
D. Lowe and M. Gaedke (Eds.): ICWE 2005, LNCS 3579, pp. 375�386, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Optimization of Web Recommendations
Using Feedback and Ontology Graphs

Nick Golovin and Erhard Rahm

University of Leipzig, Augustusplatz 10-11, 04109, Leipzig, Germany
{golovin,rahm}@informatik.uni-leipzig.de

dbs.uni-leipzig.de

Abstract. Web recommendation systems have become a popular means to im-
prove the usability of web sites. This paper describes the architecture of a rule-
based recommendation system and presents its evaluation on two real-life ap-
plications. The architecture combines recommendations from different algo-
rithms in a recommendation database and applies feedback-based machine
learning to optimize the selection of the presented recommendations. The rec-
ommendations database also stores ontology graphs, which are used to semanti-
cally enrich the recommendations. We describe the general architecture of the
system and the test setting, illustrate the application of several optimization ap-
proaches and present comparative results.

1 Introduction

Many modern websites use web recommendations to increase usability, customer
satisfaction and commercial profit. A number of algorithms were developed, which
generate recommendations by applying different statistical or data mining approaches
to some available to them information, for example on characteristics of the current
page, product, web user, buying history etc.[5, 9] However, so far no single algorithm
uses the benefits of all the available knowledge sources and no single algorithm
shows clear superiority over all others. Therefore, the need for hybrid approaches
which combine the benefits of multiple algorithms has been recognized [5].

In this paper, we present a new approach, capable of combining many recom-
mender algorithms (or shortly recommenders). Our approach utilizes a central rec-
ommendation database for storing the recommendations, coming from different re-
commender algorithms and applies machine learning techniques to continuously
optimize the stored recommendations. Optimization of the recommendations is based
on how �useful� they are to users and to the website, i.e. how willingly the users click
them or how much profit they bring. The incentive for our optimization approach was
the observation, that the popularity and perceived relevance of individual recommen-
dations are not always well predicted by the recommenders.

The information about the website and the users is represented in the recommenda-
tion database in form of ontology graphs. This allows us to semantically enrich the
recommendations and bring in the knowledge from additional sources. It is also prac-
ticable for the adaptation of the system to the different types of websites.

The preliminary version of the architecture was sketched in [7]. In the current pa-
per, we describe the architecture of the prototype implementations of the system and
present evaluation results.

376 Nick Golovin and Erhard Rahm

Fig. 1. Architecture of the recommendation system

We have implemented the prototype of our system on two websites: a website of
the Database Group, University of Leipzig http://dbs.uni-leipzig.de and internet soft-
ware shop http://www.softunity.com. To denote the origin of the examples and no-
tions in the paper, we mark them either with EDU (educational) for the Database
Group website or with EC (e-commerce) for www.softunity.com.

In the next section we explain the architecture of the system and its main compo-
nents. Section 3 describes the selection of recommendations using ontology graphs
and recommendation rules. In Section 4 we explain the recommenders and generation
of the recommendations. The optimization techniques are presented in Section 5.
Section 6 contains the evaluations of the real-life experimental data. In Section 7 we
provide an overview of the related work. Section 8 summarizes the paper.

2 Architecture Overview

The architecture of our recommendation system is shown in Fig. 1. The website inter-
acts with the web user, presents recommendations and gathers the feedback. The web
data warehouse stores information about the content of the website (e.g., products and
product catalog, HTML pages, etc.), users, and the usage logs generated by the web
server or the application server. It serves as an information source for the recom-
mender algorithms and ontology generators and allows OLAP evaluations of the us-
age data and the efficiency of recommendations. The recommendation database
stores the semantic information in form of three directed acyclic ontology graphs (for
the website content, web users and time) and the recommendations in form of rec-
ommendation rules, which are described in the next section. The set of ontology gen-
erators is responsible for generating the ontology graphs. The set of recommender
algorithms generates recommendations using data from the web data warehouse.

Automatic Optimization of Web Recommendations Using Feedback 377

Ontology graphs and recommendation rules can also be created and edited by a hu-
man editor. The optimizer refines the recommendation database based on the feed-
back obtained from the website using machine learning.

In our recommendation system we distinguish the generation loop and the optimi-
zation loop. The generation loop is executed at regular intervals of time. It involves
generating/updating the ontology and the recommendation rules utilizing the informa-
tion on the content and recent usage information from the web data warehouse. The
optimization loop is continuously executed, and selects and presents the recommenda-
tions from the recommendation database. Furthermore, feedback is gathered, i.e. user
reactions to presented recommendations. The optimizer uses this information to refine
the recommendations in the database and to influence the selection of future recom-
mendations.

