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Abstract—Data integration in the Web of Data is not limited
to the pairwise linking of entities but often requires to cluster
entities of different sources, e. g., within knowledge graphs. Such
entity clustering should not only be scalable to large data
volumes and many sources but also be dynamic to deal with
continuously changing sources and the ability to incorporate
new sources. Previous entity clustering approaches are mostly
static focusing on the one-time linking and clustering of entities
from few sources. In this paper, we propose and evaluate new
scalable approaches for incremental entity clustering that support
the continuous addition of new entities and data sources. The
implementation is based on the distributed processing framework
Apache Flink. A detailed performance evaluation with real and
synthetically customized datasets shows the effectiveness and
scalability of the incremental clustering approaches.

Index Terms—Linked Data; clustering; incremental; dis-
tributed processing; Apache Flink

I. INTRODUCTION

Identifying and linking equivalent entities in different
sources is a main challenge within the Web of Data and many
approaches have been developed to address this problem [1]. In
addition to a pairwise linking of sources there is an increasing
need to integrate equivalent entities in a more holistic manner
such that equivalent entities from arbitrary many sources are
clustered together, e. g., within knowledge graphs [2]. Such a
clustering facilitates the combination of the property values
of all clustered entities, e. g., persons, products, cities etc., for
enriched data representation.

Entity clustering is a challenging problem since the degree
of semantic data heterogeneity and differences in data quality
increase with the number of sources from which equivalent
entities should be clustered. In addition to achieving high
match and cluster quality it is also important to provide
high efficiency and scalability to large data volumes and
many sources. Finally, there is a strong need for dynamic
or incremental entity clustering that is not limited to a one-
time computation of entity clusters but that can continuously
update entity clusters to cope with changing and new entities,
including the incorporation of additional sources (see Fig. 1).

Previous approaches to entity clustering [3], [4] including
our own ones [5], [6] are mostly static, i. e., they determine
entity clusters a single time from a fixed number of static data
sources. The clustering approaches use as input a set of binary
owl:sameAs links connecting equivalent entities of different
sources. These links either exist already in the Web of Data or
have to be computed as a preparatory step for entity clustering.
The links are commonly organized within a similarity graph
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Figure 1: Incremental update of entity clusters, e. g., in knowl-
edge graphs.

where the vertices correspond to the entities and the edges to
the similarity links. Unfortunately, the overhead to determine
similarity graphs and thus for static entity clustering is very
high and grows quadratically with both the number and size
of the sources1. This holds even if one exploits common
performance optimizations such as blocking [7] which reduces
the number of entity comparisons only by a constant factor k
when we partition the entities of a source into k blocks (since
an entity only needs to be compared with the entities of one
block per source). As a result, the scalability of static entity
clustering is likely limited to a smaller number of sources of
moderate size.

We thus argue for the use of dynamic or incremental entity
clustering that can continuously update entity clusters for new
entities and new sources without having to completely re-
compute entity clusters. One approach could be to use a static
clustering scheme to create an initial set of clusters and use
a separate approach to keep the clusters up-to-date. We favor
however a single dynamic approach that treats the entities of
one of the sources as an initial set of clusters and incrementally
adds further entities from the same or other sources similar as
sketched in [2]. This approach also promises a reduced runtime
compared to a static clustering of many sources since entity
clusters can incrementally be created in several steps without
the need of the expensive creation of large similarity graphs.

1For n sources with m entities each, we have to compare each entity of a
source with (n− 1) ·m entities given a total of n·(n−1)

2
·m2 comparisons

if we link every entity pair only once.



Specifically we make the following contributions:
• We propose incremental approaches for clustering entities

from multiple sources where new entities either result
in new clusters or are added to existing clusters. The
addition of new entities to clusters is set-oriented so that
new entities are considered together for an optimized as-
signment compared to the isolated addition of individual
entities. Furthermore, we provide a separate approach to
add entities of a single source.

• We provide scalable implementations of the incremental
clustering schemes based on the distributed processing
framework Apache Flink.

