 Src3

7 Bertha Summercille Charlotte 28282 Src1

8 Bertha Summeahville Charlotte 2822 Src2

9 Brtha Summerville Charlotte 28222 Src4

10 Bereni dan’lel Pinkeba 27840 Src3

11 Bereni Dasniel Pinkeba 2788o Src4

Table 2. Keys

Id Key

0 wa

2 wa

3 wa

1 al

4 da

5 da

6 da

10 da

11 da

7 su

8 su

9 su

Fig. 2. Applying famer to the data of Table 1.

Compared to Table 1, all clusters are correctly found except for the singleton
cluster with entity 1 that was not matched with matching entities 0, 2 and 3 due
to the assumed blocking approach.

Famer is implemented using Apache Flink and a new extension for graph
analytics called Gradoop [11]. Hence, all match and clustering approaches can be
executed in parallel on clusters of variable size. Gradoop supports an extended
property graph model so that we store the attribute values of entities as key
value properties. Analogously, the similarity values of matching entity pairs are
represented as edge properties. For the implementation of the parallel clustering
schemes we also use the Gelly library of Flink supporting a so-called vertix-
centric programming of graph algorithms (see next section).

4 Clustering Approaches

In this section, we present the considered clustering approaches for entity reso-
lution and their parallel implementation. As described in the previous section,
all algorithms use as input a similarity graph with entities from multiple
data sources and similarity edges indicating the computed degree of similar-
ity. In addition to the computation of connected components, Famer supports



Comparative Evaluation of Distributed Clustering Schemes 283

parallel versions of the Center clustering, Merge Center clustering, two versions
of Star clustering, and correlation clustering.

The parallel implementations are based on a vertex-centric programming
model, also known as ‘think like a vertex’, to iteratively execute a user-defined
program in parallel over all vertices of a graph. In particular, we use the two-
step Scatter-Gather model of Gelly that breaks up vertex programming into
two functions. In the Scatter step, a value is distributed to all vertex neighbors,
and in the Gather step the inputs from the neighbors are collected to update
the state of a vertex. The computation proceeds in synchronized iteration steps,
called supersteps. Each scatter and each gather execution is performed in a
different superstep. Supersteps are executed synchronously, so that messages
sent during one superstep are guaranteed to be delivered in the beginning of the
next superstep [10]. The vertex functions are executed by a configurable number
of worker nodes among which the graph data is partitioned, e.g., according to a
hash or range partitioning on the vertex ids. We will explain the vertex-centric
implementation in detail for one of the clustering schemes (Center); the other
implementations follow similar approaches.

4.1 Connected Components

The subgraphs of a graph that are not connected to each other are called con-
nected components. Having the input similarity graph, the connected compo-
nents are easy to determine in a vertix-centric way by letting every vertex itera-
tively add all its direct neighbors to its cluster. The approach is therefore easy to
implement with Scatter-Gather (as shown in [10]). In the evaluation, we use this
approach as a baseline for the comparison with the other clustering schemes.

4.2 Center Clustering

In contrast to connected components, the Center clustering algorithm [8] uti-
lizes the similarity values (weights) of the edges in the similarity graph. In the
sequential algorithm, edges are first sorted based on these weights in descending
order and put in a queue. Edges are then removed from the queue and processed
one by one. For each edge e(vi,vj), if both vi and vj are unassigned to any cluster,
one of them will be center and the other will belong to the cluster of that center.
If one of them is center and the other is unassigned, the unassigned vertex will
belong to the cluster of the center vertex. If both vertices are centers or both of
them are non-centers, or one of them is non-center and the other is unassigned,
that edge is ignored.

We propose and implemented a parallel version of the Center algorithm (see
Algorithm 1). In each round of the algorithm for all unassigned vertices, the
outgoing edge with the highest weight must be found. The vertices on both sides
of this edge are then processed. If one of them is center, the other will belong to
the cluster of that vertex (lines 6–8). If one of them is assigned to another cluster
(line 9), i.e., both vertices belong to different clusters, the edge between these
two vertices is removed (line 10). If both vertices are unassigned and the edge



284 A. Saeedi et al.

Algorithm 1. Parallel Center
Data: G = (V, E)

1 assignVertexPriorities(V )
/* priority according to a random permutation of vertices */

2 Center ← {}
3 for vi ∈ V in Parallel do
4 repeat
5 vnn ← argmax

j
(e(vi,vj))