3 Recommendation Selection Using Ontology Graphs

Fig. 2 shows the selection of recommendations using ontology graphs. To request
recommendations to present, the website specifies the current website context and the
desired number of recommendations. The website context is a set of parameters,
which characterize the currently viewed website content, current web user and present
point in time. An example of a website context is given below:

WebsiteContext{ ProductID=�ECD00345�; UserCountry=�DE�;
 UserOperatingSystem=�Windows�; Date =�21.03.2005�;...} (EC).

Obviously, the choice of suitable parameters in the website context depends on the
specific website, especially with respect to the current content.

The recommendation system maps the provided website context into a semantic
context, which consists of nodes of the three ontology graphs {ContentNodes, User-
Nodes, TimeNodes}. Using a selection policy, recommendations associated with the
relevant nodes of the ontology graphs are selected and finally presented. This two-
step selection process aims at supporting application-oriented recommendation strate-
gies and high flexibility. Assigning recommendations to semantic concepts is ex-
pected to be more stable than directly using low-level website contexts whose values
may change frequently (e.g. due to website restructuring).

Fig. 2. Selecting recommendations using semantic context

378 Nick Golovin and Erhard Rahm

Fig. 3 shows an example of an ontology graph for website content. Ontology
graphs for web users and time are built in a similar way. We use directed edges to
point from more specific concepts to more general concepts, from subcomponents to
aggregated components, etc. Recommendations can be assigned to any node in such a
graph. Highlighted with thick lines in Fig. 3 is an example of how the semantics
stored in the ontology graph can be used to search for additional recommendations for
Product4. We are able to retrieve the recommendations directly for Product4 as well
the recommendations that are bound to some common property that Product4 pos-
sesses (in our case Hardcover) and the recommendations to some product catalog
topics that Product4 is a part of (History, Books).

Fig. 3. A sample ontology graph for content dimension (EC)

The mapping between website and semantic contexts is specified by mapping
clauses, which are statements written in a simple predicate language. The predicate
language supports logical operators (AND, OR, NOT), comparison operators (<, >,
=,<>,>=,<=) and operator LIKE, which does string matching with wildcard, similar to
the SQL-operator with the same name. Some of the nodes in the ontology graphs
immediately correspond to a certain set of parameters and can be mapped using map-
ping clauses. Others represent abstract notions and can be reached only by traversing
the ontology graph and have no associated mapping clauses.

The ontology graphs are automatically generated by ontology generators and can
be edited manually by the editors of the website. Each of the three ontology graphs is
mapped separately. In our EC application, the ontology graphs are created by ontol-
ogy generators using the product catalog, common properties of products and the
business logic of the website. Application EDU uses the manually specified website
content hierarchy and user groups determined by data mining (J48 decision tree algo-
rithm). Most mapping clauses are automatically determined by the ontology genera-
tors together with the creation of the ontology and simply use an equality operator.
Manually specified mapping clauses may be more complex. Examples of mapping
clauses are:

ProductID=�ECD00345� -> ContentNode=1342 (EC)
UserCountry=�DE� -> UserNode=3 (EC)
UserDomain LIKE �%.edu� OR UserDomain LIKE �%uni-%� -> UserNode =2
(EDU)

Automatic Optimization of Web Recommendations Using Feedback 379

The recommendations associated to nodes in the ontology graphs are represented
by rules stored in the recommendation database. Recommendation rules have the
form:

RuleContext{Content,User,Time} -> RecommendedContent, Weight

RuleContext refers to nodes in one or several of the three ontology graphs. These
values can also be set to NULL, denoting that the rule does not depend on the corre-
sponding dimension. RecommendedContent is the pointer to the content being rec-
ommended, e.g. recommended product or URL. The Weight is used as a criterion for
the selection of the recommendation rules for presentations.

We have implemented several policies for selecting nodes of the ontology graphs
and thus to select the associated recommendations. These policies include: �direct
match�, �direct + parents� and �combined�. The �direct match� policy selects the
recommendations using only the nodes matched using mapping clauses. The policy
�direct + parents� uses these nodes as well as all their parents in the ontology graphs.
In the �combined� policy the �direct match� policy is applied first. If this policy is
unable to return the requested number of recommendations, the policy �direct + par-
ents� is applied.