• We evaluate the incremental approaches for datasets of
three domains in terms of cluster quality and runtime
efficiency. We also provide a comparison to static entity
clustering.

In Section II we define the problem and provide background
information on entity clustering. In Section III we explain
our proposed approach describing two strategies to realize
incremental clustering which are then evaluated in Section IV.
Finally, we briefly discuss related work in Section V and
conclude in Section VI.

II. PROBLEM DEFINITION

While data sources may contain entities of many kinds we
focus on clustering entities of a specific type of interest, e. g.,
cities, persons and music songs for our evaluation datasets. We
assume further that there are no duplicates within data sources
but only between data sources.

An entity cluster or just cluster groups a set of entities
that are assumed to represent the same real-world entity. For
each cluster we determine a so-called cluster representative
fused from the properties of all entities in the cluster. Specific
properties of the cluster representatives are used to determine
the similarity between a new entity and an existing cluster
as a basis for deciding whether the entity should be added
to the cluster. This approach avoids the comparison of new
entities with all members of a cluster thereby limiting the
match overhead. For each cluster we also maintain the ids
of the sources from where entities of the cluster originate. We
call a cluster source-consistent if it contains at most one entity
per source, otherwise source-inconsistent since it violates the
assumption of duplicate-free sources.

The task of entity clustering has as input a set of data
sources and determines and maintains a set of source-
consistent and disjoint entity clusters such that all entities
within a cluster match with each other and different clusters
refer to different real-world objects. This entity clustering
should be efficient and scalable to many sources and large
data volumes.

For static entity clustering the input is a fixed set of sources
and the clustering is performed only once. For dynamic or
incremental clustering, however, the number and contents of
data sources can continuously change so that the entity clusters
are to be adapted accordingly to correctly reflect the current
state of the input data. While entities of a source may be added,

changed or deleted, we focus on the addition of new entities
as the most complex case for maintaining entity clusters.
Similarly, we only consider the addition of new sources but
not their removal.

The problem of incremental clustering thus has as input an
existing (possibly empty) set of source-consistent and disjoint
entity clusters as well as a set of new entities and has to create
a new set of source-consistent and disjoint entity clusters
that include the new entities. In the general case, we have
to find a n:1 assignment between the new entities and the
existing clusters since an entity is added to at most one of the
previously existing clusters (or to a new cluster) and since
several entities (of different sources) may be added to the
same cluster. For the special case where all new entities are
from the same source (e. g., when a new data source is to
be incorporated) we have to find a 1:1 assignment where each
existing cluster is extended by at most one new entity to avoid
source-inconsistent clusters.

The 1:1 assignment problem between two sets of entities has
already been studied extensively in the past and approximate
solutions such as stable marriage [8], Hungarian algorithm [9]
and the so-called Max-Both approach [10] have been proposed
for its solution. A recent study [11] has compared these alter-
natives and found the overall best effectiveness and runtime
efficiency for Max-Both where an element ei of the first set is
assigned to the best matching entity (cluster) cj of the second
set only if ei is also the top match for cj , e. g., there is no
other entity for which the similarity with cj is higher. We will
therefore follow the Max-Both approach in our source-specific
incremental matching.

III. INCREMENTAL CLUSTERING

For assigning a new entity to a cluster we determine all
cluster candidates which do not have already an entity of
the respective source (to avoid source-inconsistent clusters)
and for which a domain-specific similarity function fsim on
selected properties exceeds a minimum threshold tmin. To limit
the effort for finding the cluster candidates and improve the
performance of our incremental clustering we apply standard
blocking [7] to partition both the clusters and new entities into
several blocks with a blocking function fblocking on selected
properties. For example, person entities could be partitioned
based on a fixed-length prefix of their surnames so that we
only consider clusters for which the cluster representative has
the same prefix than the new person entity. Blocking does not
only reduce the number of comparisons but also facilitates a
parallel implementation to further improve runtime since the
clustering for different blocks are independent and can thus
be performed in parallel.

