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Abstract
Cloud infrastructures enable the efficient parallel execution
of data-intensive tasks such as entity resolution on large
datasets. We investigate challenges and possible solutions
of using the MapReduce programming model for paral-
lel entity resolution using Sorting Neighborhood blocking
(SN). We propose and evaluate two efficient MapReduce-
based implementations for single- and multi-pass SN that
either use multiple MapReduce jobs or apply a tailored data
replication. We also propose an automatic data partitioning
approach for multi-pass SN to achieve load balancing. Our
evaluation based on real-world datasets shows the high ef-
ficiency and effectiveness of the proposed approaches.

1 Introduction
Cloud computing has become a popular paradigm for ef-
ficiently processing data and computationally intensive ap-
plication tasks [1]. Many cloud-based implementations uti-
lize the MapReduce programming model for parallel pro-
cessing on cloud infrastructures with up to thousands of
nodes [9]. The broad availability of MapReduce distribu-
tions such as Hadoop makes it attractive to investigate its
use for the efficient parallelization of data-intensive tasks.

Entity resolution (also known as object matching, dedu-
plication, or record linkage) is such a data-intensive and
performance critical task that can likely benefit from cloud
computing. Given one or more data sources, entity reso-
lution is applied to determine all entities referring to the
same real world object [14, 22]. It is of critical importance
for data quality and data integration, e.g., to find duplicate
customers in enterprise databases or to match product of-
fers for price comparison portals.

Many approaches for entity resolution have been pro-
posed [2, 12, 18, 20] and included in matching frameworks
[4, 6]. The standard (naı̈ve) approach to find matches in
n input entities is to apply matching techniques on the

Cartesian product of input entities. However, the resulting
quadratic complexity of O(n2) results in infeasible execu-
tion times for large datasets [19]. So-called blocking tech-
niques [3] thus become necessary to reduce the number of
entity comparisons whilst maintaining match quality. This
is achieved by semantically partitioning the input data into
blocks of similar records and restricting entity resolution
to entities of the same block. Sorted neighborhood (SN) is
one of the most popular blocking approaches [14]. It sorts
all entities using an appropriate blocking key and only com-
pares entities within a predefined distance window w. The
SN approach thus reduces the complexity to O(n ·w) for
the actual matching. The multi-pass variant of SN utilizes
several blocking keys for improved effectiveness [14].

In this study we investigate the use of MapReduce for
the parallel execution of single- and multi-pass SN block-
ing and entity resolution. By combining the use of block-
ing and parallel processing we aim at a highly efficient en-
tity resolution implementation for very large datasets. The
proposed approaches consider specific partitioning require-
ments of the MapReduce model and implement a correct
sliding window evaluation of entities. Our contributions
can be summarized as follows:

• We demonstrate how the MapReduce model can be
applied for the parallel execution of a general en-
tity resolution workflow consisting of a blocking and
matching strategy.

• We identify the major challenges and propose two ap-
proaches for realizing SN Blocking on MapReduce.
The approaches (called JobSN and RepSN) either use
multiple MapReduce jobs or apply a tailored data
replication during data redistribution. We also de-
scribe an extension for multi-pass SN that allows for a
simultaneous employment of multiple blocking func-
tions.

• We address the data skew problem with an automatic
data partitioning approach that can be combined with
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both JobSN and RepSN. It ensures load balancing
across all available nodes and supports multiple SN
passes with possibly different window sizes.

• We evaluate our approaches and demonstrate their ef-
ficiency in comparison to sequential SN. The evalua-
tion also considers the influence of the window size
and data skew as well as the match quality in terms of
F-measure.

This paper is an extended version of [17] and introduces
support for multi-pass SN as well as automatic data parti-
tioning. The evaluation is expanded by respective experi-
ments.

The rest of the paper is organized as follows. In the next
section we introduce the MapReduce programming para-
digm. Section 3 illustrates the general realization of entity
resolution using MapReduce. In Section 4, we describe our
approaches to realize single- and multi-pass SN blocking
based on MapReduce. Section 5 explains our method for
automatic data partitioning and load balancing. Section 6
describes the performed experiments and evaluation. Re-
lated work is discussed in Section 7 before we conclude.

2 MapReduce
MapReduce is a programming model introduced by Google
in 2004 [8]. It supports parallel data-intensive computing
in cluster environments with up to thousands of nodes. A
MapReduce program relies on data partitioning and redis-
tribution. Entities are represented by (key,value) pairs. A
computation is expressed with two user defined functions:

map : (keyin,valuein)→ list(keytmp,valuetmp)

reduce : (keytmp, list(valuetmp))→ list(keyout ,valueout)

These functions contain sequential code and are ex-
ecuted in parallel across many nodes utilizing present
data parallelism. Map tasks scan disjoint input partitions
in parallel and transform each entity in a (key,value)-
representation before the map function is executed. The
output of a map function is sorted by key and repartitioned
by applying a partitioning function on the key. A partition
may contain different keys but all values with the same key
are in the same partition. The partitions are redistributed,
i.e., all (key,value) pairs of a partition are sent to exactly
one reduce task. Each reduce task employs a grouping
function to determine the data chunks for each reduce func-
tion call.

An exemplary data flow of a MapReduce computation
is shown in Figure 1. The MapReduce program counts
the number of term occurrences across multiple documents
which is a common task in information retrieval. The in-
put data (list of documents) is partitioned and distributed

Figure 1: Example of a MapReduce program for counting
word occurrences in documents (similar to [21]).

to the two map tasks. In the simple example of Figure 1,
two documents are assigned to each of the two map tasks.
However, a map tasks usually processes larger partitions
in practice. Instances of the map function are applied to
each partition of the input data in parallel. In our exam-
ple, the map function extract all words for all documents
and emits a list of (term,1) pairs. The partitioning assigns
every (key,value) pair to one reduce task according to the
key. In the example of Figure 1 a simple range partition-
ing is applied. All keys (words) starting with a letter from
a through m are assigned to the first reduce task; all other
keys are transferred to the second reduce task. The input
partitions are sorted for all reduce tasks. The user-defined
reduce function then aggregates the word occurrences and
outputs the number of occurrences per word. The output
partitions of reduce can then easily be merged to a com-
bined result since two partitions do not share any key.

There are several frameworks that implement the Map-
Reduce programming model. Hadoop [13] is the most pop-
ular implementation throughout the scientific community.
It is free, easy to setup, and well documented. We there-
fore implemented and evaluated our approaches with Ha-
doop. A Hadoop cluster consists of a set of nodes that
run a number m̂ of map and a number r̂ of reduce pro-
cesses. These numbers may change during the execution
of a MapReduce program due to node failures or newly
added nodes at runtime. More important for our purposes
is the specified number of map tasks (m) and reduce tasks
(r). Note that the partitioning function relies on the number
of reduce tasks since it assigns key-value pairs to the avail-
able reduce tasks. Each process can execute only one task
at a time. After a task has finished, another task is auto-
matically assigned to the finished process using a Hadoop-
specific scheduling mechanism. The number of map (m)
and reduce tasks (r) remains unchanged during the execu-
tion and is used by our algorithms as an execution parame-
ter. Most MapReduce implementations utilize a distributed
file system (DFS) such as the Hadoop distributed file sys-
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Figure 2: Simplified general entity resolution workflow

tem [5]. The input data is initially stored partitioned, dis-
tributed, and replicated across the DFS. Partitions are re-
distributed across the DFS in the transition from map to
reduce. The output of each reduce call is written to the
DFS.

3 Entity resolution with MapReduce

In this work we consider the problem of entity resolution
(deduplication) within one source. The input data source
S = {ei} contains a finite set of entities ei. The task is to
identify all pairs of entities M = {(ei,ek) | ei,ek ∈ S} that
are regarded as duplicates.