After the current semantic context is ascertained by selecting the nodes in the on-
tology graphs, we use the following general SQL query to select the recommendations
from the rule table of the recommendation database:

SELECT TOP N RecomNode From Rules WHERE
(ContentNode in (CurrentContentNode1, CurrentContentNode2,�) OR
ContentNode is NULL) AND
(UserNode in (CurrenUserNode1, CurrentUserNode2,�) OR
UserNode is NULL) AND
(TimeNode in (CurrentTimeNode1, CurrentTimeNode2,�) OR
TimeNode is NULL)

ORDER BY Weight DESC

We order the recommendations by weight and return the requested number of rec-
ommendations with the highest weight.

4 Creating Recommendation Rules

The recommendation rules are generated by the recommender algorithms and stored
in the recommendation database. A recommender algorithm may also supply an initial
weight for every generated recommendation rule from the interval [0 .. 1]. In the pro-
totype implementation, we determine product recommendations with the following
recommenders:

1. Content similarity. This recommender determines for each product (EC) or HTML
page (EDU) (content node) the M most similar products using TF/IDF text simi-
larity score.

2. Sequence patterns. Products (EC) or HTML Pages(EDU)most often succeeding
other products/pages in the same user session are recommended to them.

3. Item-to-Item collaborative filtering.(EC) Products, which most often appear to-
gether in one user�s basket, are recommended for each other.

380 Nick Golovin and Erhard Rahm

4. Search Engine recommender (EDU). This recommender is applicable to the users
coming from a search engine. It extracts search keywords from the HTTP Referrer
field and uses the website�s internal search engine to generate recommendations
for each keyword. The recommender was first described and implemented in [17].

If the recommender algorithms generate a rule, which already exists in the recom-
mendation rule table with different weight, the weight in the recommendation rule
table takes preference over the weight supplied by the recommenders. We have ex-
plored two approaches to setting the initial weights of newly generated recommenda-
tion rules. In the first approach, we simply set all initial weights to zero (ZeroStart).
The second approach uses normalized recommender-specific weights or relative pri-
orities for the respective contexts. When several recommenders generate the same
recommendation we use the maximum of their weights. The initial weights are ex-
pected to be relevant primarily for new recommendations since the weights for pre-
sented recommendations are continuously adapted.

5 Feedback-Based Optimization

The goal of our optimization is to adjust the weights of the recommendation rules in
such a way, that the more useful recommendations are shown more often, than less
useful. In our applications, we determine utility through the acceptance rate of the
recommendations, which is:

AcceptanceRate=Nclicked / Npresented,

where Nclicked is number of times the recommendation was clicked and Npres is
number of times the recommendation was presented.

However, our optimization algorithm is also able to work with utility determined
otherwise, for example as sales turnover or profit brought by the recommendation.

Every time a web user requests a web page with recommendations, several recom-
mendation rules from the recommendation database are selected and shown. We call
such an event a presentation. The web user then may take some action in respect to
the presented recommendations. For example, the user may click a recommendation,
buy the recommended product, or ignore the recommendation. Each of these actions
has a real value associated with it, called feedback.

The optimizer evaluates all presentations and adjusts the weights of the participat-
ing recommendation rules according to the obtained feedback. New recommendation
rules can be added to the recommendation database at any time. Both online and off-
line optimization are possible.

There are two key aspects, which have to be addressed in our optimization algo-
rithm. First, the utility of the individual recommendations may change over time, due
to the �drift of interests� of the web users. The optimization algorithm must promptly
react to the significant changes in user interests without overreacting to short-term
fluctuations. Also, we are facing the �exploration vs. exploitation� dilemma. On one
side, we would like to present the recommendations, which are the most �useful�
according to our current knowledge, i.e. be �greedy�. On the other side, we would like
to learn, how good are the other recommendations, for which our current knowledge
is insufficient [16, 8]. In the next subsections, we discuss these aspects in more detail.

Automatic Optimization of Web Recommendations Using Feedback 381

5.1 �Drift of Interest�

We can handle the �drift of interest� in several ways:

− consider older feedback and newer feedback to be equally important (no aging). In
this case, the weight of the recommendation rule is equal to the acceptance rate of
the recommendation and the �drift of interest� is not taken into account.

− store the last n feedback values for each recommendation rule and generate the
weights of the recommendation rules from them. This approach, however, requires
additional memory in case of online optimization.

