
Hybrid Integration of
Molecular-biological Annotation Data

Toralf Kirsten†, Hong-Hai Do†, Christine Körner*, Erhard Rahm†‡

†Interdisciplinary Centre for Bioinformatics, University of Leipzig
http://www.izbi.de, {kirsten, do}@izbi.uni-leipzig.de

‡Dept. of Computer Science, University of Leipzig
http://dbs.uni-leipzig.de, rahm@informatik.uni-leipzig.de

*Fraunhofer Institute, St. Augustin
http://www.ais.fraunshofer.de, christine.koerner@ais.fraunhofer.de

Abstract: We present a new approach to integrate annotation data from public
sources for the expression analysis of genes and proteins. Expression data is mate-
rialized in a data warehouse supporting high performance for data-intensive analy-
sis tasks. On the other hand, annotation data is integrated virtually according to
analysis needs. Our virtual integration utilizes the commercial product SRS (Se-
quence Retrieval System) of LION bioscience. To couple the data warehouse and
SRS, we implemented a query mediator exploiting correspondences between mo-
lecular-biological objects explicitly captured from public data sources. This hybrid
integration approach has been implemented for a large gene expression warehouse
and supports functional analysis using annotation data from GeneOntology, Locus-
link and Ensembl. The paper motivates the chosen approach, details the integration
concept and implementation, and provides results of preliminary performance
tests.

1 Introduction
After the complete genomes of various organisms have been sequenced, the focus of
genomic research has shifted to studying and comparing the functions of genes and their
products. The knowledge about molecular-biological objects, such as genes, proteins,
pathways etc., is continuously collected, curated and made available in hundreds of pub-
licly accessible data sources [Ga04]. The high number of the data sources and their het-
erogeneity renders the integration of molecular-biological annotation data for functional
analysis a major challenge in the bioinformatics domain.
To illustrate the data we have to deal with, shows a sample annotation for a
gene uniquely identified by accession number 15 in the public source Locuslink [PM02].
The entry comprises different descriptions, which we group into annotation and mapping
data. Annotation data consists of source-specific attributes, such as Product and Alter-
nate Symbols. In contrast, mapping data refers to inter-related objects in other sources
and is typically represented by web links. The objects are identified by their source-
specific accession ids, for example, gene locus 15 in LocusLink, gene cluster Hs.431417
in UniGene [Wh03], or enzyme 2.3.1.87 in Enzyme [Ba00]. We denote the set of corre-
spondences between objects of two data sources as a mapping. Inter-relating objects by
mappings allows combining the annotation knowledge from multiple sources for analy-

Figure 1

sis. In the example, the analysis of LocusLink genes can be enriched by annotations of
the referenced GeneOntology [As00] or UniGene objects.

Legend: Annotation Data

Identifier

Descriptions,
Synonyms etc.}

Figure 1: Annotation and Mapping Data in Locuslink

Mapping Data (incl. Data Source)

Enzyme

GeneOntology}

OMIM
UniGene
KEGG

Establishing and browsing web links represent a first step to integrating different
sources, which, due to its simplicity, is widely used. Unfortunately, web links only sup-
port interactive analysis for single objects at a time, but not automatic analysis for large
sets of objects. Such a set-oriented analysis capability is especially needed for high-
throughput expression analysis. In this paper we present a new approach to integrate
annotation data from public sources for expression analysis. Large amounts of expres-
sion data generated by microarray experiments are physically stored together with ex-
perimental descriptions in a data warehouse to support performance-critical analysis
tasks. Annotation data, on the other hand, is virtually integrated by a query mediator
which utilizes the commercial product SRS (Sequence Retrieval System) to access anno-
tation data of public data sources.
The key aspects of our approach are:
• We combine a materialized and a virtual data integration to exploit their advantages in

a new hybrid approach. On the one hand, the data warehouse offers high performance
for complex analysis tasks on large amounts of expression data. On the other hand,
up-to-date annotation data can be retrieved for analysis when needed.

• Public data sources are uniformly integrated and accessed through the widely ac-
cepted SRS tool, which offers wrapper interfaces to a large number of molecular-
biological data sources, including flat files and relational databases. Hence, we avoid
the re-implementation of import functions and can easily add sources supported by
SRS.

• We explicitly extract mapping data from the data sources and store them in a separate
database, the so-called mapping database. This separation allows us to determine dif-

ferent join paths between two sources to relate their objects with each other and to
pre-compute them for good query performance.

• The approach has been implemented as an extension to the GeWare platform (gene
expression warehouse) [KDR03, KDR04] and integrates several public data sources
to support the expression analysis. The web interface is accessible under
http://www.izbi.de/GEWARE. Performance tests have shown the practicability of our
approach.

