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ABSTRACT
Cypher is a property graph query language that provides expres-

sive and efficient querying of graph data. Originally designed

and implemented within the Neo4j graph database, it is now

being used by several industrial database products, as well as

open-source and research projects. Since 2015, Cypher has been

an open, evolving language, with the aim of becoming a fully-

specified standard with many independent implementations.

We introduce Cypher and the property graph model, and then

describe extensions – either actively being developed or under

discussion – which will be incorporated into Cypher in the near

future. These include (i) making Cypher into a fully compositional

language by supporting multiple graphs and allowing graphs to

be returned from queries; (ii) allowing for more complex patterns

(based on regular path queries) to be expressed; and (iii) allowing

for different pattern matching semantics – homomorphism, rela-

tionship isomorphism (the current default) or node isomorphism

– to be configured at a query-by-query level.

A subset of the proposed Cypher language extensions has

already been implemented on top of Apache Spark. In the tutorial,

wewill present our approach including an in-depth analysis of the

challenges we faced. This includes mapping the property graph

model to the Spark DataFrame abstraction and the translation

of Cypher query operators into relational transformations. The

tutorial will conclude with a demonstration based on a real-world

graph analytical use case.

1 INTRODUCTION
The past few years have seen amarked increase of property graph

databases [12] – such as Neo4j [20], Sparksee and JanusGraph

– in both the industrial and research arenas. Property graphs

have become the model of choice for next-generation graph ap-

plications
1
. Their use increasingly replaces older approaches to

graph data processing such as cross-linked document stores or

object-oriented database management systems.

Across both research and industry, property graphs have been

used in a wide variety of domains, spanning areas as diverse as

fraud detection, recommendations, geospatial data, master data

management, network and data centre management, authorisa-

tion and access control [23], the analysis of social networks [5],

bioinformatics [1, 14, 28] and pharmaceuticals [18], software

system analysis [9], and investigative journalism [3].

This trend of increased usage of property graphs is grounded

in: (i) their ability to operate onmultiple large and highly-connected

data sets as one graph that enables novel pattern matching and

1
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graph analytical queries; (ii) their natural ability to cleanly map

onto object-oriented or document-centric data models in pro-

gramming languages; (iii) their visual nature that helps commu-

nication between business, application domain, and technical

experts; and (iv) their historical development based on the prag-

matic needs of real world application developers.

This trend is evidenced by two major factors. The first is the

emergence of Cypher as the de-facto standard declarative query

language for property graphs, and the second is the growing

number of both industrial and academic software products for

property graphs.

Since 2015, as part of the openCypher project [22], Cypher has

been an open language, and is evolving under the auspices of the

openCypher Implementers Group (oCIG), with the aim of becom-

ing a fully-specified standard that can be independently imple-

mented. The recently released Cypher 9 reference [21] along with

accompanying formal grammar definitions (EBNF and ANTLR4)

and conformance test suite (TCK) – published under the Apache

2.0 license – already provide implementers with a solid basis for

adopting Cypher. At the time of writing, Cypher is supported by

several commercial systems including SAP HANA Graph [24],

Agens Graph, Redis Graph, and Memgraph, along with research

frameworks including – in varying degrees of completeness –

Gradoop [11], inGraph [15], Cytosm [25], Cypher for Apache

Spark [19] and Cypher over Gremlin.

Current developments that are under way include the ability

to pass multiple graphs and a table as input to a Cypher query.

Moreover, queries will also be able to project and save multiple

graphs, and this, coupled with the ability to chain queries to-

gether, will render Cypher as the first graph compositional query

language. Following on from this work, complex pattern match-

ing and configurable pattern matching semantics will further

increase the utility of Cypher in the very near future.

2 SCOPE OF THE TUTORIAL
2.1 Intended audience
This tutorial is aimed at a wide scope of audience, including

researchers, students, developers, and industrial practitioners

who are interested in the emerging and quickly-evolving area

of graph data, databases and languages. All attendees will gain

a comprehensive idea of what this field comprises, as well as

the future features and challenges that lie ahead for Cypher, the

most-used property graph query language.

It is our hope that owing to the many challenges that exist in

this area, researchers and students will be motivated to consider

this area as a future topic of research.

There are no preliminary requirements for this tutorial, as it

will be self-contained and commence with the property graph

data model and Cypher, thus assuming no prior knowledge of

these.
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2.2 Goals of the tutorial
The main outcomes of the tutorial comprise:

• A comprehensive understanding of the property graph

data model, and how it compares against some of the other

graph data models.

• A good understanding of the Cypher property graph query

language and its main constructs and features.