− use aging by division (also called exponential smoothing). Here, with every pres-
entation the original weight of the recommendation rule is decreased by a fraction
of its value:

Q(r) = (1-1/T)*Q(r) + Feedback(r) / T .
In this formula, Q(r) is the weight of the recommendation rule r, T is the aging pa-

rameter (T>1). Feedback is the numerical value which describes a user�s response to
the presentation of the given recommendation. Multiplying the weight by (1-1/T)
implements the aging, since this way the latest presentations have the most impact on
the resulting weight value while the contribution of past presentations decreases ex-
ponentially with each next presentation. The exact value of parameter T should be
determined experimentally, depending on how dynamic the user interests for a web-
site are.

5.2 Exploration Versus Exploitation

We have investigated two techniques of balancing between exploration and exploita-
tion. In the reward-only technique, the tradeoff between exploration and exploitation
is set statically through the parameter ε. With probability (1- ε) the technique selects
the best recommendations according to their weights. With probability ε it selects
random recommendations for presentation to give them a chance to be explored. This
technique is also called ε-greedy in the literature [16]. The benefit of this technique is
a very simple and understandable control over exploitation vs. exploration. The draw-
back is that it explores all recommendations with equal probability, not taking into
account how promising they might be. The values of Feedback(r) for this technique
are as follows:

1 if the recommendation r was clicked
0 if the recommendation r was not clicked

In the reward-penalty technique the balancing between exploration and exploita-
tion is done dynamically using negative feedback. When some recommendation r in a
presentation is clicked, r receives positive feedback, all other recommendations re-
ceive negative feedback. When no recommendation is clicked, after a predefined
timeout all participating recommendations receive negative feedback. To prevent the
weights from sliding into the extreme values, the feedback values should be chosen in
such a way, that for any given context an approximate equilibrium is maintained
throughout the process:

Σ(positive feedback) ≈ � Σ(negative feedback)

382 Nick Golovin and Erhard Rahm

For example:

1 if the recommendation r was clicked
-p if the recommendation r was not clicked

where p is the probability, that a recommendation is clicked, averaged over all rec-
ommendation presentations on the web site. For both our applications. (EDU) and
(EC), the value of p≈0.01.

With the reward-penalty technique we do not have to always sacrifice a fixed share
of presentations for exploration. However, the drawback of this technique is the need
for careful selection of the feedback values, because otherwise the learning process
degenerates. It is also possible to combine the reward-penalty technique with the
ε-random selection of the recommendations for exploration.

6 Prototype and Evaluation

In this section we describe the implementations of our prototype and evaluate the
obtained results. In subsection 6.1 we present technical details of the implementation
and effects of the recommendations on the buying behavior of the users. In subsection
6.2 we compare different optimization algorithms and recommendation rule selection
policies.

6.1 Prototype Implementations, Click Rates and Economic Efficiency

A prototype of the system was implemented and applied at two websites. The first one
is the website of the Database Group, University of Leipzig (http://dbs.uni-leipzig.de,
approximately 2000 page views per day). It shows two (N=2) recommendations on all
html-pages of the site. The second application is a small commercial online software
store (http://www.softunity.com, approximately 5000 page views per day). Here, our
approach is used to automatically select and present five (N=5) recommendations on
product detail pages. Both websites have around 2500 content pages. The recommen-
dation database contains about 60000 rules for (EDU) and 35000 rules for (EC).

The prototype uses a MySQL database server for the recommendation database
and Microsoft SQL Server for the web data warehouse. All recommenders and the
optimizer, as well as the websites themselves, are implemented using the PHP script-
ing language.

Fig. 4 shows the that the number of clicks per recommendation rule is distributed
according to a Zipfian-like law (in the figure, only the recommendations with at least
100 presentations are considered.). The data shows that a relatively small percentage
of the recommendation rules brings the majority of clicks. This supports our optimiza-
tion heuristic, since it shows that we may achieve overall improvement of the accep-
tance rate by presenting the most successful recommendations more often.

In general, 2.07 % web users of www.softunity.com are becoming customers (this
metric is usually regarded as CCR � Customer Conversion Rate). For web users who
clicked a recommendation this value is 8.55 %, i.e. more than four times higher.

The analysis of the customer and purchase data has also shown, that 3.04 % of all
purchased products were bought immediately after clicking the recommendation, and
3.43 % of all purchased products were recommended in the same session.