The rest of the paper is organized as follows. Section 2 discusses related integration
approaches. Section 3 describes two main analysis scenarios and their integration re-
quirements. Section 4 gives an overview of our integration concept. Section 5 and 6
describe the central components and their function in more detail, namely the mapping
database and the query mediator, respectively. Section 7 presents the results of selected
performance tests. Section 8 concludes the paper.

2 Related Work
An overview of representative approaches used for data integration in the bioinformatics
domain is given by [LC03], [HK04] and [St03]. Previous solutions mostly follow either
a materialized or a virtual integration approach. The former approach physically stores
the data in a central database or data warehouse, which can offer high performance for
data-intensive analysis tasks. The latter approach typically uses a mediator to perform
data access at run time and provide the most current data. In the following we discuss
some of these approaches and how they differ from our approach.
Similar to our approach the mediator-based systems DiscoveryLink [Ha01], Kleisli
[CCW03, Wo98] and SRS [EHB03, ZD02] do not pursue a (laborious) semantic integra-
tion of all data sources by constructing an application-specific global schema. They use a
simple schema comprising of the sources and their attributes, which makes it relatively
easy to add new data sources. Currently, Kleisli offers interfaces to more than 60 public
sources and SRS provides wrappers to more than 700 data sources. Typically, complete
copies of data sources are maintained locally and periodically updated for availability
and performance reasons. As the price for flexibility, DiscoveryLink and Kleisli leave
the task of semantically integration to the responsibility of the user. In particular, the
user has to explicitly specify join conditions in queries to relate objects/data from differ-
ent sources with each other.
SRS and our approach address this problem by capturing and utilizing existing map-
pings, i.e. correspondences at instance level. SRS maintains indices on these mappings
and thus can achieve high query performance. However, SRS only uses the shortest path
between two sources as the join path to relate their objects with each other. This repre-
sents a restriction as the user may have another preference. Moreover, alternate paths
may yield better results than the shortest path [La04]. Therefore, our approach aims at a
more flexible and efficient computation of join operations by a) supporting multiple
alternative paths and b) pre-computing joins between the sources to a previously deter-
mined central source so that join paths with a maximal length of 2 are possible via the
central source.
COLUMBA [Ro04] physically integrates protein annotations from several sources into a

local database. Source data is imported mainly in its original schema to reduce the effort
required for schema integration and data import as much as possible. The source sche-
mas are connected using a mapping to a previously selected central source, the Protein
Data Bank (PDB). We also use this technique to construct our mapping database. In
contrast to COLUMBA, which only allows a single mapping between a source and the
central source, we support multiple mappings, each of which may be pre-computed using
a different join path.
ALADIN (Almost Automatic Data Integration) [LN05] generalizes the COLUMBA
approach for integrating different kinds of annotation data. A main extension is in the
automatic analysis of instance data to detect object associations and duplications. This
work is orthogonal to ours and helps to establish new mappings. We are currently focus-
ing on utilizing existing mappings and their compositions.
Our GenMapper [DR04] tool also follows a physical integration of annotation data by
using a generic schema called GAM (Generic Annotation Model). The GAM stores both
(intra-) associations between objects of the same source and (inter-) association between
objects of different sources. High-level operators are used to generate annotation views
for different analysis purposes. However, GAM focuses specifically on mapping data
and cannot handle data with complex structures, such as geometric data of protein fold-
ing structures and genomic sequences. Our hybrid approach uses GenMapper to pre-
compute mappings for different join paths, which are then imported into the mapping
database.

3 Integration Requirements for Analysis
Figure 2

Annotation AnalysisExpression Analysis
Identification of relevant genes / proteins
with annotation data

Identification of relevant genes / proteins
with expression data

Expression value
P-value
…

Expression value
P-value
…

Molecular Function
Gene location
Protein
Disease
…

Molecular Function
Gene location
Protein
Disease
…

DWH Gene-/Protein
Groups

SRS

Figure 2: Different Analysis Scenarios

 shows two common analysis scenarios in the bioinformatics domain, namely
expression and annotation analysis. Expression analysis detects and compares the gene
and protein activity under different circumstances, such as in normal and diseased tis-
sues. The main goal is to identify groups of genes or proteins, showing consistently
similar or different expression patterns. For example, genes, which are highly active in
tumor cells but not in normal cells, could be responsible for the uncontrolled prolifera-
tion of the tumor cells. Analyzing the annotations of those genes can reveal the similari-
ties and differences in their currently known functions and infer new gene functions. On
the other side, searching in annotation data allows to generally identify genes or proteins
with similar functions. This gene / protein groups can be used as input for expression
analysis to get insights about their expression behavior.