A straight-forward approach would consider each new entity
e in isolation and add it to the cluster with the highest
similarity above tmin that does not yet contain another entity
from e’s source. If no such cluster exists, a new cluster will
be created for e. While this is a reasonable approach, it may
not be the best one if there are several entities to be added
at the same time. For the example in Fig. 2a, the assignment
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Figure 2: Cluster scenarios for base and source-specific ap-
proaches (colors imply different data sources, all links are
assumed exceed the minimal similarity threshold).

of entity e2 to cluster c2 would mean that no further entity
of e2’s source could be added to c2 thereby preventing that
the more similar entity e3 is assigned to c2. This problem is
especially pronounced if all new entities are from the same
source where we have to find a near-optimal 1:1 assignment.

In the following we will therefore present two set-based
approaches for incremental entity clustering that try to avoid
sub-optimal cluster assignments. We start with the general
approach that applies for new entities of different sources
and outline then the source-specific approach to determine a
1:1 assignment between new entities and clusters. Finally we
discuss the use of Apache Flink for the distributed implemen-
tation of the approaches. We assume that the set of existing
entity clusters is non-empty. This is not a limitation since the
approach can easily be bootstrapped by using the entities of
one of the sources as the initial clusters.

A. Base approach

The pseudocode for set-based incremental clustering for
entities of different sources is shown in Algorithm 1. It uses
as input the set of new entities Enew, the set of existing clusters
Cexist as well as blocking function fblocking, similarity function
fsim and the minimum similarity threshold tmin. Initially, a
cluster is created for each new entity (cluster set Cnew) and
assigned to one of the blocks according to fblocking.

The main processing is performed independently (in paral-
lel) for each of the blocks with new entities. First, we compare
every new entity with every cluster representative of a block
using fsim and create candidate links (cnew, cexist, sim) within
set Li with all links that exceed threshold tmin and where cexist
does not yet contain an entity from the source of cnew. To avoid
sub-optimal cluster assignments we then sort the Li links and
process them in descending order of their similarity so that the
cluster assignments with the highest similarity can be realized
first. A new entity from cluster cnew is only added to cluster
cexist if it does not lead to a source-inconsistent cluster. The
addition to the cluster (function add) also involves adapting
the cluster representative. Since there are generally several

Algorithm 1: Set-based incremental entity clustering
(base approach)

Input: Existing clusters Cexist, new entities Enew, similarity
function fsim, blocking function fblocking, minimum
similarity threshold tmin

Output: cluster set C
1 Cnew ← createInitClusters(Enew, fblocking)
2 Cexist ← addBlockingInfo(Cexist, fblocking)
3 for block i in Parallel do
4 Li ← getClusterCandidates(

Cexist, Cnew, fsim, tmin)
5 Lsorted ← sortLinkSims(Li)
6 foreach (cnew, cexist, sim) ∈ Lsorted do
7 if cexist 6∈ Cnew then
8 continue()

9 if isSrcConsistent(cnew, cexist) then
10 cexist.add(cnew)
11 Cnew.remove(cnew)

12 return Cexist ∪ Cnew

candidate clusters for a new entity we can ignore all further
links for an assigned cnew. We achieve this by removing cnew
from the set Cnew of not yet assigned entities and check in
the beginning of each iteration (line 7) whether the current
entity still needs to be assigned. The final result consists of
the adapted cluster set Cexist as well as the singleton clusters
for new entities that remain in Cnew.

Fig. 2a shows an example for the base approach with three
blocks where the determined assignments are indicated by
thick lines. We observe that entity e3 is assigned to c2 since
it is considered before e2 due of its higher similarity. The
assignment of e2 is not considered since its source is now
already represented in c2. Entity e4 has two cluster candidates
but after the assignment to c2 it is removed from Cnew so that
its further cluster candidates like c3 are ignored.