Automatic Optimization of Web Recommendations Using Feedback 383

Fig. 5 shows the effects of our optimization algorithm in terms of buying behavior,
in contrast to the non-optimized selection of the recommendations. The non-
optimized algorithm uses the initial weights supplied by the recommenders to select
the recommendations, and does no feedback-based optimization. The figure shows
that the optimized approach results in a noticeable increase of the number of additions
to shopping carts.

Fig. 4. A small number of recommendations brings
the majority of clicks (EC, EDU)

Fig. 5. Additions to basket as a result
of recommendation (EC)

6.2 Optimization Algorithms and Recommendation Selection Policies

To evaluate the effectiveness of the different optimization algorithms, we have com-
pared the performance of the reward-only and reward-penalty optimization algorithms
with the selection of recommendations based on the initial weight supplied by re-
commender. For an evaluation period of several months the selection algorithm was
chosen with equal probability from one of the following:

• reward-only, ε=0.2, no aging
• reward-only, ε=0.05, no aging
• reward-penalty, aging by division with T=200
• reward-penalty, aging by division with T=500
• without optimization

Fig. 6 shows that the optimized algorithms achieve higher acceptance rates than the
algorithms without optimization. The algorithm, which uses penalty as well as re-
ward, was able to achieve somewhat higher acceptance rates than the algorithm which
uses only reward and with some probability selects random recommendation rules for
exploration. Too quick aging (in our case T=200) can adversely affect the optimiza-
tion. The relatively small improvement of the reward-penalty algorithm can be attrib-
uted to the fact, that in our applications the successful and unsuccessful recommenda-
tions can be distinctly separated even by the simpler algorithms. The algorithm which
used zero as initial weights for the recommendation rules was tested on the EDU
website. Its acceptance rate was only 4% lower than that of the algorithm which used
recommender-specific initial weights.

Fig. 7 shows the session acceptance rates (number of sessions where at least one
recommendation was accepted divided through total number of sessions) for different

384 Nick Golovin and Erhard Rahm

recommendation selection policies introduced in Section 3. Five policies were tested.
The random policy was used for comparison. In addition to the policies described in
section 3, we have tested policies �only parents� and �only siblings� which were used
to simulate the scenarios when no directly matching recommendations can be found.
The policy �only parents� ignores the direct matching recommendations and takes
only recommendations from the higher hierarchy levels. The policy �only siblings�
searches for recommendations among the hierarchy siblings (nodes having a common
parent with the current node), also ignoring the direct matches. According to the test
results, the �direct match� policy performs better then the policy �direct+parents�.
However, the �direct+parent� policy is able to find recommendations even in cases,
when no directly matching recommendations are available.

Fig. 6. Acceptance rate of different optimiza-
tion algorithms(EC)

Fig. 7. Session Acceptance rate of the rule
selection policies(EDU)

6.3 User Groups

Fig. 8 shows the comparison of the acceptance rates for different user groups. The
user groups were built using a decision tree algorithm J48 over the usage data of sev-
eral months from the EDU website. The DBS website is structured in several areas of
interest, most important of which are Study and Research: For the decision tree algo-
rithm, the area of interest (Research/Study) visited by a web user, has served as a
classification attribute; other attributes were country, browser and operating system of
the web user. However, after the tree was pruned, only the attribute country appeared
to be of importance in addition to the area of interest. The resulting tree was trans-
formed into ontology graph nodes with mapping clauses. Fig. 8 indicates that the
acceptance rates differ substantially for the user groups and that for the considered
website research-oriented users accept presented recommendations almost twice as
much than study-oriented users.

Fig. 9 shows how good our user groups are in predicting the user interests. Here,
differently colored bars show the acceptance for recommendations pointing to content
of different interest areas. The user group Research appears to be quite effective, since
its users have only clicked the recommendations leading to the research area of the
website. Users of group Study preferred study-related recommendations but the corre-
sponding acceptance rate is not much higher than for users not belonging to any of
the two specific user groups.

Automatic Optimization of Web Recommendations Using Feedback 385

Fig. 8. Acceptance rates of different user
groups (EDU)

Fig. 9. Acceptance rates of user group based
recommendation rules (EDU)

7 Related Work
A survey of hybrid recommender systems including a list of strengths and weaknesses
of different recommender algorithms and a classification of the hybridization methods
can be found in the [5].

The work in [17] also employs data warehouse to store usage information and im-
plicit user feedback. However, in [17] the feedback is used to learn how to switch
different recommender algorithms, which work independently, whereas in our ap-
proach the feedback influences the weights of individual recommendations
(�switched� approach vs. �weighted� approach according to the classification in [5]).
[17] describes several strategies, according to which the best recommender can be
chosen.