Figure 2 shows a simplified generic en-
tity resolution workflow. The workflow con-
sists of a blocking strategy and a matching
strategy. Blocking semantically divides a data
source S into possibly overlapping partitions (blocks)
bi, with S =

⋃
bi. The goal is to restrict entity comparison

to pairs of entities that reside in the same block. The
partitioning into blocks is usually done with the help
of blocking keys based on the entities’ attribute values.
Blocking keys utilize the values of one or several attributes,
e.g., product manufacturer (to group together all products
sharing the same manufacturer) or the combination of
manufacturer and product type. Often, the concatenated
prefixes of a few attributes form the blocking key. A
possible blocking key for publications could be the combi-
nation of the first letters of the authors’ last names and the
publication year.

The matching strategy identifies pairs of matching en-
tities of the same block. Matching is usually realized by
pairwise similarity computation of entities to quantify the
degree of similarity. A matching strategy may also employ
several matchers and combine their similarity scores. As
a last step the matching strategy classifies the entity pairs
as match or non-match. Common techniques include the
application of similarity thresholds, the incorporation of
domain-specific selection rules, or the use of training-based
models. Our entity resolution model abstracts from the
actual matcher implementation and only requires that the
matching strategy returns the list of matching entity pairs.

The realization of the general entity resolution work-
flow with MapReduce is relatively straightforward by im-

Figure 3: Example of a general entity resolution workflow
with MapReduce (n= 9 input entities, m= 3 map and r = 2
reduce tasks)

plementing blocking within the map function and by im-
plementing matching within the reduce function. To this
end, map first determines the blocking key for each entity.
The MapReduce framework groups entities with the same
blocking key to blocks and redistributes them. The reduce
step then matches the entities within one block. Such a
procedure shares similarities with the join computation in
parallel database systems [10]. There, the join key (instead
of the blocking key) is used for data repartitioning to allow
a subsequent parallel join (instead of match) computation.
The join (match) results are disjoint by definition and can
thus easily merged to obtain the complete result.

Figure 3 illustrates an example for n=9 entities, a-i, of an
input data source S using m=3 map and r=2 reduce tasks.
First, the input partitioning (split) divides the input source S
into m partitions and assigns one partition to each map task.
Then, the individual map tasks read their (preferably) local
data in parallel and determine a blocking key value K for
each of the input entities.1 For example, entity a has block-
ing key value 1. Afterwards all entities are dynamically
redistributed by a partition function such that all entities
with the same blocking key value are sent to the same re-
duce task (node). In the example of Figure 3, blocking key
values 1 and 3 are assigned to the first reduce task whereas
key 2 is assigned to the second node. The receivers group
the incoming entities locally and identify the duplicates in
parallel. For example, the first reduce task identifies the du-
plicate pairs (a,d) and (c, i). The reduce outputs can finally
be merged to achieve the overall match result.

Unfortunately, the sketched MapReduce-based entity
resolution workflow has several limitations:

Disjoint data partitioning: MapReduce uses a partition
function that determines a single output partition for
each map output pair based on its key value. This ap-

1Figure 3 omits the map input keys for simplicity.
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proach is suitable for many blocking techniques but
complicates the realization of blocking approaches
with overlapping blocks. For example, the sorted
neighborhood approach does not only compare enti-
ties sharing the same blocking key.

Load balancing: Blocking may lead to partitions of
largely varying size due to skewed key values. There-
fore the execution time may be dominated by a single
or a few reduce tasks similar to skew effects during
parallel join processing [11].

Memory bottlenecks: All entities within the same block
are passed to a single reduce call. The reduce task
can only process the data row-by-row similar to a for-
ward SQL cursor. It does not have any other options
for data access. On the other hand, the matching re-
quires that all entities within the same reduce block
are compared with each other. The reduce task must
therefore store all entities in main memory (or must
make use of other external memory) which can lead to
serious memory bottlenecks. The memory bottleneck
problem is partly related to the load balancing prob-
lem since skewed data may lead to large blocks which
tighten the memory problem. Possible solutions have
been proposed in [23]. However, memory issues can
also occur with a (perfect) uniform key distribution.

In this work we focus on the first and second challenge
for the popular and efficient Sorted Neighborhood (SN)
blocking method. With respect to the first problem, we pro-
pose two MapReduce-based approaches in the next section.
In Section 5 we propose a load balancing approach for SN
that avoids skew effects. This approach also reduces the
risk of memory bottlenecks.

4 Sorted Neighborhood with Map-
Reduce

Sorted neighborhood (SN) [14] is a popular blocking ap-
proach that works as follows. A blocking key K is deter-
mined for each of n entities. Typically the concatenated
prefixes of a few attributes form the blocking key. After-
wards the entities are sorted by this blocking key. A win-
dow of a fixed size w is then moved over the sorted records
and in each step all entities within the window, i.e., entities
within a distance of w−1, are compared.

Figure 4 shows a SN example execution for a window
size of w = 3. The input set consists of the same n = 9
entities that have already been employed in the example of
Figure 3. The entities (a-i) are first sorted by their block-
ing keys (1, 2, or 3). The sliding window then starts with
the first block (a,d,b) resulting in the three pairs (a,d),
(a,b), and (d,b) for later comparisons. The window is then
moved by one step to cover the block (d,b,e). This leads

Figure 4: Example execution of sorted neighborhood with
window size w = 3

to two additional pairs (d,e) and (b,e). This procedure
is repeated until the window has reached the final block
(c,g, i). Figure 4 lists all pairs generated by the sliding win-
dow. In general, the overall number of entity comparisons
is (n−w/2) · (w−1).

The SN approach is very popular for entity resolution
due to several advantages. First, it reduces the complexity
from O(n2) (matching n input entities without blocking)
to O(n)+O(n · logn) for blocking key determination and
sorting and O(n ·w) for matching. Thereby matching large
datasets becomes feasible and the window size w allows
for a dedicated control of the runtime. Second, the SN ap-
proach is relatively robust against a suboptimal choice of
the blocking key since it is able to compare entities with
a different (but similar) blocking key. The SN approach
may also be repeatedly executed using different blocking
keys. Such a multi-pass strategy diminishes the influence
of poor blocking keys (e.g., due to dirty data) whilst still
maintaining the linear complexity for the number of possi-
ble matches. Finally the linear complexity makes SN more
robust against load balancing problems, e.g., if many enti-
ties share the same blocking key.

The major difference of SN in comparison to other
blocking techniques is that a matcher does not necessar-
ily only compare entities sharing the same blocking key.
For example, entities d and b have different blocking keys
but need to be compared according to the sorted neighbor-
hood approach (see Figure 4). On the other hand, one of the
key concepts of MapReduce is that map input partitions are
processed independently. This allows for a flexible paral-
lelization model but makes it challenging to group together
entities within a distance of w since a map task has no ac-
cess to the input partition of other map tasks.

Even if we assume that a map task can determine
the relevant entity sets for each entity2, the general
approach as presented in Section 3 is not suitable.

2For example, this could be realized by employing a single map task
only.
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This is due to the fact that the sliding window ap-
proach of SN leads to heavily overlapping entity sets
for later comparison. In the example of Figure 4,
the sliding window produces the blocks {a,d,b} and
{d,b,e} among others. The general MapReduce-based
entity resolution approach is, of course, applicable, but
would expend unnecessary resources. First of all, almost
all entities appear in w blocks and would therefore appear
w times in the map output. Finally, the overlapping blocks
would cause the generation of duplicate pairs in the reduce
step, e.g., (d,b) in the above mentioned example.

We therefore target a more efficient MapReduce-based
realization of SN and, thus, adapt the approach described
in Section 3. The map function determines the blocking
key for each input entity independently. The map output
is then distributed to multiple reduce task that implement
the sliding window approach for each reduce partition. For
example, in the case of two reduce task one may want to
send all entities of Figure 4 with blocking key ≤ 2 to the
first and the remaining entities to the second reduce task.
The analysis of this scenario reveals that we have to solve
mainly two challenges to implement a MapReduce-based
SN approach. Furthermore, we need to support multiple
blocking keys within a multi-pass SN implementation.