The usage of annotation data in these scenarios, leads to the following requirements for
the integration task.

• Flexibility and adaptability: Public data sources are constantly extended and modified

at the instance level and also underlie changes at the schema level. Hence, it is impor-
tant to access current data. Furthermore, the high number of relevant sources presup-
poses a flexible solution to easily "plug in" a new source when needed. Both observa-
tions motivate a virtual integration of annotation data and favor the utilization of a
powerful infrastructure such as SRS.

• Inter-source mappings: Depending on the research focus of the user, different kinds
of annotations may be required for different types of objects. This presupposes the
ability to flexibly associate annotations with objects from different sources. For in-
stance, it should be possible to determine functions, e.g. as expressed in GeneOntol-
ogy terms, for genes in Locuslink, UniGene, NetAffx etc. In addition, filters, such as
exact and pattern matching, and their combinations are necessary to identify interest-
ing objects. Finally, alternative join paths should be supported due to the high degree
of interconnectivity between sources.

• Data quality: Annotations from different sources may largely vary in data quality, e.g.
due to different update frequencies and algorithms to calculate object homology. To
support user acceptance it is necessary to document how the data has been integrated,
e.g. from which source and using which join paths, so that the user can judge its qual-
ity.

• Performance: Query performance is obviously of key importance for the user accep-
tance in interactive analysis. Therefore, the physical integration using a data ware-
house is recommended for large amounts of expression data. Mediator-based query
processing should also be optimized, especially the execution of resource-intensive
join operations to relate objects from different public sources. Hence, advanced tech-
niques, such as indexing or pre-computation and materialization of common join
paths should be applied to improve query time.

4 Integration Architecture

4.1 Overview
According to the integration requirements described in the last section, we have designed
and implemented a hybrid integration system. Its architecture is illustrated in a
comprising the following components:

Figure 3

• GeWare, a data warehouse supporting expression analysis, is used as integration and
test platform for our approach.

• SRS is used to query and retrieve annotations from the relevant public sources. Cur-
rently the following sources are integrated: the widely used GeneOntology as well as
the gene sources Locuslink, Ensembl [Bi04, Po04], UniGene, and the vendor-based
source NetAffx [Ch04] providing annotations for the genes of Affymetrix microar-
rays.

• Our query mediator acts as the interface between GeWare and SRS. It transforms
user-specified queries into SRS-specific queries which are then forwarded to SRS for
execution. Finally, the query mediator combines the results delivered by SRS, per-
forms necessary transformations, and visualizes them on the user web interface.

• The mapping database stores pre-computed mappings between the sources. For each
source, the mapping database maintains a mapping table storing all correspondences
between the source and a pre-selected central source. This star-like schema makes it
possible to efficiently perform join operations through the central source.

• The ADM database serves administration purposes and stores metadata about the
integrated sources, such as their names, attributes and the information about the avail-
able mappings (mapping names, and join paths used to compute them). We utilize this
metadata to automatically generate the web interface for query formulation.

Query Mediator

SRS Server

Mapping-DB

GeneOntology Ensembl LocusLink

HTML
Client

Server

GeWare

DWH
DWH

SRS Server

GeneOntology Ensembl LocusLink

HTML

GeWare
Read Metadata: DB,
Attributes, Mappings

GUI-Generation Query Spec.:
Filter, Joins

Creation of
SRS-Queries

SRS-Query
Processing

Result Stream
(XML)

Display of
results

1

2

3

4

6

9

7

Transformation of
the Result Stream8

SRS Call 5

a) Architectur Overview b) Query Processing

Mapping-DB

ADM-DB ADM-DB

DWH

Query Mediator

Figure 3: Integration approach and corresponding components

The next two subsections describe the interaction between the components in two main
processes, the integration of data sources and query processing, respectively. In Section
5 and Section 6, we focus on the issues of metadata management within the mapping and
ADM database, and of query processing in the query mediator, respectively.

4.2 Data Source Integration
The comprehensive wrapper library provided by SRS supports numerous data sources
available in the bioinformatics domain and allows us to easily add new sources. In par-
ticular, we use these wrappers to integrate the flat file-based source Locuslink and two
relational databases, Ensembl and GeneOntology. To achieve good performance for
interactive queries, we maintain local copies of these data sources for integration in SRS.
The ADM database holds metadata about the sources, especially the names of the
sources and their attributes.