B. Source-specific incremental entity clustering

We now deal with incremental clustering of entities from
a single source where we determine a 1:1 assignment to
the existing clusters based on the Max-Both approach. The
pseudocode in Algorithm 2 uses the same input parameters
than before and determines source-consistent candidate links
between the new entities and the existing clusters in parallel
within partitioned blocks. To implement Max-Both we deter-
mine two sets of top links (Lleft,Lright) that contain in Lleft for
each new entity the most similar cluster and in Lright for each
cluster the most similar new entity. The assignment is then
only done for links that have the maximal similarity from both
sides. These links can simply be determined by computing the
intersection of Lleft and Lright (line 11).

For the example of Fig. 2b the algorithm assigns only three
entities to existing clusters for which the Max-Both condition
is satisfied. Note that the base approach would have assigned
entity e3 to cluster c3 while this assignment is not taken for
Max-Both since e3 has a higher similarity with c2. In general,
Max-Both leads thus to fewer cluster additions than the base



Algorithm 2: Source-specific incremental entity clus-
tering

Input: Existing clusters Cexist, new entities Enew, similarity
function fsim, blocking function fblocking, minimum
similarity threshold tmin

Output: cluster set C
1 Cnew ← createInitClusters(Enew, fblocking)
2 Cexist ← addBlockingInfo(Cexist, fblocking)
3 for block i in Parallel do
4 L ← getClusterCandidates(

Cexist, Cnew, fsim, tmin)
5 Lleft = ∅
6 Lright = ∅
7 foreach cnewi ∈ Cnew do
8 Lleft.add(L.getBestLeftCandidate(cnewi))

9 foreach cexisti ∈ Cexist do
10 Lright.add(L.getBestRightCandidate(cexisti))

11 Lmax-both ← Lleft ∩ Lleft
12 foreach (cnew, cexist, sim) ∈ Lmax-both do
13 cexist.add(cnew)
14 Cnew.remove(cnew)

15 return Cexist ∪ Cnew

approach in order to achieve a high precision with only safe
cluster additions.

C. Distributed implementation

The incremental clustering is implemented using the dis-
tributed processing framework Apache Flink [12]. Thus, exe-
cution of operations is parallelized on a shared nothing cluster
while computations are based on in-memory data structures.
Our implementation uses the Flink DataSet API with data
transformations like filter, join, union, group-by or aggre-
gations (relational databases) and map, flat-map and reduce
(MapReduce paradigm). We also use the Gelly API for graph
processing to maintain the links for cluster assignment. As
mentioned we process all blocks in parallel and also support
load balancing according the Block Split scheme [13] to deal
with skewed block sizes and split the processing of large
blocks with many entities and clusters to several machines.

IV. EVALUATION

We first describe the evaluation datasets and setup and then
analyze effectiveness and runtime efficiency of the proposed
incremental clustering approaches.

A. Datasets and Setup

We use five datasets of three domains (geography, music,
persons) that have already been used for static entity clustering
[4], [14]. Table I gives an overview of the datasets including
available properties and number of entities. The smallest
dataset DS-G1 comprises real geographic data on settlements
from four knowledge bases DBpedia, GeoNames, Freebase
and NYTimes. The datasets for the music and person domains
are based on real data which are then synthetically changed
with the DaPo tool [15] to introduce corruptions of property

values as well as duplicates across sources. DS-M1 and DS-
M2 originate from MusicBrainz2 while DS-P1 and DS-P2 are
based on publicly available voter data from North Carolina.
The largest dataset, DS-P2, has 10 sources and 10 million
entities. The datasets with their perfect cluster result can be
obtained from our website 3.

Table II shows the blocking and similarity functions applied
in the experiments. For blocking we apply load-balanced
standard blocking using a prefix of a single property (geo-
graphic and music datasets) or the concatenated prefixes of
two properties (person datasets) as a blocking key. We consider
prefixes of different lengths to vary the block sizes and thus
the number of necessary comparisons and achievable recall.
For similarity computation we mostly compute the Cosine
Trigram similarity for string attributes; for the geographical
entities we additionally consider the normalized geographic
distance. For the music datasets we apply Cosine Trigram on
the concatenation of three property values. For DS-P1 and
DS-P2 we determine the average of four property similarities.
For all datasets, a match requires that the computed similarity
values meet a variable minimum similarity threshold tmin.