Sorted reduce partitions: The SN approach assumes an
ordered list of all entities based on their blocking keys.
A repartitioning must therefore preserve this order,
i.e., the map output has to make sure that all entities
assigned to reduce task Rx have a smaller (or equal)
blocking key than all entities of reduce task Rx+1.
This allows each reduce task to apply the sliding win-
dow approach on its partition. We will address the
sorted data repartitioning by employing a composite
key approach that relies on a partition prefix (see Sec-
tion 4.1).

Boundary entities: The continuous sliding window of SN
requires that not only entities within a reduce parti-
tion but also across different reduce partitions have to
be compared. More precisely, the highest v < w enti-
ties of a reduce partition Rx need to be compared with
the w− v smallest entities of the succeeding partition
Rx+1. In the following, we call those entities bound-
ary entities. For simplicity we assume that there is no
partition that holds less than w entities. Therefore it
is sufficient to only compare entities of two succeed-
ing reduce tasks what is surely the common case. We
propose two approaches (JobSN and RepSN) that em-
ploy multiple MapReduce computation steps and data
replication, respectively, to process boundary entities
and, thus, to map the entire SN algorithm to a Map-
Reduce computation (Sections 4.2 and 4.3).

Multi-pass SN: SN can be applied for multiple blocking
keys and such a multi-pass approach has been

Figure 5: Example execution of sorted data partitioning
with a composite key consisting of a blocking key and a
partition prefix. The composite key ensures that the re-
duce partitions are ordered. If the sliding window approach
(w = 3) is applied to both reduce partitions, it is only able
to identify 12 out of the 15 SN correspondences (as shown
in Figure 4). The pairs ( f ,c), (h,c), and (h,g) can not be
found since the involved entities reside in different reduce
partitions.

shown to significantly improve the effective-
ness compared to the use of a single block-
ing key [14]. We therefore need an efficient
MapReduce-based implementation for multi-
pass SN. In Section 4.4 we outline such an approach
that avoids reading the input data multiple times but
uses a single map phase for all blocking keys (passes).

4.1 Sorted Reduce Partitions

We achieve sorted reduce partitions (SRP) by utilizing an
appropriate user-defined function part for data redistribu-
tion among reduce tasks in the map phase. Data redistribu-
tion is based on the generated blocking key k, i.e., part is
a function part : k→ i with 1 ≤ i ≤ r and r is the number
of reduce tasks. A monotonically increasing function part
(i.e., part(k1)≥ part(k2) if k1≥ k2) ensures that all entities
assigned to reduce task i have a smaller or equal blocking
key than any entity processed by reduce task i+1.

The range of possible blocking key values is usually
known beforehand for a given dataset because blocking
keys are typically derived from numeric or textual attribute
values. In practice simple range partitioning functions part
may therefore be employed.

The execution of SRP is illustrated in Figure 5 for m = 3
map and r = 2 reduce tasks. It uses the same entities and
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blocking keys as the example of Figure 4. In this example
the function part is defined as follows: part(k)= 1 if k≤ 2,
otherwise part(k) = 2. The map function first generates the
blocking key k for each input entity and adds part(k) as a
prefix. In the example of Figure 5, the blocking key value
for c is 3 and part(k) = 2. This results in a combined key
value 2.3. The partitioning then distributes the (key,value)
pairs according to the partition prefix of the key. For ex-
ample, all keys starting with 2 are assigned to the second
reduce task. Moreover, the input partitions for each reduce
task are sorted by the (combined) key. Since all keys of
reduce task i start with the same prefix i, the sorting of the
keys is practically done based on the actual blocking key.

Afterwards the reduce task can run the sliding window
algorithm and, thus, generates the correspondences of in-
terest. Figure 5 illustrates the resulting correspondences
as reduce output (B=Blocking). For entity resolution the
reduce function will apply a matching approach to the cor-
respondences. Reduce will therefore likely return a small
subset of B. However, since we investigate in blocking
techniques we leave B as output to allow for comparison
with other approaches (see Section 4.2 and 4.3).

The sole use of SRP does not allow for comparing en-
tities with a distance ≤ w that spread over different re-
duce tasks. For example, standard SN determines the cor-
respondence (h,c) (see Figure 4) that can not be gener-
ated since h and c are assigned to different reduce tasks.
For r reduce tasks and a window size w, SRP misses
(r−1) ·w ·(w−1)/2 boundary correspondences. We there-
fore present two approaches, JobSN and RepSN, that build
on SRP but are also able to deal with boundary entities.

4.2 JobSN: Sorted Neighborhood with addi-
tional MapReduce job

The JobSN approach utilizes SRP and employs a second
MapReduce job afterwards that completes the SN result by
generating the boundary correspondences. JobSN makes
thereby use of the fact that MapReduce provides sorted par-
titions to the reduce tasks. A reduce task can therefore eas-
ily identify the first and the last w− 1 entities during the
sequential execution. Those entities have counterparts in
neighboring partitions, i.e., the last w− 1 entities of a re-
duce task relate to the first w−1 entities of the succeeding
reduce task. In general, all reduce tasks output the first and
last w−1 entities with the exception of the first and the last
reduce task. The first (last) reduce task only returns the last
(first) w−1 entities.

The pseudo-code for JobSN is shown in the appendix
in Algorithm 13. Figure 6 illustrates a JobSN execution
example. It uses the same data of Figure 5. The map step
of the first job is identical with SRP of Figure 5 and omitted
in Figure 6. The reduce step is extended by an additional

3 p = 1 for single-pass JobSN

Figure 6: Example execution of SN with additional Map-
Reduce job (JobSN, w = 3). The far left box is the reduce
step of the first job. Its output is the input to the second
MapReduce job.

output. Besides the list of blocking correspondences B, the
reduce task also emits the first and last w−1 entities.

JobSN realizes the assignment of related boundary ele-
ments with an additional boundary prefix that specifies the
boundary number. Since the last w− 1 entities of reduce
task i < r refer to the ith boundary, the keys of the last
w− 1 entities are prefixed with i. On the other hand, the
first w− 1 entities of the succeeding reduce task i+ 1 also
relate to the ith boundary. Therefore the keys of the first
w− 1 entities of reduce task i > 1 are prefixed with i− 1.
The first reduce task in the example of Figure 6 prefixes
the last entities ( f and h) with 1 and the second reduce task
prefixes the first entities (c and g) with 1, too. Thereby the
key reflects data lineage: The actual blocking key of entity
c is 3 (see, e.g., Figure 4), it was assigned to reduce task
number 2 during the SRP (Figure 5), and it is associated
with boundary number 1 (Figure 6).

The second MapReduce job of JobSN is straightforward.
The map functions leaves the input data unchanged. The
map output is then redistributed to the reduce tasks based
on the boundary prefix. The reduce function then applies
the sliding window but filters correspondences that have
already been determined in the first MapReduce job. For
example, ( f ,h) does not appear in the output of the second
job since this pair is already determined by SRP. As men-
tioned above, this knowledge is encoded in the lineage in-
formation of the key because those entities share the same
partition number.

The JobSN approach generates the complete SN result
at the expense of an additional MapReduce job. We expect
the overhead for an additional job to be acceptable and we
will evaluate JobSN’s performance in Section 6.
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4.3 RepSN: Sorted Neighborhood with en-
tity replication

The RepSN approach aims to realize SN within a single
MapReduce job. It extends SRP by the idea that each re-
duce task i > 1 needs to have the last w− 1 entities of the
preceding reduce task i−1 in front of its input. This would
ensure that the boundary correspondences appear in the re-
duce task’s output. However, the MapReduce paradigm
is not designed for mutual data access between different
reduce tasks. MapReduce only provides options for con-
trolled data replication within the map function.