6 if (vnn ∈ Center) then
7 vi.SetClusterId(nn)
8 V ← V − {vi}
9 else if (vnn /∈ V ) then

10 E ← E − {e(vi,vnn)}
11 else
12 vk ← argmax

j
(e(vnn,vj))

13 if ((i = k ∧ i > nn) ∨ (vnn = Null)) then
14 Center ← Center ∪ {vi}
15 vi.SetClusterId(i)
16 V ← V − {vi}

17 until (vi ∈ V )

between them is for both the outgoing edge with the highest weight (line 13,
i = k), then one of them is assumed as center (line 14) and the other will belong
to the same cluster in the next round. For selecting the center in this case we
make use of initially assigned (line 1) vertex priorities as done in the sequential
algorithm. Hence, the vertex with higher priority is considered as center (line 16,
i > nn). If a vertex is not connected to any other vertex (line 13, vnn = Null),
it is a singleton. The algorithm iterates until all vertices are assigned to a cluster
(line 17).

We implemented parallel Center using the Scatter-Gather model (see Algo-
rithm 2). The algorithm applies two phases that are iteratively executed for all
vertices. Phase 1 (Scatter1, Gather1) finds for each vertex vi its neighboring
vertex with the currently highest edge weight, and phase 2 (Scatter2, Gather2)
processes the status of the found vertex and assigns vi to an existing cluster or
considers it as a center. Again, we initially assign a priority per vertex (line 3). In
phase 1, for each vertex vi the neighbor with the K-highest edge weight (nearest
neighbor NN) is found (lines 13–21). K is a helper variable. It helps to prevent
that already assigned vertices are chosen again as neighbor. It is attached to
each vertex and initialized with 1 (lines 5–7). It will be incremented in phase 2
when a vertex neighbor has been assigned to a cluster (lines 39–41). In phase 2,
all neighbors of a vertex vi are sorted and processed in descending order of the



Comparative Evaluation of Distributed Clustering Schemes 285

Algorithm 2. Parallel Center with
Scatter-Gather
Data: G = (V, E)

1 Algorithm Center

2 assignVertexPriorities(V )
/* set priority according to a

random permutation of vertices /*

3 for (vi ∈ V ) do
4 vi.K ← 1
5 end
6 repeat
7 Phase1: Scatter1 (Vertex)
8 Gather1 (Vertex, MessageIterator)

Phase2: Scatter2 (Vertex)
9 Gather2 (Vertex, MessageIterator)

10 until (V �= {})

11 Procedure Scatter1 (Vertex v)
12 for (e ∈ getOutEdges()) do
13 msg.Src ← v.getId()
14 msg.Weight ← e.getWeight()
15 sendMessageTo(edge.target(),msg)
16 end

17 Procedure Gather1 (Vertex v, MessageIterator messages)
18 Array ← messages.Sort()

/* Messages are sorted based on

their weights descendingly */

19 v.NN ← Array[v.K].getSrc()

20 Procedure Scatter2 (Vertex v)
21 msg.Src ← v.getId()
22 msg.NN ← v.getNN()
23 msg.Priority ← v.getPriority()
24 for (e ∈ getOutEdges()) do
25 msg.Weight ← e.getWeight()
26 sendMessageTo(edge.target(),msg)
27 end

28 Procedure Gather2 (Vertex v, MessageIterator messages)
29 Array ← messages.Sort()

/* sorted based on weights

descendingly */

30 for (i : v.K → Array.Size()) do
31 m ← Array[i]
32 if (m.getSrc().isCenter()) then
33 v.ClustereId ← m.getId()
34 v.assigned ← true
35 break

36 end
37 else if (m.getSrc().isAssigned()) then
38 v.K + +
39 end
40 else if (v.NN= Null ∨ (v.NN = m.getSrc() ∧

v.Priority > m.getPriority()) ) then
41 v.ClustereId ← m.getSrc()
42 v.center ← true
43 v.assigned ← true
44 break

45 end

46 end

edge weights (for the edge to vi) (lines 32–38). Then vertex vi is set as center
similar to Algorithm 1 (lines 42–47).

4.3 Merge Center

The Merge Center clustering algorithm [8] is a modified version of Center. In
contrast to Center, it merges two clusters if a vertex in one cluster is similar to
the center of another cluster. Our parallel implementation for Merge Center is
very similar to parallel Center but applies an extra iteration for merging clusters.
This iteration is initiated right after all vertices are assigned to a cluster. The
merge processing is repeated until there are no further cluster changes.