The quality of the incrementally determined entity clusters
is compared with the perfect cluster results that are available
for our datasets. Each cluster corresponds to a number of
match links (correspondences) by assuming that each pair
of entities within a cluster matches with each other. So the
resulting link sets of the computed clusters and the perfect
clusters are used to determine the standard metrics precision,
recall and their harmonic mean, F-measure, to measure cluster
quality. Table I includes the number of clusters and links of the
perfect cluster result as well as the number of correct links and
F-measure for the best incremental clustering configurations.
Hence, the incremental clustering schemes achieve F-Measure
results of more than 95% for the two smaller datasets DS-G1
and DS-M1 and of more than 80% for the larger datasets.

The experiments are carried out on a cluster with 16
workers, each of them equipped with a Intel Xeon E5-2430
6x 2.5GHz, 48GiB RAM, 2x 4TiB SATA disks and 1Gbit
Ethernet connection. The machines operate on OpenSUSE
13.2 and Flink 1.5.0. All experiments are carried out three
times to determine the average execution time.

B. Experimental Results

We will now analyze the cluster quality and runtime of
incremental clustering for our datasets. Mostly, we consider
the incremental addition of entire sources and thus the use
of source-specific incremental clustering. However, we also
examine the partial addition of data sources and compare
source-specific clustering with the base approach as well as
with static entity clustering. Finally, we will analyze the
speedup behavior w.r.t the number of workers.

1) Effect of data source ordering: The proposed incremen-
tal approaches are likely dependent on the order in which

2https://musicbrainz.org/
3https://dbs.uni-leipzig.de/research/projects/object matching/famer

https://musicbrainz.org/
https://dbs.uni-leipzig.de/research/projects/object_matching/famer


general information perfect result results best configuration

domain entity properties #entities #sources # clusters # links conf(tmin, bk) # correct links F-measure

DS-G1 geography name, longitude, latitude 3,054 4 820 4,391 conf(0.4, 1) 4,109 0.983

DS-M1 music artist, title, album, 19,375 5 10,000 16,250 conf(0.5, 1) 15,066 0.955
DS-M2 year, length 1,937,500 5 1,000,000 1,624,503 conf(0.7, 1) 1,396,520 0.874

DS-P1 persons name, surname, 5,000,000 5 3,500,840 3,331,384 conf(0.7, 6) 2,720,479 0.814
DS-P2 suburb, postcode 10,000,000 10 6,625,848 14,995,973 conf(0.7, 6) 11,847,678 0.805

Table I: Overview of evaluation datasets.

dataset blocking key similarity function

DS-G1 prefixLength(name): 1 Trigram (name) + normal-
ized geographical distance

DS-M1/ prefixLength: 1-5 Trigram
DS-M2 of (artist + title + album) (artist + title + album)

DS-P1/ prefixLength(surname): 1-3 avg(Trigram (name)
DS-P2 + prefixLength(name): 1-3 + Trigram (surname)

+ Trigram (suburb)
+ Trigram (postcode))

Table II: Used blocking and similarity functions.

sources and entities are added to the integrated set of clusters.
This is because a wrong addition of entities to clusters impacts
the cluster representatives and thus all further cluster decisions.
We thus evaluated different orderings for the incremental
addition of data sources for our datasets. We found that the
ordering had little impact for the synthetically generated music
and person datasets because the sources are largely of the same
size and quality.

However, for the real dataset DS-G1 we observed significant
differences for different orderings. In general we could achieve
very good clustering quality for this small dataset with the
best F-measure of 98.4% (precision 99.98%, recall 96.8%)
which meets the best results for static entity clustering [6],
[14]. The top result is achieved by the sequence (Freebase,
GeoNames, NYTimes, DBpedia). We analyzed all possible
order permutations and found that source DBPedia should
not be used in the beginning since it lacks the geographical
coordinates for 57% of its records while the other sources have
the coordinates for almost all entities. In Table III we show
for each of the four sources the average F-measure results for
all permutations where the source has either been used in the
beginning (as first or second source) or at the end (source no.
3 or 4) in the sequence of added sources. We observe that the
use of DBpedia in the beginning leads to much lower quality
than its use towards the end (average F-measure of 94.4%
vs. 98.2%) since the missing information can lead to many
wrong match decisions. By contrast, using the other sources in
the beginning leads to generally better F-measure than using
them last. We conclude that data quality (w.r.t. the properties
used for matching) has a high impact and that incremental
clustering should start with high quality data sources.