The RepSN approach therefore extends the original SRP
map function so that map replicates an entity that should
be send to both the respective reduce task and its succes-
sor. For all but the last reduce partition r, the map function
thus identifies the w− 1 entities with the highest blocking
key k. It first outputs all entities and adds the identified
boundary entities afterwards. Similar to SRP, an entity key
is determined by the blocking key k plus a partition prefix
part(k). To distinguish between original entities and repli-
cated boundary entities, RepSN adds an additional bound-
ary prefix. For all original entities this boundary prefix is
the same as the partition number, i.e., the composite key is
part(k).part(k).k. The boundary prefix for replicated enti-
ties is the partition number of the succeeding reduce task,
i.e., the composite key is (part(k)+1).part(k).k.

RepSN is described in the appendix in Algorithm 24.
Figure 7 illustrates an example execution of RepSN. The
example employs r = 2 reduce tasks and window size
w = 3. Therefore all map tasks identify the w− 1 = 2 en-
tities with the highest key of partition 1. The output of
each map function is divided into two parts. The upper
part (above the solid line) is equivalent to the regular map
output of SRP. The only (technical) difference is that the
partition prefix is duplicated. The lower part (framed by a
dashed line) of the map output contains the replicated enti-
ties. Consider the second map function: All three entities
(d, e, and f ) are assigned to the partition 1 and e and f are
replicated because they have the highest keys. The keys
of the replicated data start with the succeeding partition 2.
This ensures that e and f are send to both reduce task 1 and
reduce task 2.

The map output is then redistributed to the reduce func-
tions based on the boundary prefix. Furthermore, Map-
Reduce provides a sorted list as input to the reduce func-
tions. Due to the structure of the composite key, the repli-
cated entities appear at the beginning of each reduce task
input. Replicated entities share the same boundary prefix
but have a smaller partition prefix. The reduce function
then applies the sliding window approach but only returns
correspondences involving at least one entity of the actual
partition.

4 p = 1 for single-pass RepSN

Figure 7: Example execution of sorted neighborhood with
entity replication (RepSN, w = 3). Entities are replicated
within in the map function. Replicated entities are framed
by a dashed line.

In the example of Figure 7, input and output of the first
reduce task are equivalent to SRP (see Figure 5). The sec-
ond reduce task receives a larger input partition. It ignores
all replicated entities but the w− 1 = 2 highest ( f and h).
The output is the union of the corresponding SRP output
and the corresponding boundary reduce output of JobSN.

RepSN allows for an entire sorted neighborhood com-
putation within a single MapReduce job at the expense of
some data replication. Since the MapReduce model does
not provide any global data access5 during the computa-
tion, it is not possible to identify only the necessary en-
tities for processing the boundary elements. Rather each
map function has to identify and replicate possibly rele-
vant entities based on its local data. Each map task has
to replicate w− 1 entities for all but the last partition.
The maximum number of replicated entities is therefore
m · (r− 1) · (w− 1). This number is independent from the
size n of input entities and may therefore be comparatively
small for large datasets. We will evaluate the overhead of
data replication and data transfer in Section 6. In particular
we will compare it against the JobSN overhead for schedul-
ing and executing an additional MapReduce job.

5Hadoop as the most popular implementation MapReduce offers a so-
called distributed cache. However, the primary purpose of this mechanism
is to upfront copy read-only data (like files or archives) needed by the job
to the particular nodes.
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4.4 Multi-pass Sorted Neighborhood

Using a single blocking key may not sufficiently allow find-
ing all duplicates especially with dirty input data. Further-
more, the utilized window size may have to be very large in
order to identify most duplicates. For example, the window
size should be at least as large as the highest number of en-
tities with the same blocking key. However, large window
sizes lead to numerous entity comparisons and thus limited
performance. Multi-pass SN addresses these problems by
employing multiple blocking keys and match passes and
combining the duplicates identified in the different passes.
Another advantage of this approach is that the individual
passes can be done with relatively small windows sizes so
that multi-pass SN can significantly improve both match
effectiveness and efficiency [14].

A naı̈ve approach to implement multi-pass SN runs
one of the proposed MapReduce-based implementations p
times and employs one of p different blocking key func-
tions per pass. This approach requires scanning the input
dataset p times and introduces additional overhead for ex-
ecuting multiple MapReduce jobs.

We therefore describe how our RepSN strategy can be
extended so that multi-pass SN can be realized within a
single MapReduce job (called MultiRepSN). The exten-
sion of JobSN is feasible analogously but we omit its de-
scription here due to space constraints. The key idea is
that we add the pass number as a prefix to the single-pass
RepSN composite map key. For each input entity and each
pass i∈ {1, . . . , p}map thus outputs a key-value pair with a
composite map key of i.parti(k).parti(k).k where k denotes
the blocking key according to the blocking key function of
pass i. For each pass, we employ a pass-specific partition-
ing function parti to enable an even data partitioning for the
respective blocking key of the pass. Like in the single-pass
RepSN approach, map identifies boundary elements for all
passes and adds corresponding key-value pairs with a key
of i.(parti(k)+1).parti(k).k to the output.

The map output is partitioned among the reduce tasks
by the boundary index and sorted by the entire key. Since
the pass number is the first key component, the keys are
sorted by the pass number first and then like in single-pass
RepSN. The reduce task may therefore apply the sliding
window approach as in RepSN by focusing on pairs of a
specific pass.

We extend our single-pass example to two passes where
the first pass is the same as before. The blocking key func-
tion of the second pass assigns a blocking key of 9 to enti-
ties a and d; all other entities have blocking key 8. The cor-
responding partitioning function distributes the two block-
ing keys to the two reduce tasks such that part2(k) = 1 if
k = 8 and part2(k) = 2 if k = 9. The window size is set to
w2 = 2. Figure 8 illustrates the MultiRepSN approach for
two passes. The first part of each map output is the same as
in Figure 7 with an additional pass prefix of 1. The second

Figure 8: Example dataflow for MultiRepSN for two passes
(window sizes w1 = 3 and w2 = 2).

pass entails the comparison of additional pairs thus helping
to find additional duplicates.

5 Automatic partitioning for N-pass
Sorted Neighborhood

The choice of a proper range partitioning function part is
a critical step to enable evenly utilized reduce tasks and
thus efficient SN processing. Finding a function that as-
signs a fairly equal amount of blocking entity pairs to each
reduce task is a non-trivial task and usually requires an up-
front data analysis. A partitioning function must thereby
take into account not only the blocking key distribution but
also the employed window size. The effort is further in-
creased for multi-pass approaches because in each of the p
passes different blocking key functions are applied result-
ing in different key ranges and key frequencies. Further-
more, different passes can employ different window sizes.
A manual partitioning would therefore impose a very high
configuration effort that should be avoided by an automatic
approach.

The example of Figure 8 already illustrates the need for
automatic partitioning. Although both employed partition-
ing functions (one for each pass) are fairly reasonable, the
resulting reduce task workload is unbalanced. The first re-
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Figure 9: Schematic overview of MultiRepSN with global
partitioning

duce task processes 15 pairs whereas the second reduce
task has only 8 pairs to evaluate.

We propose the use of an additional preprocessing (anal-
ysis) MR job to achieve automatic partitioning and load
balancing for both MapReduce-based SN strategies. Fig-
ure 9 illustrates the schematic workflow for MultiRepSN.
Again, the presented techniques can be straightforwardly
adopted to JobSN but we omit the details for brevity. Both
MR jobs are based on the same number of map tasks and
the same partitioning of the input data. The first (analysis)
job calculates a so-called key partitioning matrix (KPM)
that specifies the number of entities per key and pass sep-
arated by input partitions. The matrix is used by the map
tasks of the actual SN approach in the second MR job to
automatically identify an optimal partitioning function and,
thus, tailor entity redistribution among reduce tasks.

5.1 KPM computation

The key partitioning matrix (KPM) specifies the number of
entities of all blocking keys across m input partitions. Us-
ing MR for the the KPM computation is relatively simple.
For each entity and each pass i ∈ {1, . . . , p} the map task
determines the blocking key k and outputs a key-value with
a composite key i.ki. j and the entity as the corresponding
value. The last part of the composite key denotes the map
task (input partition) index j ∈ {1, . . . ,m}. The key-value
pairs are partitioned based on the blocking key component
and sorted. The reduce task outputs the number of entities
per map key, i.e., it determines the number of entities for
each combination of pass, blocking key, and map partition.