In our approach, the data sources are organized in a star-like schema supporting efficient
join queries. For each object type, one of the sources is chosen as the central source, to
which mappings from all other sources of this type are pre-computed. For example,
Locuslink is a reference data source for gene annotations. Its identifier, the Locuslink
accession, is linked in many other sources and often used for citations in scientific publi-
cations. Hence, we choose Locuslink as the central gene source in our current implemen-
tation to support gene expression analysis. To construct the mapping database, we import
the mappings from Locuslink to all other sources, in particular to UniGene, Ensembl,
NetAffx and GeneOntology, which are pre-computed and provided by GenMapper
[DR04]. To link a source with the central source, alternative mappings can be computed
using different join paths and imported. Each mapping is then registered in the mapping
database with the path employed to compute them (see Section 5).

4.3 Query Processing
Figure 3b shows the general workflow of query processing in our system (see Section 6
for more details). The workflow starts with querying metadata about the available
sources, attributes and mappings from the ADM database (Step 1). Using this metadata,
the web interface is automatically generated (Step 2). Then, the user can formulate the
query by selecting the data sources and relevant attributes, and specifying filter condi-
tions and join paths (Step 3). The query mediator interprets the user query and generates
a query plan, which consists of one or multiple SRS-specific queries (Step 4). The query
plan is passed to the SRS server for execution (Step 5 and 6). While subqueries for selec-
tion and projection are performed within the corresponding sources, SRS uses the map-
ping database to perform join operations. The query result is then returned as one or
multiple XML stream (Step 7). The query mediator parses the streams to extract the
relevant data (Step 8), which is then prepared in different formats, e.g. HTML for dis-
playing on web browser, and CSV for download (Step 9).

5 Metadata Management

5.1 The Mapping Database
Previous integration systems, such as SRS and GenMapper, determine corresponding
objects between two sources using a multi-way join operation along the shortest, auto-
matically determined path connecting them with each other. This approach leads to sev-
eral problems. First, the shortest path may not always be the best one for joining two
particular sources. Other (probably longer) paths may deliver better data, e.g., if the
involved sources are updated more frequently than those in the shortest path. Second, the
composition of many mappings can lead to performance problems, even for the shortest
paths, if they are to be evaluated at run time. One solution to improve query time is to
pre-compute and materialize all possible paths in the database. However, this would lead
to an enormous amount of mappings and object correspondences (complexity O(n2) with
n sources) which is fairly impractical to manage and update. We address these problems
on the one hand by supporting several alternative paths, which can be selected by the
users according to their preference or analysis needs. On the other hand, instead of pre-
computing join paths between all sources, we identify a central source and pre-compute
only the join paths between the remaining sources to the central source, through which

the join operations are performed at run-time.

Similarly to COLUMBA, the data sources are connected in a star-like (multidimen-
sional) schema in our approach. In contrast to COLUMBA, we maintain the mappings in
a separate database for optimized join processing and support alternative mappings bet-
ween a source and the central source. a shows the database schema of the map-
ping database. There is a center table for the central source and a mapping table for each
additional data source. All objects of the central source are uniquely identified by the
key Center_ID. These ids are used as foreign keys in the mapping tables to represent the
object relationships at the instance level. Note that a mapping table is used to maintain
all mappings of different paths between the respective source and the central source.
Each path is identified by a Path_Id identifier referring to a specific path which has been
used to pre-compute the mappings. Every supported path is described in the ADM data-
base including metadata such as its name and the involved intermediate sources (see
Subsection 5.2).