• An in-depth treatment of how Cypher will become a fully

compositional language through the introduction of mul-

tiple graph support and query chaining.

• An overview of Cypher’s version of regular path queries
in the form of path pattern queries, which additionally

include node and relationship property tests to increase

the expressivity of Cypher to manage emerging industrial

use-cases and requirements.

• An understanding of node and relationship isomorphism

and homomorphism, the characteristics of each, the ben-

efits and drawbacks of each (from an industrial point of

view) and how these are envisioned to be incorporated

into Cypher.

• A good understanding of the Cypher implementation on

top of Apache Spark and how to map a schema-free graph

data model to a schema-based relational abstraction.

• An understanding of real-world use-cases which can be

better solved by using graphs and the proposed language

extensions.

3 TUTORIAL OUTLINE
We will begin the tutorial with a brief history of Cypher and

the property graph model, and provide an overview of the open-

Cypher project and how this is helping to drive forward the

design of the language, before proceeding onto the main topics.

3.1 The Cypher property graph query
language

Property graph data model. The property graph data model

will be described, along with how it originated historically from

application use cases. We will compare and contrast property

graphs with other graph data models. The tutorial will also con-

tain a discussion of ongoing work on potential extensions to the

property graph data model.

Cypher query language. Cypher as it stands today will be pre-

sented, focusing on its core elements: pattern matching, path

functionality and how updates to the data are performed. We will

also cover how Cypher queries are structured, as this will lead

into the topic of query composition further on in the tutorial. To

set the scene and lay the foundation for the later topics, we will

walk through an example query in detail, describing the syntax

and semantics at each stage of the query.

Challenge: language evolution. Evolving a language with active
users is not a trivial undertaking. Every language change needs

to be understood in terms of a plethora of interlocking concerns

such as usability, relevant use cases, consistency, ergonomics,

syntax, tractability, implementability and performance, as well as

aesthetics. Every design decision may have hidden consequences

in terms of constraining the design in the future. We will talk

about some of these concerns, how we design language changes,

and the formal openCypher process for evolving the language.

3.2 Multiple graphs and composition
Multiple graphs. Having set the scene, we will proceed with

describing current developments in Cypher. The first of these is

the notion of supporting multiple graphs. We will describe how

graphs can be referenced, created, updated, saved as a named

graph, and projected. We also define a series of set operations on

graphs. Throughout, we will use a running example and describe

the syntax and semantics at each stage.

Query composition. Having support for multiple graphs, and

being able to return one or more graphs from a query paves the

way for true graph query composition. Each query can be consid-

ered a function, taking as input a table andmultiple named graphs,

and returning as output a table and multiple named graphs. Thus,

a Cypher query can be thought of as a chain of functions, com-

posed of a series of constituent, elementary queries to form a

query chain or pipeline. The addition of subqueries – a well-

known construct from SQL – may be used to transform a query

chain into a tree. Named queries – allowing for queries to be

re-used in different contexts – will also be presented. We will

illustrate these concepts with examples, and show the power

and expressivity conferred through graph query composition; we

note that, to our knowledge, no other declarative, widely-used

query language allows for this.

Challenge: language revolution. Ideal language additions do not
interfere with existing features. Sometimes languages need to be

changed so substantially that it is impossible to avoid conflicting

with pre-existing semantics. In the history of Cypher, various

breaking changes have occurred. We will discuss our experiences

with breaking changes, language versioning, and planning and

executing large scale additions to the language such that the

concerns of all relevant stakeholders are incorporated.

3.3 Powerful pattern matching
Path Pattern Queries (PPQs). Regular path queries were first

proposed by Cruz, Mendelzon and Wood [4] in 1987, and now,

thirty years later, we have turned our attention to this topic and

how it may be included in Cypher in the form of Path Pattern
Queries, or PPQs.

PPQs, inspired by recent work by Libkin, Martens and Vr-

goč [13], extend RPQs with notions of node property tests, and

are an extremely powerful and expressive mechanism for graph

querying. PPQs have been designed to allow for the composition

of paths into more complex ones, incorporating both node and

relationship property tests, along with the consideration of path

costing. We see this as an integral part of Cypher, particularly

as the need for users to express ever more complex patterns be-

comes more pressing in the near future. Using a running example,

we will describe the syntax and semantics in detail.