Figure 10 illustrates the computation of the KPM for our
two-pass example. For example, blocking key 3 is assigned
to entities c, g, and i for the first pass. Since entity c is in the
first map partition and g and i belong to the third partition,
the KPM contains a key distribution of 1, 0, and 2 across
the three map tasks for p = 1 and k = 3. As illustrated in
Figure 9, map produces an additional output Si per map par-
tition that contains the original entities annotated with their

Figure 10: Example dataflow for computation of the key
partitioning matrix (MR job 1 of Figure 9)

blocking keys and pass number. This output is not shown
in Figure 10 to save space but used as input in the second
MR job to avoid unnecessary parsing and key generation
during the second job.

The KPM allows for a sorted enumeration of all entities
as follows: Entities are ordered – in this sequence – by the
pass number, blocking key, and map task (input partition)
number. Entities of the same map task sharing the same
pass number and blocking key are enumerated by their (ar-
bitrary) order within the input partition. We can therefore
assign a global position pos ∈ {1, . . . , p ·n} for each entity
in every pass, i.e. p times. The quadruple (pass number,
blocking key, map input partition, entity index) unambigu-
ously determines the global position pos whereas the entity
index refers to the nth entity for a (pass, blocking key, map
input partition) combination.

5.2 Automatic partitioning utilizing the
KPM

In the following we describe how the RepSN strategy can
make use of a KPM and the global enumeration order to
achieve a balanced distribution of entity pairs to be eval-
uated by multi-pass SN and given window sizes. Each
map tasks reads the KPM, i.e., the output of the preced-
ing MR job, and calculates the overall number of pairs
N = Σ

p
i=1(n−

wi
2 ) ·(wi−1) and the average number of pairs

per reduce task N/0 =
N
r .

The map task then uses the overall entity enumeration
and determines for each reduce task j the entity with the
smallest position pos j so that the number of pairs for all

9



reduce tasks 1 to j would be greater or equal j ·N/0. Note
that this does not mean that the map task “knows” the en-
tity. Each map task still has only access to its input parti-
tion. However, it is sufficient that it can specify its position
based on pass number, blocking key, map number, and po-
sition within the input partition.

The partitioning function is then defined as follows:
part(e) = j ⇔ pos j−1 ≤ pos(e) ≤ pos j with pos0 = 1.
With the help of the KPM each map task also identifies
the necessary entities for replication. Entities with posi-
tions between pos j−1− (w−1) and pos j−1−1 are subject
to replication for each j > 1 as long as they belong to the
same pass as entity with position pos j. The automatic par-
titioning using a KPM thereby avoids unnecessary replica-
tion in contrast to manual partitioning that may generate
unnecessary replicated entities (e.g., a, b, and e in the ex-
ample of Figure 7) because each map task is unaware of the
existence of entities in other input partitions. Algorithms 3
and 4 in the appendix show the pseudo code of the KPM
computation and the automatic partitioning function that
can be employed by the SN implementations.

Figure 11 shows an example of automatic partitioning
for our running example. The p = 2 passes lead to N =
(9− 3

2 ) ·(3−1)+(9− 2
2 ) ·(2−1) = 23 pairs for n = 9 enti-

ties and window sizes w1 = 3 and w2 = 2, respectively. For
r = 2 reduce tasks the average pair number is N/0 = 11.5.
Since the first pass uses a larger window than the second
pass, entities of the first pass are processed by both reduce
tasks whereas the second pass is processed by the second
reduce task only. Entity g of pass #1 is the last entity that
needs to be sent to the first reduce task because all entities
of pass #1 up to g (a, d, b, . . . , c, g) account for 13 pairs
whereas entities up to c (g’s predecessor) account for 11
pairs only. All other entities, i of pass #1 and all entities of
pass #2, are sent to the second reduce task. Due to window
size w1 = 3, g and its predecessor c are replicated and sent
also to the second reduce task to ensure that all pairs in-
volving i are covered. The resulting reduce task workload
distribution is improved from 15/8 (Figure 8) to 13/10. The
small difference to an optimal workload of 12/11 is due to
the fact that entities usually take part in more than one pair.
However, the divergence is almost smaller than or equal
to max(wi)−1 and, thus, acceptable compared to the total
number of pairs. In other words, any two reduce tasks dif-
fer by no more than 2 ·(max(wi)−1) pairs (see Appendix B
for a proof).

6 Experiments

We conducted a set of experiments to evaluate the effi-
ciency and effectiveness of the proposed approaches. Af-
ter a description of the experimental setup we first com-
pare single-pass JobSN and RepSN and study the scalabil-
ity of our SN approaches. Afterwards we evaluate multi-

Figure 11: Example dataflow for MultiRepSN with 2
passes and global partitioning. The input is the additional
output of job 1 (see Figure 9).

pass SN and the proposed automatic partitioning approach.
We finally study the trade-off between quality and execu-
tion time for single- and multi-pass SN.

6.1 Experimental setup

We run our experiments on up to four nodes with two cores.
Each node has an Intel(R) Core(TM)2 Duo E6750 2x2.66
GHz CPU, 4GB memory and runs a 64-bit Debian Linux
OS with a Java 1.6 64-bit server JVM. On each node we
run Hadoop 0.20.2. Following [23] we made the following
changes to the Hadoop default configuration: We set the
block size of the DFS to 128MB, allocated 1GB to each
Hadoop daemon and 1GB virtual memory to each map and
reduce task. Each node was configured to run at most two
map and reduce tasks in parallel. Speculative execution
was turned off. Both master daemons for managing the
MapReduce jobs and the DFS run on a dedicated server.
We used Hadoop’s SequenceFileOutputFormat with native
bzip2 block compression to serialize the output of map and
reduce tasks that was further processed. Sequence files can
hold binary key-value pairs what allowed us to directly ac-
cess the ith attribute value of an entity during matching in
comparison to split a string at runtime.

For our experiments we use the same input dataset as
in [23] that contains about 1.4 million publication records.
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Figure 12: Comparison of the two Sorted Neighborhood
implementations (p = 1, manual partitioning, w = 1000)

To compare publications we determine the average simi-
larity of two matchers (edit distance on title, TriGram on
abstract). Pairs of entities with an average similarity score
of at least 0.7 are regarded as matches. We apply an in-
ternal optimization by skipping the execution of the sec-
ond matcher if the similarity after the execution of the first
matcher is too low (i.e., < 0.4) to reach the combined sim-
ilarity threshold. As a default blocking key for single-pass
SN, we use the lower-cased first two letters of the publica-
tion title.

6.2 Comparison of RepSN and JobSN
We first evaluate the absolute runtime and the relative
speedup of the two SN implementations for a fixed win-
dow size of 1000. To ensure comparability for different
numbers of map and reduce tasks we apply the same man-
ually defined partitioning function6 in each experiment. It
operates only on the blocking key, i.e., assigns all entities
with the same blocking key to the same reduce task. The set
of entities is divided into 10 partitions of preferably sim-
ilar size. However, their sizes differ because on the one
hand the MapReduce paradigm requires entities sharing the
same blocking key to be processed within the same reduce
task and on the other hand the partitions have to be sorted.
The resulting 10 reduce tasks are executed by at most r̂ = 8
reduce processes allowing the matching of several small
partitions while a large partition is processed.

Figure 12 shows execution times and speedup results
for up to 8 map and 8 reduce processes for the two pro-
posed implementations. The configuration with m̂ = r̂ = 1
refers to sequential execution on a single node, the one with
m̂ = r̂ = 2 refers to the execution on a single node utilizing
both cores and so on. The execution times scale almost lin-

6The space of possible blocking keys was partitioned into ten partitions
utilizing the split points a!,b,d, f ,k, p,s, t, ti. Therefore, an entity whose
blocking key is less than or equal to a! (e.g. ’a ’) is assigned to the first
reduce task.