Figure 4

Source
Db_Id
Db_Name

Path
Db_Id
Path_Id
Path_Name

Attribut
Db_Id
Attribut_Id
Attribut_Name
SRS_Name

N

1

N

1

b) Schema of the ADM-Databasea) Schema of the Mapping-Database

1N

Center_NetAffx
Center_Id
NetAffx _Accession
Path_Id

Center_GeneOntology
Center_Id
GeneOntology_Accession
Path_Id

Center_LocusLink
Center_Id
LocusLink _Accession
Path_Id

Center_Ensembl
Center_Id
Ensembl_Accession
Path_Id

Center
Center_Id
Center_Accession

1
N

1
N

1
N

Center_UniGene
Center_Id
UniGene _Accession
Path_Id

N
1

Center_...
Center_Id
Accession
Path_Id

N1

Figure 4: Metadata Management in ADM and Mapping Database

For example, assume we want to relate genes from UniGene with annotations from En-
sembl. Neither UniGene nor Ensembl maintain a direct mapping to each other. Hence it
is necessary to relate their objects through common objects in other sources. By analyz-
ing the set of available mappings, we could identify UniGene-Locuslink-NetAffx-
Ensembl as a possible join path. Without pre-computation, three mappings, each between
two neighbor sources in the path, have to be retrieved and successively composed. In our
implementation, the mapping table Center_UniGene provides a direct mapping Locus-
link-UniGene. The mapping table Center_Ensembl contains the mapping Locuslink-
Ensembl, which has been previously pre-computed using the path Locuslink-NetAffx-
Ensembl. Hence, we need only to join these two mappings.
The number of the mappings to be pre-computed and materialized in the mapping data-
base is linear with the number of the sources to be integrated. The support for alternative
join paths does not affect the linear complexity (k*n mappings with n sources with k
alternative mappings on average per source). New annotation sources can easily be
added by creating new mapping tables to hold the corresponding mapping data. This
does not affect the run-time complexity because the join operations within the mapping
database never involve more than 2 mappings (source-center-source). Mapping tables
for sources that are no longer required can be removed. Storing mapping data for each

source in separate mapping tables simplifies the data update task. In particular, a map-
ping can be easily updated by deleting it and inserting the new one. The local copies of
annotation sources can be independently replaced in SRS by a new version.
The prerequisite to integrate a new source is that there is at least one mapping path be-
tween it and the central source or that such a path can be constructed by joining existing
paths. Therefore, the selection of the central source plays an important role in this inte-
gration approach. Quality criteria, such as update frequency and acceptance by the users,
should be considered. Furthermore, if the source already provides direct mappings to
many other sources, these mappings can be taken to quickly construct the mapping data-
base. For example, Locuslink and SwissProt represent reference sources for gene and
protein annotations, respectively, and maintain a large number of mappings to other
(smaller) sources. Hence, they are good candidates for the central source to integrate
annotations for gene and protein analysis.

5.2 The ADM Database
Figure 4b shows a portion of the ADM database schema holding metadata about the
integrated data sources. The Source table records a unique source identifier (Db_Id) and
the source names. The available attributes of a source are stored in the table Attribute,
which also contains their SRS-specific names used to translate the user query into a
SRS-specific query. All join paths, for which a mapping is materialized in the mapping
database, are stored in the Path table. The path name concatenates all names of sources
that have participated on the join path. Hence, the user can easily differentiate between
alternative mappings and identify one for her need. Currently, we import this data partly
manually and partly automatically by means of specific database scripts, which extract
metadata from the corresponding sources. Subsection 6.2 discusses the process of using
this metadata to automatically generate web interfaces for query specification.

6 Query Processing within the Query Mediator

6.1 Query Types
The query mediator supports two kinds of queries, projection and selection queries,
according to the specific requirements of expression and annotation analysis, respec-
tively (see Subsection 3.1):
• Projection queries support expression analysis and return a uniform view with user-

specified annotation attributes for a given gene group. In a query, the attributes may
stem from different sources.

• The goal of selection queries is to identify sets of genes showing some common prop-
erties. This can be done by applying filter conditions on the corresponding annotation
attributes. The gene sets can then be used in expression analysis to compare their ex-
pression behavior.

These two query types differ from each other in their input and output data. Projection
queries need a gene group as input while selection queries produce a gene group as out-
put. However, they are processed in the same way by associating genes with annotation
attributes from the selected sources.

6.2 Query Formulation
The query web interface is generated automatically using the source-specific metadata
stored in the ADM database. The user formulates queries on the web interface by select-
ing relevant attributes (projection queries) and specifying filter conditions (selection
queries). shows an example of a selection query to identify all genes, which are
located on chromosome 4 and are associated with the biological process cell migration.

Figure 5

Figure 5

2 14

5

3

Figure 5: Query Formulation on the automatically generated web interface

A query may consider attributes (1) stemming from different sources (2). For each at-
tribute, a filter condition (3) can be specified allowing for exact or pattern matching
queries. In our example of , the asterisk in front of the filter value ''cell migra-
tion'' characterizes a similarity search; the other two values are used for exact search.
Furthermore, the user has to specify the mapping to connect the source of the selected
attribute to the central source by selecting a join path (4). Multiple conditions can be
added and combined using the logical operators OR, AND and NOT whereby OR has
the lowest and NOT the highest priority in the query evaluation process. Finally, accord-
ing to the type of genes to be returned, a mapping between the central source and the
target source is to be selected (5).
While SRS only supports to filter attributes of the source from which the data is to be
retrieved, our implementation supports the combination of attributes from different
sources within a selection query. Moreover, our implementation provides the possibility
to combine attributes of different sources (projection) within the same query, which is
also currently not directly supported by SRS.