4.4 Star Clustering

The Star clustering algorithm [1] initially computes the degree for each vertex
of the similarity graph. Then in each iteration, the unassigned vertex with the
highest degree becomes center and all its direct neighbors are assigned to its
cluster. The algorithm terminates when all vertices are assigned to a cluster. In
contrast to all other clustering approaches, Star clustering can result in overlap-
ping clusters. As a consequence, it introduces the need of a post-processing to
select the best cluster for entities that have been assigned to several clusters.

Our parallel version of the Star algorithm is described in Algorithm 3. Ini-
tially, the degree of all vertices is computed and if the degree of a vertex is greater
than the degree of all its neighbors, that vertex becomes a center (lines 4–7).
If the degree of two adjacent vertices is equal, the one with higher priority is



286 A. Saeedi et al.

Algorithm 3. Parallel Star
Data: G = (V, E)

1 V ← {v1, ..., vn}
/* A random permutation of vertices */

2 Center ← {}
3 repeat
4 for (vi ∈ V ) in Parallel do
5 vmax ← argmax

vj∈{vj |e(vi,vj)∈E}∪{vi}
(ComputeDegree(vj)))

6 if (vi = vmax) then
7 Center ← Center ∪ {v}
8 for (vi ∈ V ) in Parallel do
9 for (e(vi, vj) ∈ E) do

10 if (vj ∈ Center) then
11 vi.addClusterId(vj .getId())
12 V ← V − {vi}

13 until (V �= {})

assumed as center. Similar to the previous parallel algorithms, vertex priority
is initially determined by generating a random permutation of vertices (line 1).
Then each center and all its neighbors are considered as a cluster. (lines 8–12).
The Scatter-Gather version of Algorithm 3 uses three phases. In the first phase
the degree of each vertex is computed. In the second phase, centers are selected,
and in the final phase, clusters are grown around centers.

We use two methods for computing the degree of vertices resulting into algo-
rithms Star-1 and Star-2. For Star-1, we count the number of outgoing edges of
a vertex, while Star-2 is based on the average similarity degrees of the outgoing
edges of a vertex.

4.5 Correlation Clustering

The original correlation clustering approach [2] uses a graph with positive and
negative edge weights to indicate whether two vertices are similar (positive edge
weight) or dissimilar (negative edge weight). The goal is to find a clustering that
either maximizes agreements (sum of positive edge weights within a cluster plus
the absolute value of the sum of negative edge weights between clusters) or min-
imizes disagreements (absolute value of the sum of negative edge weights within
a cluster plus the sum of positive edge weights across clusters). Gionis et al.
propose an approximate and iterative solution for this optimization problem [6]
that randomly selects an unassigned vertex as a cluster center in each round.
Then all unassigned neighbors of the selected center are added to the cluster
and marked as assigned. The algorithm terminates when there is no unassigned
vertex left.



Comparative Evaluation of Distributed Clustering Schemes 287

This simple algorithm suffers from too many rounds making it unsuitable for
very large graphs. Some studies therefore proposed parallel solutions [3,16] that
select multiple centers in each round. They also address the newly introduced
concurrency problem to avoid that a vertex is assigned to more than one center
at a time. We implemented the parallel pivot approach of [3], called CCPivot,
since it fits well the Scatter-Gather paradigm. In each round of this algorithm,
several vertices are considered as active nodes, i.e., as candidates for becoming a
cluster center (or pivot). In the next step, active nodes that are adjacent to each
other are removed from the set of active nodes; the remaining vertices become
centers. Then adjacent vertices of each center are assigned to that center and
form a cluster. If one vertex is adjacent of more than one center at the same
time, it will belong to the one with higher priority. As in the other algorithms,
the vertex priorities are determined in a preprocessing phase.

Our Scatter-Gather implementation of this algorithm uses three Scatter-
Gather phases: one for computing the current maximum degree of the graph,
one for selecting active nodes and applying the concurrency-aware rule to select
final centers, and one for growing clusters around centers.

5 Evaluation

The goal of our evaluation is to comparatively evaluate the effectiveness and
efficiency of the considered clustering approaches and their distributed imple-
mentations for different datasets and configurations. We first describe the used
datasets from three domains and the considered configurations. We then analyze
the relative match and clustering effectiveness of the clustering schemes. Finally
we evaluate the runtime performance and scalability of the approaches.