Figure 13: Runtime of RepSN (p=1, manual partitioning)
for different window sizes w using r̂=1 and r̂=8 reduce pro-
cesses, respectively.

early, for instance the execution time for RepSN could be
reduced from approximately 8.3 to merely 1.2 hours. We
observe a nearly linear speedup for the entire range of up
to 4 nodes and 8 cores. The runtime of the different imple-
mentations differ only slightly. Differences can only be ob-
served for a small amount of parallelism, i.e., RepSN was
5 minutes slower in the sequential case. Beginning with
m̂ = r̂ = 2 RepSN completed slightly faster than JobSN
due to the avoidance of a separate MR job for boundary
comparisons. The reasons for the speedup values (about
7 for 8 cores) are caused by design and implementation
choices of MapReduce/Hadoop to achieve fault tolerance,
e.g., materialization of (intermediate) results between map
and reduce.

6.3 Scalability according to window size

Due to the largely similar performance of RepSN and
JobSN we focus on RepSN in our further experiments.
Next, we evaluate the absolute runtime and the relative
speedup of RepSN (p = 1) using varying window sizes
from 10 and 1000 and compare the results for r̂ = 1 and
r̂ = 8 reduce processes. We apply the same partitioning
strategy as in our previous experiment. Figure 13 shows
that the execution time increases linearly with the window
size because the number of pairs also grows linearly with
the window size. The speedup of parallel SN improves
with larger window sizes from about 4 for small window
sizes (w = 10) to 7 for larger window sizes (w≥ 400). For
the latter the execution time is dominated by the pair-wise
matching during the reduce phase whereas the additional
MapReduce management overhead is more noticeable for
smaller window sizes.
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Figure 14: Comparison of the two approaches for multi-
pass SN using RepSN (wi = 100). p× RepSN executes
single-pass RepSN p times whereas 1× RepSN realizes
multi-pass RepSN within one MapReduce job. Automatic
partitioning is applied for both approaches.

6.4 Multi-pass Sorted Neighborhood

We compare our multi-pass MultiRepSN strategy against
the naı̈ve strategy of a repeated execution of single-pass
RepSN. To eliminate the influence of data skew (see Sec-
tion 6.5) we apply automatic partitioning for both ap-
proaches. Figure 14 shows the result for 1 to 4 passes
and a fixed window size of 100. In addition to the default
single-pass blocking we utilize three blocking functions:
last name of first author, first letter of last names of all au-
thors, and first letter of publication title plus first author
name.

We observe that the runtime grows linearly with the
number of passes because the number of processed pairs
is linear to the number of entities and passes. Further-
more, the automatic partitioning achieves that all reduce
tasks receive about the same number of pairs. The p×
RepSN strategy mainly suffers from the fact that the in-
put data needs to be read and parsed p times while the
additional overhead of multiple MR job is relatively low.
MultiRepSN, on the other hand, avoids the p-fold input
reading and clearly outperforms the naı̈ve strategy. The ex-
ecution time improvements increase with more passes, e.g.,
from about 17% for two to 28% for four passes.

6.5 Automatic partitioning and data skew

We study the influence of data skew on runtime. To this
end, we control the degree of data skew by modifying the
blocking function and generating block distributions that
follow an exponential distribution. Given a fixed number
of blocking keys b=8, we set the number of entities in the
ith block as proportional to e−s·i. We thereby use the skew
factor s≥ 0 to control the degree of data skew. To quantify
the inequality of the blocking key distribution in the dataset

Figure 15: Influence of data skew for manual and automatic
partitioning (m̂ = r̂ = 8, w = 100)

we utilize the Gini coefficient g =
2·∑b

i=1 i·Ki

b·∑b
i=1 Ki

− b+1
b , whereas

Ki is the number of entities in block i and Ki ≤ Ki+1 for
i ∈ {1, . . . ,b− 1}. A value of 0 expresses total equality
(s = 0) and a value of 1 maximal inequality (s→ ∞).

We run our experiments on 4 nodes (8 map and 8 reduce
processes) with the same window size wi = 100 for each
pass i. We apply the RepSN strategy with and without au-
tomatic partitioning. In the latter case, we employ a simple
hand-crafted partitioning function that assigns the ith out of
b = 8 blocks to the ith out of r = 8 reduce tasks. Figure 15
shows the corresponding run times.

As expected, the manual partitioning is susceptible to
data skew. Significant data skew leads to an unbalanced
reduce task workload which deteriorates the overall ex-
ecution time that is determined by the last finishing re-
duce task. In contrast, the automatic partitioning is able to
achieve a balanced reduce task workload. Since the num-
ber of pairs is not affected by data skew, Figure 15 shows
an almost constant run time for all data sets. The over-
head of KPM computation is approximately 2.5 minutes
which is why manual partitioning is more efficient for rel-
atively unskewed data. As shown in Figure 15 the utiliza-
tion of automatic partitioning is beneficial for Gini coeffi-
cients > 0.257. Blocking keys of real-world datasets are
typically very unevenly distributed. We argue that due to
the large potential for runtime improvement and the rel-
atively small costs of analyzing the data up-front, an au-
tomatic partitioning approach should always be preferred
compared to a manual adjustment of split points for the
blocking keys. Moreover, as demonstrated, a strict parti-
tioning by blocking key can not distribute the processing
of very large blocks to multiple reduce tasks.

7As a reference, the carefully chosen manual partition function has a
Gini coefficient of 0.13. A simple partitioning strategy for r = 8 with
the blocking key intervall split points c, f , i, l,o,r,u leads to a gini Gini
coefficient of 0.32.
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6.6 Quality vs. execution time

We finally evaluate the trade-off between match quality and
execution time. The dataset used so far could not be applied
for this experiment due to the absence of a gold standard
for evaluating match quality. We thus used another pub-
lication dataset (based on [19]) that contains about 8,000
records and provides a perfect match result needed to com-
pute precision, recall, and F-Measure. We employ the
single-pass RepSN approach with a window size w = 1000
and compare it against three MultiRepSN strategies (p=2)
with window sizes w1 = w2 = 500, w1 = w2 = 200 and
w1 = w2 = 100, respectively. Blocking keys are the first
letter of the first author’s name (pass #1) and the first letter
of the publication title (pass #2), respectively. Two entities
are considered to match if their titles have a trigram sim-
ilarity greater or equal than 0.75. As before, we run our
experiments on 4 nodes (m̂ = r̂ = 8) using automatic parti-
tioning.

The upper part of Figure 16 shows the observed execu-
tion times along with the number of comparisons. The re-
duction rate specifies the ratio of saved comparisons rela-
tive to the Cartesian product of 31.7 ·106 comparisons. The
lower part of Figure 16 depicts the quality of the obtained
match result for all four strategies. Precision, recall, and
F-Measure are computed separately for all pairs that have
been directly identified by SN (Pairs) and all pairs of the
transitive closures (TC). Due to the small dataset size, the
transitive closures of matching entity pairs were calculated
as a post-processing step without using MapReduce.

Both single-pass (w = 1,000) and multi-pass (w = 500)
result in a similar number of comparisons and, thus, have
a similar execution time. In both cases the evaluation of
the transitive closure of matching pairs is highly benefi-
cial since it leads to additional matches and thus improved
recall. The multi-pass approach achieves a significantly
better F-Measure than single-pass SN mainly due to im-
proved recall. Hence, the consideration of two blocking
keys helps to find many more matches despite the smaller
window sizes.

urther reducing the window size for multi-pass SN to
w = 200 significantly improves execution time (by about
25%) compared to the single-pass configuration. Still
when applying the transitive closure a significantly better
F-measure is achieved for w = 200. Even for w = 100
(execution time improvement by about 40%) a similar F-
Measure is achieved compared to the single-pass configu-
ration.