For comparison, we also used the base approach for incre-
mental clustering rather than the source-specific approach. As

expected the base approach resulted in a somewhat reduced
cluster quality with 97.3% F-measure for the best sequence
(instead of 98.4%). We further investigated a more dynamic
change scenario without adding entire sources. For this we
initially add 80% of the entities of the four sources (randomly
selected) followed by two further batches of new entities each
consisting of 10% of the entities of the four sources. The base
approach for incremental clustering achieved a F-Measure of
97.0% for this scenario indicating that the partial addition of
sources does not significantly reduce cluster quality.

2) Large-scale source-specific incremental clustering: We
now analyze source-specific clustering for the larger music
and person datasets (DS-M2, DS-P2) for different blocking
approaches and similarity thresholds tmin. The obtained preci-
sion, recall and F-measure results are shown in Fig. 3 where
the values for tmin (x-axes) range between 0.6 and 0.9 and
the prefix lengths for the blocking keys lie between 1 and 5
for DS-M2 and between 2 and 8 for DS-P2. As expected,
precision increases and recall decreases with growing tmin
while F-Measure is relatively stable across different threshold
values with tmin = 0.7 allowing for the best result. Despite the
large data volume (0.4 to 1 million entities per source) and
the integration of 5 – 10 sources F-measure reaches relatively
good values of up to 87.41% for DS-M2 and up to 80.47%
for DS-P2.

The choice of blocking key substantially impacts cluster
quality and runtime for both datasets. For DS-M2 precision
is not affected by the blocking key so that it remains good
even for smaller prefixes (larger blocks) probably favored by
the high precision of Max-Both. As a result, the best F-
measure is achieved for the smallest prefix length B = 1
(largest blocks) supporting the highest recall. The downside
of this selection, however, is the large execution time which
is hugely dependent on the chosen blocking key. As shown
in Table IV the runtime for B = 1 is more than 5 times as
high than for B = 2 and more than a factor 40 slower than
for B = 4. For the larger dataset DS-P2 with 10 sources,
precision suffers from larger block sizes (small prefix lengths)
while recall is worst for longer prefix values. So we obtain
the best precision but lowest recall for prefix length 8, while
prefix length 6 allows for the best compromise value and thus
the best F-Measure. For prefix length 6, we analyse the effect
of the block size distribution. We therefore partition the blocks
in three block size ranges: blocks with 1-100, 101-1000 and
more than 1000 entities per block. Only 0.03% of all blocks



Source Freebase GeoNames NYTimes DBpedia

Position for clustering 1./2. 3./4. 1./2. 3./4. 1./2. 3./4. 1./2. 3./4.

Avg. F-measure 0.971 0.955 0.970 0.964 0.974 0.952 0.944 0.982

Table III: Effect of source ordering for DS-G1.

Figure 3: Precision, recall and F-measure for music dataset DS-M2 (top) and dataset DS-P2 for domain person (bottom).

DS-M2 DS-P2
bk length 4 3 2 1 8 6 4 2

tmin 0.6 1071 2044 8292 46346 447 690 3621 67681
tmin 0.7 1093 2077 8062 46678 431 706 3338 72301
tmin 0.8 1139 2210 8875 49154 442 754 3203 96855

Table IV: Runtime (s) for different blocking key (bk) lengths
and tmin values (16 workers).

contain > 1000 entities (biggest block contains 6617 entities)
while these blocks contain 4.6% of all entities - these blocks
need most of the time for the actual comparison. 1.7% of all
blocks are within the range 101-1000, but contain 35.3% of
the entities. Finally, 98.3% of the blocks have 1-100 entities
(60.2% of all entities belong to these blocks). For bigger prefix
length, the distribution is likely to have more and smaller
blocks reducing computational effort but also reducing the
possibility to compare potentially similar entities with each
other. The runtime differences (Table IV) are again substantial
where blocking with prefix length 6 achieves a fast clustering
of only 706 s (12min) for tmin = 0.7 which is two orders of
magnitude faster than with prefix length 2.