5.1 Datasets and Configuration Setup

For our evaluation we use datasets from three domains for different numbers of
duplicate-free sources. Table 3 shows the main characteristics of the datasets in
particular the number of clusters and match pairs of the perfect ER result. The
smallest dataset DS1 contains geographical real-world entities from four different
data sources (DBpedia, Geonames, Freebase, NYTimes) and has already been
used in the OAEI competition2. For our evaluation we focused on a subset of
settlement entities as we had to manually determine the perfect clusters and
thus the perfect match pairs.

For the two larger evaluation datasets DS2 and DS3 we applied advanced
data generation and corruption tools [9] to be able to evaluate the ER quality
and scalability for larger datasets and a controlled degree of corruption. DS2
is based on real records about songs from the MusicBrainz database but uses
the DAPO data generator to create duplicates with modified attribute values
[9]. The generated dataset consists of five sources and contains duplicates for

2 OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/.

http://oaei.ontologymatching.org/2011/instance/


288 A. Saeedi et al.

Table 3. The specifications of datasets.

Domain Attributes #entities #sources #perfect
match pairs

#clusters

Geographical
(DS1)

label, longitude,
latitude

3,054 4 4,391 820

Music (DS2) title, length, artist,
album, year,
language

20,000 5 16,250 10,000

Persons
(DS3)

name, surname,
suburb, postcode

5,000,000
10,000,000

5
10

3,331,384
14,995,973

3,500,840
6,625,848

50% of the original records in two to five sources. All duplicates are generated
with a high degree of corruption to stress-test the ER and clustering approaches.
DS3 is based on real person records from the North-Carolina voter registry and
synthetically generated duplicates using the tool GeCo [5]. We consider two
configurations with either 5 or 10 sources each having 1 million entities; i.e. we
process up to 10 million person records. Each source is duplicate free, but 50% of
the entities are replicated in all sources without any corruption. Moreover, 25%
of entities are corrupted and replicated in all sources, and the remaining 25%
are corrupted but present in only some sources. For the generation of corrupted
records we applied a moderate corruption rate of 20%, i.e., most attribute values
remained unchanged.

Table 4. Default blocking and match configuration for different datasets.

Dataset Blocking key Similarity functions Match rule

DS1 prefixLength1(label) sim1: Jarowinkler (name) sim1 ≥ θ &

sim2: geographical distance sim2 ≤ 1358 km

DS2 prefixLength1(album) sim1: 3Gram (title) sim1 ≥ θ

DS3 prefixLength3(surname) sim1: Jarowinkler (name) sim1≥ 0.9 &

sim2: Jarowinkler (surname) sim2 ≥ 0.9 &

sim3: Jarowinkler (suburb) sim3 ≥ θ &

sim4: Jarowinkler (postcode) sim4 ≥ θ

To generate the similarity graphs for the different datasets as the input of
the clustering schemes we experimented with a large spectrum of blocking and
match configurations. Due to space restrictions, we will mostly report results only
for the default configurations specified in Table 4 that resulted already in good
match quality even without clustering. All configurations apply standard block-
ing with different blocking keys. The match rules compute different attribute
similarities using either string similarity functions (Jarowinkler, 3gram) or geo-
graphical distance as well as variable similarity thresholds θ.



Comparative Evaluation of Distributed Clustering Schemes 289

5.2 Match Quality of Clustering Approaches

To evaluate the ER quality of our clustering results we use the standard metrics
precision, recall and their harmonic mean, F-Measure. These metrics are deter-
mined by comparing the computed match pairs (derived from the computed
clusters assuming that all entities in a cluster match) with the perfect match
results.

Input Graph Precision Recall F-Measure

D
S1

D
S2

D
S3

-1
0
Pa
rt
ie
s

Fig. 3. Match quality of clustering-based ER approaches.

In Fig. 3, we compare the obtained precision, recall and F-measure results
for the six clustering schemes, different similarity thresholds θ and our three
datasets using the default configurations from Table 4 to determine the initial
similarity graphs. On the left, we also show the precision, recall and F-measure
values obtained already with the similarity graphs. We observe that for DS1 and
DS3 we achieve a relatively high F-measure of more than 0.9 and 0.8 for the
considered θ range between 0.75 and 0.9. By contrast, for the noisy data records
of DS2 we had to lower the similarity thresholds to values between 0.35 and 0.45
and still could not exceed a maximal F-measure of 0.73 underlining that DS2
represents a more difficult match problem than DS1 or DS3.