The shown results confirm that multi-pass SN is able to
achieve high match quality even with smaller window sizes
and that it can outperform single-pass SN not only in match
quality but also in efficiency due to reduced window sizes.

Figure 16: Comparison of quality and execution time
for single- and multi-pass RepSN using different window
sizes. (Pairs=identified match pairs; TC=transitive closure
of all pairs)

7 Related work

Entity resolution is a very active research topic and many
approaches have been proposed and evaluated as described
in recent surveys [12, 18]. Surprisingly, there are only
a few approaches that consider parallel entity resolution.
First ideas for parallel matching were described in the Febrl
system [7]. The authors show how the match computation
can be parallelized among available cores on a single node.
Parallel evaluation of the Cartesian product of two sources
considering the three input cases (clean-clean, clean-dirty,
dirty-dirty) is described in [15].

[16] proposes a generic model for parallel processing of
complex match strategies that may contain several match-
ers. The parallel processing is based on general partition-
ing strategies that take memory and load balancing require-
ments into account. Compared to this work [16] allows the
execution of a match workflow on the Cartesian product of
input entities. This is done by partitioning the set of input
entities and generating match tasks for each pair of parti-
tions. A match task is then assigned to any idle node in a
distributed match infrastructure with a central master node.
The advantage of this approach is the high flexibility for
scheduling match tasks and thus for dynamic load balanc-
ing. The disadvantage is that only the matching itself is
executed in parallel. Blocking is done upfront on the mas-
ter node. Furthermore in this work we rely on an widely
used parallel processing framework that hides the details
of parallelism and therefore is less error-prone.

We are only aware of one previous approach for parallel
entity resolution on a cloud infrastructure [23]. The au-
thors do not investigate Sorted Neighborhood blocking but
show how a single token-based string similarity function
can be realized with MapReduce. The approach is based
on a complex workflow consisting of several MapReduce
jobs. This approach suffers from similar load balancing
problems as observed in Section 6.5 because all entities that

13



share a frequent token are compared by one reduce task8.
In contrast to our Sorted Neighborhood approach large par-
titions for frequent tokens that do not fit into memory must
be handled separately. This is because all entities that con-
tain a specific token have to be compared with each other
instead of comparing only entities with a maximum dis-
tance of less than w. Compared to [23], we are not limited
to a specific similarity function but can apply a complex
match strategy for each pair of entities within a window.

8 Conclusions and outlook
We have shown how single- and multi-pass Sorted Neigh-
borhood blocking can be efficiently parallelized with Map-
Reduce. We proposed two single-pass MapReduce-based
SN implementations and demonstrated their high efficiency
and scalability in an evaluation using real-world datasets.
The proposed multi-pass implementation avoids reading
and parsing the input data several times for different passes
and is thus more efficient than a naı̈ve implementation of
repeated single passes. We also proposed a highly efficient
approach for automatic data partitioning and load balanc-
ing that supports multi-pass SN with different window sizes
per pass.

While we could effectively utilize MapReduce and its
implementation Hadoop, even higher performance was pre-
vented by some of their limitations such as insufficient sup-
port for pipelining intermediate data between map and re-
duce jobs. In future work, we plan to further investigate
cloud-based entity resolution for other blocking and match
techniques and compare them with the proposed SN ap-
proaches.
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H., Rahm, E.: Data partitioning for parallel entity
matching. In: 8th International Workshop on Qual-
ity in Databases (2010)

[17] Kolb, L., Thor, A., Rahm, E.: Parallel sorted neigh-
borhood blocking with mapreduce. In: BTW, pp. 45–
64 (2011)
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A Algorithms

Algorithm 1 and Algorithm 2 show the pseudo-code for
the two proposed Sorted Neighborhood implementations
JobSN and RepSN. Using p = 1 corresponds to the single-
pass version of JobSN and RepSN, introduced in sec-
tions 4.2 and 4.3.

The pseudo-code for KPM computation and automatic
partitioning is shown in Algorithm 3 and 4. With the global
knowledge encoded in the KPM, for RepSN, the number of
replicated entities can be reduced from p ·m(r−1)(w−1)
to p(r−1)(w−1). For simplicity this is omitted here. The
map tasks read the KPM at initialization time. It is not re-
quired that each map task holds the full KPM in memory.
First of all, lines whose blocking keys do not occur in a
map tasks input partition can be omitted. Secondly, a map
task need not keep all columns in memory. For each pass
and each (relevant) blocking key it is sufficient to store the
overall sum of entities in previous map input partitions (Al-
gorithm 4 Lines 10-19). This number is incremented every
time an entity with this blocking key is processed for this
pass (Line 31). Furthermore it would be possible to materi-
alize the KPM to disk. For instance Hadoop’s MapFileOut-
putFormat provides a possibility to turn the output of Algo-
rithm 3 into a persistent Map-like data structure including
an index for fast access. This output can be distributed to
the map tasks using Haddop’s Distributed Cache allowing
local data access.

The setup and teardown functions map configure and
map close are automatically invoked by Hadoop be-
fore/after a map task is executed (the same counts for re-
duce tasks). Map/reduce tasks can buffer data in memory to
access shared data among several map/reduce tasks. A key
of the form x.y denotes a key composed of x and y. Com-
posed keys are compared component-wise. The comments
indicate which parts of the composite keys are used for
map-side repartitioning and reduce-side sorting and group-
ing of entities.

The function match(e1, e2) compares two entities by ap-
plying an arbitrary matching strategy and outputs matching
entity pairs. The partition to which an entity with blocking
key k is assigned during pass i is determined by a generic
pass-specific function getPartition(i, k, r) that can be either
manually or automatically defined. Algorithms 1 and 3 use
a function additionalOut(key, value) that writes key-value
pairs to the distributed filesystem next to the regular map
output in a binary format. These key-value pairs are later
read by the map function of another MapReduce job in or-
der to avoid multiple parsing and processing of input data.
By prohibiting splitting of input files it is ensured that the
second MapReduce job has the same number of map tasks
than the previous one.

B Proof
We prove that the automatic partitioning using a KPM leads
to a balanced workload across all reduce tasks such that
the maximal difference between any two reduce tasks is
2 · (max(wi)−1) comparisons.

Let R j be the number of comparisons assigned to reduce
task j. The maximal window size is denoted as W and
the average number of pairs per reduce task is N. The au-
tomatic partitioning (see Section 5.2) ensures that that the
number of pairs for all reduce tasks 1 to j would be greater
or equal j ·N. Therefore

R1 + . . .+R j−1 ≥ ( j−1) ·N (1)
R1 + . . .+R j−1 +R j ≥ j ·N (2)

Adding an entity e to a reduce tasks leads to up to W −1
additional pairs because e needs to be compared its wi−1
predecessors in pass i. Since the partitioning assigns the
minimal range of entities that satisfies inequation (2) we
can specify upper bounds:

R1 + . . .+R j−1 < ( j−1) ·N+W −1 (3)
R1 + . . .+R j−1 +R j < j ·N+W −1 (4)

We then conclude

⇒ ( j−1) ·N ≤ R1 + . . .+R j−1 < ( j−1) ·N+W −1(5)
⇒ j ·N ≤ R1 + . . .+R j−1 +R j < j ·N+W −1 (6)

(6)− (5)
⇒ N− (W −1)≤ R j ≤ N+W −1 (7)

Inequation 7 proves that the number of pairs for any re-
duce task j is between N−(W−1) and N+(W−1). There-
fore two reduce tasks do not differ by more than 2 ·(W −1)
pairs. �
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Algorithm 1: Multi-pass JobSN
1 // --- Phase 1 ---
2 map configure(jobConf)
3 p← getNumberOfPasses(jobConf);
4 reduceTasks← jobConf.numReduceTasks();

5 map(keyin=unused, valuein=entity)
6 for i← 1 to p do
7 blockKey← generateBlockingKeyForPass(i, entity);
8 partition← getPartition(i, blockKey, reduceTasks);