6.3 Generation of Query Plans
From the user specifications on the web interface (see Figure 5), the query mediator
generates a SRS-specific query for later execution by the SRS server. This process is
performed in three steps, Block formation to split the queries into blocks according to the
logical operators, Grouping of source-specific attributes to determine and group subque-
ries on attributes belong to the same source to be executed together, and Assembling SRS
query to generate the final query in SRS-specific syntax and terms. illustrates
these steps using the example query from Section 6.2. We discuss the single steps in the
following:

Figure 6

Figure 6

1. Block formation: First, the filter conditions of a selection query are divided by the
logical operator OR into single blocks. Each block contains either one or multiple fil-
ter conditions connected with each other by the AND operator. Our query example
from Section 6.1 does not contain the OR operator. Hence, there is only one block
constructed (see , Step 1) holding all three filter conditions. This step is not

necessary for projection queries, which do not require filter conditions and build a
view for all specified attributes.

2. Grouping of source-specific attributes: Within each block obtained from Step 1, the
attributes and filter conditions are grouped according to their data source and the
mappings to the central source. Each group of attributes and filter conditions concern-
ing the same source and mapping will be valuated together in a subquery. ,
Step 2, shows two identified groups a and b for the attributes Category and Process of
GeneOntology, and the attribute Chromosome of Ensembl, respectively.

Figure 6

Figure 6

Figure 6

1. Step: Block formation
Block Path Sourcee Attribute Filter value

1 Ensembl>NetAffx(Set U95)>LocusLink Ensembl Chromosome 4
1 GeneOntology>LocusLink GeneOntology Category biological_process
1 GeneOntology>LocusLink GeneOntology Process *cell migration

2. Step: Grouping of source-specific attributes
Block Group Path Source Attribute Filter value

1 a Ensembl>NetAffx(Set U95)>LocusLink Ensembl Chromosome 4
1 b GeneOntology>LocusLink GeneOntology Category biological_process
1 b GeneOntology>LocusLink GeneOntology Process *cell migration

3. Step: SRS-Query assembling
1 getz -vf "accession" "([Mapping-pid:5]
2 < (Center < ([Mapping-pid:2]<([EnsemblGene-cnm:4]))
3 < ([Mapping-pid:1]<([GoTerm-typ: biological_process] & [GoTerm-tna:*cell migration]))))

Figure 6: Steps for creating the Query Plan

3. Assembling SRS query: The source and attribute names are replaced by SRS-internal
names, which are previously captured and stored in the ADM database. The names of
the selected mappings, i.e. the paths, are substituted by their identifiers in the mapping
database. For example, , Step 3, shows in Line 3 the second and third filter
conditions specified on the web interface. The source GeneOntology and the attributes
Category and Process are replaced by the internal names GoTerm, typ and tna, re-
spectively. SRS is then invoked by calling its interpreter ''getz'' (Line 1).

From the SRS-specific query in Figure 6, Step 3, we can see, that the objects of En-
semblGene and GoTerm are first identified by applying the corresponding filters (Lines 2
and 3) and then uniformly mapped to the central identifier Center_Id (Line 2) using the
mapping ids 1 and 2, respectively. The resulting central identifiers are in turn mapped to
the target data source NetAffx using the mapping with id 5, (Line 1). The result of the
query consists in a set of NetAffx accessions indicating the corresponding genes.

6.4 Extraction and Result Transformation
According to the complexity of the user query specified on the web interface, one or
multiple SRS-specific queries are generated and executed. For each such query (e.g.
shown in , Step 3), SRS returns the result as a XML stream. The stream is then
parsed by the query mediator to extract the relevant data. The query mediator then as-
sembles the extracted data of all streams into an internal data structure for later visualiza-
tion or export. It is also able to perform compensation routines for those functions, which
are not yet supported in some DBMS, such as intersection in MySQL, and has not been
considered in SRS. A gene group as the result of a selection query can be used as input

for a projection query to obtain other annotations for the genes of interest. On the other
side, from the result of a projection query, the user can also identify the relevant genes
and save them as a new gene group for further queries. The exchange of gene groups
between the queries allows us to perform successive refinement for an initially large set
of genes.

Figure 7

Figure 7

b) Result of a
projection query

a) Result of a
selection query

Figure 7: Results of Projection and Selection Queries

a shows a portion of the result for the example query in Section 6.2. In particu-
lar, it contains a set of NetAffx genes which are localized on chromosome 4 and known
to have a function in the biological process cell migration. The genes are stored in a gene
group, for which a projection query is performed to obtain an annotation view as shown
in b. In particular, the UniGene accession, the Locuslink gene name, and the all
functional annotations of GeneOntology are included in the view, based on which the
user can further judge the relevance of the genes.