Comparing the clustering schemes, we observe that there are substantial
differences in their relative match quality. Connected components reaches the



290 A. Saeedi et al.

lowest F-measure for all datasets and almost all threshold values because it
suffers from very poor precision values. Merge Center (MCenter) shows a similar
behavior in terms of poor precision and F-measure, indicating that the merging of
clusters can often lead to wrong cluster decisions. From the four better clustering
schemes, Star-1 has the lowest F-measure (especially for lower values of the
similarity threshold values) while the other three are close together and relatively
robust against changes in the threshold value. These approaches, Center, Star-
2 and CCPivot, achieve not only a high recall but also a good precision for
lower thresholds. For higher thresholds they can further improve precision by
smartly eliminating only wrong matches while keeping almost all correct ones.
The high quality of Center comes from its initial focus on edges with high weights
thereby ignoring edges with lower similarity. Star-2 is better than Star-1 since its
degree-based selection of cluster centers is based on a high degree of similarity
to neighbors rather than only the number of neighbors. CCPivot is apparently
also able to select high quality clusters.

3SD2SD1SD

Fig. 4. Average F-measure results with range between minimal and maximal values

These observations are confirmed by Fig. 4 showing the average F-measure
results of the clustering schemes over all threshold configurations. The vertical
lines also show the F-measure spread between the minimal and maximal value.
We again observe the low and highly variable match quality of connected com-
ponents and MergeCenter. By contrast, the algorithms CCPivot, Center, and
Star-2 are more robust and achieve the highest F-measure values.

5.3 Runtimes and Speedup

We determined the runtimes of the clustering algorithms on a cluster with 16
worker nodes. Each worker consists of an E5-2430 6(12) 2.5 GHz CPU, 48 GB
RAM, two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected
via 1 Gigabit Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.1.2.
We run Apache Flink standalone with 6 threads and 40 GB memory per worker.
In our experiments, we vary the number of workers by setting the parallelism



Comparative Evaluation of Distributed Clustering Schemes 291

parameter to the respective number of threads (e.g., 4 workers correspond to 24
threads). The runtime of all algorithms is measured for the largest dataset DS3
with 5 and 10 parties applying the configuration from Table 4 with θ = 0.80.
The DS3 input datasize is thus doubled for 10 parties compared to 5 parties.
We only evaluate the runtimes for the clustering algorithms since the time to
determine the similarity graphs is the same for all clustering approaches. Some
clustering approaches could not be executed for 1 or 2 workers only due to high
memory requirements. We thus evaluate the runtimes for configurations between
4 and 16 workers. Table 5 shows that the runtimes for the two DS3 datasets. The
increased dataset size for 10 parties leads to higher runtimes for all algorithms
although to different degrees. As expected, the fastest runtimes are achieved by
the simple connected components approach. By contrast, CCPivot has the worst
runtimes due to large memory requirements and a high message overhead. For
the bigger dataset (10 parties) the approach suffered from out-of-memory errors
and could only be executed for 16 workers. From the three clustering schemes
achieving the best matching quality (Star-2, Center, CCPivot), Star-2 achieves
by far the fastest runtimes in all configurations making it a good default strategy
for clustering.

Except for connected components, all algorithms can reduce their runtimes by
applying more workers, especially for the larger dataset with 10 parties. Figure 5
shows the resulting speedup values. For DS3 with 5 parties, all algorithms except
the slow CCPivot achieve an almost linear speedup. For the bigger dataset with
10 parties, speedup values are even better and partly super-linear. The lat-
ter, however, is an artifact for the slower algorithms like MCenter that perform
poorly for 4 workers because of memory bottlenecks (its runtime for 4 workers
is almost 6 times higher for 10 parties than for 5 parties). The substantially
increased aggregate memory capacity for 8 and 16 workers thus enabled super-
linear runtime improvements but without reaching the absolute runtimes of fast
algorithms like Star-2.