This is especially remarkable since the runtime typically
increases strongly with the number of sources; each new
source increases the number of clusters and thus the match
overhead heavily. We illustrate this in Table V for dataset
DS-M2 showing how the total runtime is distributed over the
additions of the different sources. We observe that the time
to add a source increases continuously so that adding the 5th

runtime (s)

bk length 5 4 3 2 1

source 1 + source 2 129 170 315 1183 6456
add source 3 173 235 440 1692 9862
add source 4 218 311 600 2319 13481
add source 5 272 377 722 2868 16879

total 792 1093 2077 8062 46678

Table V: Runtimes (s) for single steps with source-specific
clustering for DS-M2 with different blocking key (bk) lengths
and tmin = 0.7.

source is more than twice as slow than adding the second
source. This is because 25% of the entities in each source have
no duplicates for DS-M24 thereby resulting in the creation of
additional clusters that have to be considered in the subsequent
cluster decisions.

3) Comparison of incremental and static clustering: We
now compare the runtime and cluster quality for the two incre-
mental approaches with static entity clustering for datasets DS-
M2 and DS-P1. We focus the analysis on a specific blocking
key (length 4 for DS-M2, length 6 for DS-P1), similarity
threshold (tmin 0.7) and use the same blocking and similarity
functions to determine the similarity graphs for static entity
clustering. We consider two state-of-the art approaches for
multi-source entity clustering on the similarity graph, namely

450% of the clusters in DS-M2 (500K) are singletons while the other half
of the clusters has between 2 and 5 duplicate entities.



DS-M2 DS-P1

Incremental Static Incremental Static

Base Source CLIP SplitMerge Base Source CLIP SplitMerge

runtime (s) 4148 1093 1748 + 68 1748 + 659 614 217 107 + 101 107 + 752

precision 0.744 0.888 0.848 0.838 0.553 0.811 0.850 0.798
recall 0.844 0.826 0.815 0.822 0.836 0.817 0.821 0.851

F-measure 0.791 0.856 0.831 0.830 0.665 0.814 0.835 0.824

Table VI: Incremental vs. static clustering for DS-M2 and DS-P1 with blocking key length 4 and 6 resp. with tmin = 0.7.

the CLIP approach of [6] and the SplitMerge approach of [1],
[5].

Table VI shows the obtained runtime and F-measure results
where the runtime of static entity clustering consists of the
sum of the time to create the similarity graph and the time for
clustering itself. We observe that source-specific incremental
clustering reaches not only substantially better F-measure than
the base incremental approach but also much better runtime
due to the fast Max-Both approach to determine 1:1 assign-
ments. The 1:1 assignments of source-specific incremental
matching lead to dramatically improved precision over the
base approach, especially for DS-P1 the precision increases
from 55.3% to 81.1%; that more than outweighs the somewhat
reduced recall thereby achieving a substantial improvement in
F-Measure (85.6% vs. 79.1% for DS-M2 and 81.4% vs. 66.5%
for DS-P1). At the same time this better quality is achieved
by a much lower runtime with an improvement by factor 3.8
for DS-M2 and factor 2.8 for DS-P1.

In comparison to static clustering, we expect better runtime
and a reduced match quality for incremental clustering since
we only optimize cluster assignment for a subset of entities at
a time. For DS-M2, the time to generate the similarity graph
for static entity clustering (1748 s) is already higher than for
the entire source-specific incremental clustering despite the
use of blocking key length 4 and therefore small blocks. For
DS-P1 we used blocking keys of length 6 which reduces the
overhead for the graph generation for the static approach to
only 107 s. Therefore, overall runtime for graph generation and
CLIP (107 s + 101 s) is about the same than for the source-
based incremental approach (217 s) while the static approach
SplitMerge is slower by a factor of 4. The base incremental
approach is mostly slower than the static approaches. However,
the runtime for the incremental approaches is the sum for
all source additions while each incremental addition of entity
sets and sources is typically faster than a complete static (re-)
computation of clusters.