7 Performance Analysis
For testing the integration approach and measuring the performance we used an Intel-
based platform with the following hard- and software configuration.
Hardware: Software:
CPU: 4 x Intel Xeon 2.5 GHz OS: Linux, Fedora 2.4.22
RAM: 8 GB DBMS: IBM DB2 8.1.0

MySQL, Version 4.0.17-max
 SRS-Server: SRS Relational 7.3.1 for Linux
 Java: Java 2 SUN Platform,

Standard Edition, Version 1.4.2

The data warehouse GeWare and the ADM and mapping databases are managed by the
relational database system DB2 of IBM. The query mediator and all GeWare functions
are written in Java. SRS was installed on the same machine together with the locally
replicated sources Locuslink (file-based), Ensembl (MySQL) and GeneOntology
(MySQL).
We focus on two performance tests investigating the query execution times for different
result set sizes. To determine the time overhead induced by SRS, we examine the differ-
ence in query time between using SRS to query a relational database and accessing the
database directly, i.e. without SRS1. We measure the elapsed time of 15 different queries
only involving the Ensembl database in MySQL. Each query uses a different filter condi-
tion for the attribute des (gene description) to return result sets of different size. The
queries are repeated 20 times in order to determine the average and standard deviation
(shown as error bar) of the elapsed time.
Due to the large difference in query times, we first show the result for projection queries
using SRS in a and the remaining results, i.e. for selection queries using SRS
and for both selection and projection queries directly accessing MySQL in b.
Please recall that selection queries only return the accessions of the identified objects,
while projection queries return the objects together with the retrieved annotations.

Figure 8
Figure 8

Figure 8
Figure 8

a) Query Time of SRS Projection Queries b) Query Time SRS/MySQL Queries
Figure 8: Performance of projection and selection queries using SRS and MySQL

W.r.t to the increasing size of the result set, we observe a significant linear increase in
query time for projection queries in SRS (a). For selection queries, SRS also
requires linear time w.r.t. to the size of the result set (b). However, selection
queries can be performed much faster than projection queries in SRS. On the other side,
we observe almost negligible query time when directly accessing MySQL. For larger
result sets, the query time remains almost constant. This leads to the conclusion that SRS
produces much time overhead in processing the data obtained from a relational source.

1 To execute a query, SRS in turn creates a query plan consisting of SQL statements to access the correspond-
ing relational database. We use these SQL statements to perform the test in the latter case, i.e. accessing the
database directly.

The second test determines the query time for the single steps in the execution of a query
involving SRS. For this purpose, we define 11 different queries uniformly involving
Ensemble, NetAffx, and the center source Locuslink. They all employ the mappings
Ensembl-Locuslink and Locuslink-NetAffx in order to identify NetAffx genes having a
particular pattern in the attribute des (gene description) of Ensembl. F shows the
result of this test. Each query is again repeated 20 times in order to determine the aver-
age and standard deviation (shown as error bar) of the elapsed time.

igure 9

The measured values for each step subsume the elapsed time of all its previous steps. For
example, Step 2 performing a mapping between Ensembl and LocusLink subsumes Step
1 to select relevant data from Ensembl. The time of the last step, i.e. Step 4 mapping of
the identified Locuslink genes to the required NetAffx genes, represent the entire elapsed
time of the query. Overall, the query time increase linear with the amount of the data to
be retrieved and is acceptable for even large amount of result data. The first step, selec-
tion from Ensembl, performs fastest and the elapsed time remains relatively constant for
different size of the result set. As we can see in Figure 9, querying the mapping database
(Step 2-4) to evaluate the
specified mappings is
more expensive than
accessing other sources
(Step 1) and thus exhibits
high potential for per-
formance optimization.
Currently, the mapping
database is completely
managed and accessed by
SRS like other sources.
As an alternative, the
query mediator may be
implemented to directly
access the mapping data-
base, so that we obtain
more opportunities for
tuning.

Figure 9: Query Time of Portions of Selection Queries to Ensemble
8 Conclusions
We presented a hybrid approach for the integration of annotation data from public data
sources to support expression analysis of genes and proteins. Expression data is physi-
cally stored together with diverse experimental descriptions in a data warehouse support-
ing high performance expression analysis. Up-to-date annotation data is virtually inte-
grated using a mediator and is retrieved on demand according to the analysis needs. The
data warehouse and mediator are coupled by means of a query mediator, which exploits
existing mappings between the integrated sources for join processing. The mappings are
explicitly computed to involve a common central source, through which join operations
can be efficiently performed at run time. The use of the a powerful commercial product,
SRS of LION bioscience, for the mediator and the generic schema of the database to
store the pre-computed mappings allows us to easily integrate a new source or update an

existing source. The integration approach has been implemented as an enhancement of
our gene expression data warehouse, but is also applicable to other domains, e.g. for
protein analysis. The performance evaluation has shown the practicability of our integra-
tion approach.