Combining the collaborative filtering with content-based algorithms is addressed in
[6], [13] and [3]. Their approaches strive to combine both algorithms in one algorithm
in an algorithm-specific way. Our approach, in contrast, views these algorithms as
independent, but dynamically combines their results in a way, optimized for the given
website.

8 Summary
We described the architecture, implementation and use of a novel recommendation
system. It uses multiple techniques to generate recommendations, stores them in a
semantically enabled recommendation database and then refines them using online
optimization. Our results for two sample websites showed that feedback-based opti-
mization can significantly increase the acceptance rate of the recommendations. Even
the simple optimization techniques could substantially improve acceptance of recom-
mendations compared to the non-optimized algorithm. We have also shown that web
recommendations and our optimization approach have considerable impact on the
buying behavior of the customers of an e-commerce web site.

References
1. S. Acharyya, J. Ghosh: Context-Sensitive Modeling of Web-Surfing Behavior using Con-

cept Trees. Proc. WebKDD, 2003

386 Nick Golovin and Erhard Rahm

2. M. Balabanovic: An Adaptive Web Page Recommendation Service. CACM, 1997
3. J.Basilico, T.Hofmann.: Unifying collaborative and content-based filtering. Proc. 21th

ICML Conference. Banff, Canada, 2004
4. S. Baron, M. Spiliopoulou: Monitoring the Evolution of Web Usage Patterns. Proc.

ECML/PKDD, 2003
5. R. Burke: Hybrid Recommender Systems: Survey and Experiments. User Modeling and

User-Adapted Interaction, 2002
6. Claypool, M., Gokhale, A., Miranda, T.: Combining Content-Based and Collaborative Fil-

ters in an Online Newspaper. In: Proc. ACM SIGIR Workshop on Recommender Systems,
1999

7. N. Golovin, E. Rahm: Reinforcement Learning Architecture for Web Recommendations.
Proc. ITCC2004, IEEE, 2004

8. S. ten Hagen, M. van Someren and V. Hollink: Exploration/exploitation in adaptive re-
commender systems. Proc. European Symposium on Intelligent Technologies, Hybrid Sys-
tems and their Implementation in Smart Adaptive Systems, Oulu, Finland. 2003

9. A. Jameson, J. Konstan, J. Riedl: AI Techniques for Personalized Recommendation. Tuto-
rial presented at AAAI, 2002

10. G. Linden, B. Smith, and J. York: Amazon.com Recommendations: Item-to-Item Collabo-
rative Filtering. IEEE Internet Computing. Jan. 2003

11. B. Mobasher, X. Jin, Y. Zhou. Semantically Enhanced Collaborative Filtering on the Web.
Proc. European Web Mining Forum, LNAI, Springer 2004

12. M. Nakagawa, B. Mobasher: A Hybrid Web Personalization Model Based on Site Connec-
tivity. Proc. 5th WEBKDD workshop, Washington, DC, USA, Aug. 2003

13. P. Paulson, A. Tzanavari: Combining Collaborative and Content-Based Filtering Using
Conceptual Graphs. Lecture Notes in Computer Science 2873 Springer 2003

14. E. Reategui, J. Campbell, R. Torres, R. Using Item Descriptors in Recommender Systems,
AAAI Workshop on Semantic Web Personalization, San Jose, USA, 2004

15. B. Sarwar, G. Karypis, J. Konstan, J. Riedl: Analysis of Recommendation Algorithms for
E-Commerce. Proc. ACM E-Commerce, 2000

16. R.S. Sutton, A.G. Barto: Reinforcement Learning: An Introduction. MIT Press,1998.
17. A. Thor, E. Rahm: AWESOME - A Data Warehouse-based System for Adaptive Website

Recommendations. Proc. 30th Intl. Conf. on Very Large Databases (VLDB), Toronto, Aug.
2004

	Automatic Optimization of Web Recommendations Using Feedback and Ontology Graphs
	1 Introduction
	2 Architecture Overview
	3 Recommendation Selection Using Ontology Graphs
	4 Creating Recommendation Rules
	5 Feedback-Based Optimization
	5.1 "Drift of Interest"
	5.2 Exploration Versus Exploitation

	6 Prototype and Evaluation
	6.1 Prototype Implementations, Click Rates and Economic Efficiency
	6.2 Optimization Algorithms and Recommendation Selection Policies
	6.3 User Groups

	7 Related Work
	8 Summary
	References