Table 5. Runtimes (seconds)

dataset DS3 - 5 parties DS3 - 10 parties

#workers 4 8 16 4 8 16

ConCom 51 57 55 101 79 79

CCPivot 1530 1008 688 – – 1303

Center 390 208 117 1986 864 423

MCenter 640 349 194 3767 1592 695

Star-1 288 149 85 783 367 197

Star-2 214 124 67 720 317 173



292 A. Saeedi et al.

a. Speedup (DS3-5 parties) b. Speedup (DS3-10 parties)

Fig. 5. Runtimes and speedup

6 Conclusions and Outlook

We presented a new framework called Famer enabling the parallel execution
of ER workflows using the Big Data framework Apache Flink. Famer supports
entity resolution for multiple data sources and groups all matching entities within
clusters. For parallel clustering we currently support six approaches that have
been evaluated for datasets from three domains. The evaluation showed that
three clustering approaches (Center, Star-2 and CCPivot correlation cluster-
ing) achieve a similarly high match quality that is clearly superior to a simple
connected components scheme. The parallel implementations of the clustering
approaches mostly achieve good speedups, especially for larger datasets thereby
supporting high scalability. Star-2 achieves lower runtimes than Center and espe-
cially CCPivot so that it is a good default approach for clustering-based ER.

In future work, we will further extend and improve Famer, e.g., by post-
processing cluster results to find additional matches or resolve overlapping clus-
ters for Star clustering. We also aim at developing incremental ER strategies that
can incorporate new entities and data sources into already existing clusters.

Acknowledgement. This work was partly funded by the German Federal Ministry of
Education and Research within the project Competence Center for Scalable Data Ser-
vices and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B). Also, evaluations
partly performed on the Galaxy-Infrastructure at Leipzig University.

References

1. Aslam, J., Pelekhov, E., Rus, D.: The star clustering algorithm for static and
dynamic information organization. J. Graph Algorithms Appl. 8, 95–129 (2004)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proceedings of the
Foundations of Computer Science, pp. 238–247. IEEE (2002)

3. Chierichetti, F., Dalvi, N., Kumar, R.: Correlation clustering in MapReduce. In:
Proceedings of the ACM SIGKDD Conference, pp. 641–650 (2014)



Comparative Evaluation of Distributed Clustering Schemes 293

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012)

5. Christen, P., Vatsalan, D.: Flexible and extensible generation and corruption of
personal data. In: Proceedings of CIKM, pp. 1165–1168 (2013)

6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.
Discov. Data (TKDD) 1(1), 4 (2007)

7. Hassanzadeh, O., Chiang, F., Lee, H., Miller, R.: Framework for evaluating clus-
tering algorithms in duplicate detection. PVLDB 2(1), 1282–1293 (2009)

8. Hassanzadeh, O., Miller, R.: Creating probabilistic databases from duplicated data.
VLDB J. 18(5), 1141–1166 (2009)

9. Hildebrandt, K., Panse, F., Wilcke, N., Ritter, N.: Large-scale data pollution with
Apache Spark. IEEE Trans. Big Data (2017)

10. Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analy-
sis of big graph data: current systems and open challenges. In: Zomaya, A.Y., Sakr,
S. (eds.) Handbook of Big Data Technologies, pp. 457–505. Springer, Cham (2017).
doi:10.1007/978-3-319-49340-4 14

11. Junghanns, M., Petermann, A., Teichmann, N., Gómez, K., Rahm, E.: Analyz-
ing extended property graphs with Apache Flink. In: Proceedings of the ACM
SIGMOD Workshop on Network Data Analytics (2016)

12. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with Hadoop.
PVLDB 5(12), 1878–1881 (2012)

13. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl.
Eng. 69(2), 197–210 (2010)

14. Mestre, D., Pires, C., Nascimento, D., de Queriroz, A., Santos, V., Araujo, T.: An
efficient Spark-based adaptive windowing for entity matching. J. Syst. Softw. 128,
1–10 (2017)

15. Nentwig, M., Groß, A., Rahm, E.: Holistic entity clustering for linked data. In:
IEEE ICDMW (2016)

16. Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.:
Parallel correlation clustering on big graphs. In: Advances in Neural Information
Processing Systems, pp. 82–90 (2015)

17. Rahm, E.: The case for holistic data integration. In: Pokorný, J., Ivanović, M.,
Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 11–27. Springer,
Cham (2016). doi:10.1007/978-3-319-44039-2 2

http://dx.doi.org/10.1007/978-3-319-49340-4_14
http://dx.doi.org/10.1007/978-3-319-44039-2_2