9 References
[As00] Ashburner, M. et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25:

25-29, 2000. http://www.geneontology.org
[Ba00] Bairoch A.: The ENZYME database in 2000 Nucleic Acids Research 28:304-305 (2000).

http://www.expasy.org/enzyme
[Bi04] Birney, E. et al.: An Overview of Ensembl. Genome Research 14: 925-928, 2004.
[CCW03] Chen, J.; Chung, S.Y.; Wong, L.: The Kleisli Query System as a Backbone for Bioinformatics

Data Integration and Analysis. In [LC03]: 147-187.
[Ch04] Cheng, J. et al.: NetAffx gene ontology mining tool: a visual approach for microarray data

analysis. Bioinformatics 20(9), 1462-3, 2004.
[DR04] Do, H.-H.; Rahm, E.: Flexible Integration of Molecular-biological Annotation Data: The

GenMapper Approach. Proc. the 9th Int. Conf. on Extending Database Technology, Heraklion
(Greece) 2004. Springer LNCS, 2004.

[EHB03] Etzold, T.; Harris, H.; Beaulah, S.: SRS: An Integration Platform for Databanks and Analysis
Tools in Bioinformatics. In [LC03]: 109-145.

[Ga04] Galperin, M.Y.: The Molecular Biology Database Collection - 2004 update. Nucleic Acids
Research 32, Database issue, 2004.

[Ha01] Haas, L. et al.: DiscoveryLink – A System for Integrated Access to Life Sciences Data
Sources. IBM System Journal 40 (2), 2001.

[HK04] Hernandez, T.; Kambhampati, S.: Integration of Biological Sources: Current Systems and
Challenges Ahead. SIGMOD Record 33(3), 2004.

[KDR03] Kirsten, T.; Do, H.-H.; Rahm, E.: A Multidimensional Data Warehouse for Gene Expression
Analysis. In: Proc. German Conference on Bioinformatics, Munich 2003.

[KDR04] Kirsten, T.; Do, H.-H.; Rahm, E.: A Data Warehouse for Multidimensional Gene Expression
Analysis. Technical Report, IZBI, University of Leipzig, 2004.

[La04] Lacroix, Z. et al.: Links and Paths through Life Science Data Sources. In [Ra04]: 203 – 211.
[LC03] Lacroix, Z.; Critchlow T. (Hrsg.): Bioinformatics: Managing Scientific Data. Morgan Kauf-

mann, 2003.
[LN05] Leser, U., Naumann, F: (Almost) Hands-Off Information Integration for the Life Sciences.

Proc. 2nd Conference on Innovative Data Systems Research (CIDR), 2005
[PM02] Pruitt, K.D.; Maglott, D.R.: RefSeq and LocusLink: NCBI Gene-centered Resources. Nucleic

Acids Research 29 (1), 2001. http://www.ncbi.nlm.nih.gov/projects/LocusLink/
[Po04] Potter, S.C. et al.: The Ensembl Analysis Pipeline. Genome Research 14: 934-941, 2004.
[Ra04] Rahm, E. (Ed.): Proceedings 1st Intl. Workshop Data Integration in the Life Sciences (DILS)

2004. LNBI 2994, Springer-Verlag, 2004.
[Ro04] Rother, K. et al.: COLUMBA: Multidimensional Data Integration of Protein Annotations. In

[Ra04]: 156-171.
[St03] Stein, L.: Integrating Biological Databases. Nature Review Genetics 4(5): 337-345, 2003.
[Wh03] Wheeler D.L. et al.: Database Resources of the National Center for Biotechnology. Nucleic

Acids Research 31: 28-33, 2003.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

[Wo98] Wong, L.: Kleisli, a Functional Query System. Journal of Functional Programming, 1 (1): 1-
000, 1998.

[Zd02] Zdobnov, E.M. et al.: The EBI SRS server – recent developments. Bioinformatics 18: 368-
373, 2002.

	Introduction
	Related Work
	Integration Requirements for Analysis
	Integration Architecture
	Overview
	Data Source Integration
	Query Processing

	Metadata Management
	The Mapping Database
	The ADM Database

	Query Processing within the Query Mediator
	Query Types
	Query Formulation
	Generation of Query Plans
	Extraction and Result Transformation

	Performance Analysis
	Conclusions
	References