In terms of match quality we observe that the base incre-
mental approach is always inferior to the static approaches
but that the source-specific incremental approach is actually
better for DS-M2 (2.5% higher F-measure) and only slightly
worse for DS-P1 (1.0-2.1% lower F-measure than SplitMerge
and CLIP). We can thus conclude that the source-specific
incremental clustering reaches comparable cluster quality than
the static approaches with typically faster runtime and support
for dynamic addition of new entities and sources.

runtime (s)

cluster size P1 b4 P1 b6 P2 b4 P2 b6

1 9751 860 32093 3648
2 5468 732 17583 2275
4 2997 430 9346 1494
8 1785 320 5677 1023
16 1100 217 3338 706
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Figure 4: Execution times (top) in seconds and speedup
(bottom) for datasets DS-P1 (P1) and DS-P2 (P2) for blocking
key lengths 4 and 6.

4) Speedup behavior: We finally analyze the speedup be-
havior of (source-specific) incremental clustering w.r.t. clusters
of different sizes. For this experiment, we focus on the two
largest datasets DS-P1 (5 sources) and DS-P2 (10 sources). In
both cases we consider two blocking configurations with prefix
length 4 and 6. The resulting runtime and speedup values for
using 1 to 16 workers are shown in Figure 4. The results
show that we can always improve runtime by using more
workers where the speedup is best for the most expensive
configurations with bigger blocks (prefix length 4). For DS-
P2 and we achieve near-linear speedups of 5.7 for 8 workers
and 9.6 for 16 workers in this case. For prefix length 6, the
runtime to incrementally cluster 5 and 10 million entities is
less than 4 and 12 minutes respectively for 16 workers and
thus remarkably fast.



V. RELATED WORK

Linking entities is widely investigated and approaches and
prototypes are surveyed for entity resolution as well as link
discovery [1], [7], [16]. Previous approaches to cluster entities
(including connected components and correlation clustering)
were mostly static and often considered only entities from a
single source [3]. Static clustering of entities from multiple
sources has been studied in [4]–[6], [17]. An overview of
previous research for matching both schemas (ontologies) and
entities from multiple sources for holistic data integration is
provided in [2].

Relatively little work has been published on incremental
entity resolution. Most previous approaches including [18],
[19] follow the straight-forward approach to consider new
entities in isolation and add it to the cluster with the highest
similarity above a threshold.

The incremental clustering approach of Gruenheid et al. [20]
is more sophisticated. They determine and incrementally up-
date a similarity graph to determine the best cluster assign-
ments. Their approaches are also able to repair previous cluster
decisions. The evaluation focuses on changes for two single
datasets of small size thus leaving open the scalability to large
datasets and several data sources which is the focus of our
work.

VI. CONCLUSIONS

We proposed and evaluated scalable and incremental ap-
proaches to cluster matching entities from multiple sources. In
contrast to static entity clustering, the new approaches can con-
tinuously integrate additional sources and entities and avoid
the expensive computation of similarity graphs for entities
from many sources. To optimize the cluster assignments we
consider sets of new entities together. Especially promising
is the source-specific incremental clustering determining a
1:1 assignment between entities and existing clusters using
a Max-Both strategy. The evaluation for datasets from three
domains showed that the proposed approaches are highly
effective and efficient and often faster than with static entity
clustering. The source-specific approach outperforms the base
approach in both cluster quality and runtime and should
thus be applied whenever possible. The use of blocking and
parallel processing adds to the efficiency and scalability of the
incremental approaches so that millions of entities from up to
ten sources could be clustered within a few minutes.

In future work we plan to investigate the use of repair
strategies during incremental clustering, e. g., to correct earlier
errors by reassigning some cluster members.
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