9 // part(pass.partition.blockKey)= partition
10 output(keytmp=i.partition.blockKey, valuetmp=entity);

11 reduce configure(jobConf)
12 p← getNumberOfPasses(jobConf);
13 lastPass← -1;
14 windowSize← getWindowSize(jobConf);
15 reduceTasks← jobConf.numReduceTasks();
16 queue← [];
17 for i← 1 to p do
18 topi← [];
19 bottomi← [];

20 // order and group by composed key
21 reduce(keytmp=i.partition.blockKey, list(valuetmp)=list(entity))
22 if i 6=lastPass then
23 queue← [];
24 lastPass← i;

25 foreach entity ∈ list(valuetmp) do
26 if partition>1 and topi.size()<windowSize-1 then
27 topi.addLast((partition, blockKey, entity));

28 if partition<reduceTasks then
29 if bottomi.size() = windowSize-1 then
30 bottomi.removeFirst();

31 bottomi.addLast((partition, blockKey, entity));

32 foreach e ∈ queue do
33 match(e, entity);

34 queue.addLast(entity);
35 if queue.size() = windowSize then
36 queue.removeFirst();

37 reduce close()
38 for i← 1 to p do
39 foreach (partition,blockKey,entity) ∈ topi do
40 additionalOut(keyout =i.(partition-1).partition.blockKey,
41 valueout = entity);

42 foreach (partition,blockKey,entity) ∈ bottomi do
43 additionalOut(keyout =i.partition.partition.blockKey,
44 valueout = entity);

45 // --- Phase 2 ---
46 // Read additional reduce output of phase 1
47 map(keyin=i.boundary.partition.blockKey, valuein=entity)
48 // part(pass.boundary.partition.blockKey)=
49 // hash(pass, partition) % reduceTasks
50 output(keytmp=i.boundary.partition.blockKey, valuetmp=entity);

51 reduce configure(jobConf)
52 lastPass← -1;
53 lastBoundary← -1;
54 windowSize← getWindowSize(jobConf);
55 queue← [];

56 // order and group by composed key
57 reduce(keytmp=i.boundary.partition.blockKey, list(valuetmp)=list(entity))
58 if i 6= lastPass or boundary 6= lastBoundary then
59 lastPass← i;
60 lastBoundary← boundary;
61 reduce close();
62 queue← [];

63 foreach entity ∈ list(valuetmp) do
64 queue.addLast((partition, entity));

65 reduce close()
66 // Match all entites in queue with a distance of at
67 // most windowSize-1 and different partition indexes

Algorithm 2: Multi-pass RepSN
1 map configure(jobConf)
2 p← getNumberOfPasses(jobConf);
3 reduceTasks← jobConf.numReduceTasks();
4 windowSize← getWindowSize(jobConf);
5 // list of the entities with the w-1 highest blocking
6 // keys for each pass and each reduce task<r
7 for i← 1 to p do
8 for j← 1 to reduceTasks-1 do
9 rep i

j ← [];

10 map(keyin=unused, valuein=entity)
11 for i← 1 to p do
12 blockKey← generateBlockingKeyForPass(i, entity);
13 j← getPartition(i, blockKey, reduceTasks);
14 if j < reduceTasks then
15 if rep i

j .size()<windowSize-1 then
16 rep i

j .add((blockKey, entity));
17 rep i

j .sort() ; /* Sort by first component */

18 else if blockKey > rep i
j .getFirst().firstComponent() then

19 rep i
j .removeFirst();

20 rep i
j .add((blockKey, entity));

21 rep i
j .sort() ; /* Sort by first component */

22 // part(pass.boundary.partition.blockKey)
23 // = boundary
24 output(keytmp=i.j.j.blockKey, valuetmp=entity);

25 map close
26 for i← 1 to p do
27 for j← 1 to reduceTasks-1 do
28 foreach (blockKey, entity) ∈ rep i

j do
29 // Adjust bound to j+1 to assign repli-
30 // cated entities to next reduce task
31 output(keytmp=i.(j+1).j.blockKey, valuetmp=entity);

32 reduce configure(jobConf)
33 p← getNumberOfPasses(jobConf);
34 lastPass← -1;
35 windowSize← getWindowSize(jobConf);
36 queue← [];

37 // order and group by composed key
38 reduce(keytmp=i.boundary.partition.blockKey, list(valuetmp)=list(entity))
39 if i 6= lastPass then
40 queue← [];
41 lastPass← i;

42 foreach entity ∈ list(valuetmp) do
43 if boundary = partition then
44 // no replicated entity
45 foreach e ∈ queue do
46 match(e, entity);

47 queue.addLast(entity);
48 if queue.size() = windowSize then
49 queue.removeFirst();
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Algorithm 3: Analysis job for KPM computation
1 map configure(jobConf)
2 p← getNumberOfPasses(jobConf);
3 partition← getMapTaskIndex(jobConf);

4 map(keyin=unused, valuein=entity)
5 blockingKeys← ””;
6 for i← 1 to p do
7 blockKey← generateBlockingKeyForPass(i, entity);
8 blockingKeys← blockingKeys + ”\t” + blockKey;

9 // part(pass.blockingKey.partition)=
10 // hash(pass, blockingKey) % reduceTasks
11 output(keytmp=i.blockKey.partition, valuetmp=1);

12 additionalOut(keyout =blockingKeys, valueout =entity);

13 // Order and group by composed key
14 reduce(keytmp=pass.blockKey.partition, list(valuetmp)=list(number)))
15 sum← 0;
16 foreach number in list(valuetmp) do
17 sum← sum + number;

18 out← pass + ”\t” + blockKey + ”\t” + partition + ”\t” + sum;
19 output (keyout =unused, valueout =out);

Algorithm 4: AutoPartitioner utilizing the KPM
1 configure(jobConf, mapTasks, reduceTasks, p, partition)
2 KPM← readKPM(jobConf);
3 n← 0;
4 foreach blockKey ∈ KPM.getPass(1) do
5 for i← 1 to mapTasks do
6 n← n + KPM.getPass(1).getKey(blockKey).getPart(i);

7 // Global index of next entity of pass i and block j
8 // for this map task. This map contains at most one
9 // entry per (pass,blockKey) pair

10 . entityIndexes← empty map;
11 for i← 1 to p do
12 entityIndex← 1;
13 foreach blockKey ∈ KPM.getPass(i).getKeysSorted() do
14 for j← 1 to mapTasks do
15 if j = partition then
16 entityIndexes.put((i, blockKey),
17 (i-1)·n + entityIndex);

18 entityIndex← entityIndex +
19 KPM.getPass(i).getBlock(blockKey).getPart(j);

20 // Pass-aware and window size-aware reduce task
21 // assignment for each entity, targeting an equal
22 // number of pairs per reduce task
23 splitPoints← [];
24 N← Σ

p
i=1(n−

wi
2 ) · (wi−1) /* wi: window size for pass i */

25 N /0 ← dN/reduceTaskse;
26 pairsLeft← N /0;
27 offset← 0;
28 for i← 1 to p do
29 entitiesLeft← n;
30 while entitiesLeft > 0 do
31 entitiesThatFit← min{ pairsLeft

wi
+

wi
2 , entitiesLeft};

32 offset← offset + entitiesThatFit;
33 splitPoints.addLast(offset);
34 entitiesLeft← entitiesLeft - entitiesThatFit;
35 pairsThatFit← (entitiesThatFit− wi

2 ) · (wi−1);
36 pairsLeft← pairsLeft - pairsThatFit;
37 if pairsLeft ≤ 0 then
38 pairsLeft← N /0;

39 getPartition(pass, blockKey, reduceTasks)
40 entityIndex← entityIndexes.get((pass, blockKey));

41 // adjust entity index for next call
42 entityIndexes.get((pass, blockKey)).put(entityIndex + 1);
43 for i← 1 to splitPoints.size() do
44 if entityIndex ≤ splitPoints.get(i) then
45 return i;
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