Configurable pattern-matching semantics. The default pattern-
matching semantics in Cypher uses relationship (or edge) isomor-

phism (referred to informally as ‘Cyphermorphism’). Although

it has been stated that it is a useful default in most real-world

queries [26], there are some cases where a different semantics

would be more appropriate. To this end, Cypher will allow the

writer of a query to configure the type of pattern-matching se-

mantics the query is to use: either homomorphism, relationship

isomorphism, or node isomorphism. We will discuss how this is

envisaged to function, and the benefits and drawbacks conferred

by each approach.
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Challenge: Tractability. Providing more powerful and flexi-

ble pattern matching is grounded in ever-growing application

requirements. This needs to be balanced against what can be

implemented efficiently and what is theoretically tractable. How-

ever, in certain cases, these equally valid theoretical and practical

viewpoints may be at variance with each other. We will discuss

this and provide a perspective on the tensions that exist between

theoretical complexity analysis and industrial requirements of

graph query languages.

3.4 Cypher for Apache Spark
Graph query languages are currently most prominent in graph

database systems such as Neo4j [20]. However, it is our opinion

that many systems can benefit from having such a language as

part of their feature set. One of these systems is Apache Spark

[6], which is one of the most popular open source frameworks

in the context of distributed processing of large data volumes

within complex analytical workloads.

Apache Spark. Apache Spark is a distributed dataflow frame-

work supporting the declarative definition and execution of dis-

tributed dataflow programs sourced from batch data. The basic

abstractions of such programs are so-called Resilient Distributed

Datasets (RDDs) [29] and transformations between those. A

Spark RDD is an immutable, distributed collection of arbitrarily-

structured data; transformations are higher-order functions (e.g.

map and reduce) that describe the construction of new RDDs

either from existing ones or from data sources (e.g., HDFS or

RDBMS). To describe an analytical task, a Spark program may in-

clude multiple chained transformations. During execution, Spark

manages data distribution, parallel execution, load balancing and

failover across a cluster of machines.

In addition to the RDD abstraction, Apache Spark includes

libraries which offer a higher level of abstraction tailored to spe-

cific analytical tasks such as machine learning (SparkML), graph

processing (GraphX [8, 27]) and relational operations (SparkSQL).

In SparkSQL [2], the abstraction is a so-called DataFrame, which

handles structured data according to a fixed schema. Available

transformations are well known from relational algebra, com-

prising, for example, selection, projection, join and grouping.

Furthermore, SparkSQL includes Catalyst [2], a rule-based query

optimizer that transforms a relational query into an optimized

dataflow program by undertaking well-known techniques such

as predicate pushdown, column projection and code generation

[7].

To incorporate the benefits of Cypher from the graph database

domain into the world of distributed dataflow processing, we

began developing Cypher for Apache Spark (CAPS) [19]. CAPS

is an additional library built on top of SparkSQL and can be inte-

grated into a regular Spark analytical program. CAPS is primarily

focused on graph-powered data integration and graph analytical

query workloads within the Spark ecosystem. In addition, CAPS

is our testbed for Cypher language extensions as specified in

the previous sections; for example, query composition, graph

transformation and multiple graphs.

Challenge: Schema-flexible mapping. In order to benefit from

the query optimization capabilities of Catalyst, we decided to im-

plement CAPS on top of SparkSQL.
2
This however introduces the

problem of mapping the schema-flexible property graph model to

2
The CAPS architecture is backend-agnostic and can be ported to alternative back-

ends / systems.

a schema-fixed DataFrame representation. We solve this problem

by defining a graph schema, which includes information about

node labels, relationship types and associated properties poten-

tially having conflicting data types. For structured data sources,

such as CSV files or RDBMSs, the schema can be derived directly

from meta data supplied by the data source. However, unstruc-

tured or semi-structured data sources – exemplified by native

graph databases such as Neo4j or document databases such as

CosmosDB [17] – will require a full scan of the source data to

compute the schema, should it not exist in the first instance. Once

a schema is available, it is used to split node and relationship

data into multiple column entries, i.e., a row inside a structured

DataFrame (“flatten out nodes and relationships”) resulting in

potentially sparse tables. In the tutorial, we will discuss the pro-

cess of schema computation and node / relationship flattening in

detail including more information about our type system.

Challenge: Multi-phase planning. A second challenge we faced

when building CAPS was the translation of a Cypher graph query

to a sequence of relational operations on the Spark DataFrame

API. Our implementation approach is based on our experiences

from building the Neo4j query planner as well as several ex-

isting publications discussing the formal aspects of that topic

[10, 11, 16]. CAPS uses multiple compilation phases to produce

an executable Spark program, including: building a canonical

query representation from an abstract syntax tree; translating

the canonical form into graph-specific query operators (logical

planning); computing the schema for intermediate results (flat

planning); and translating logical operatos into Spark DataFrame

transformations (physical planning). A physical CAPS plan is

optimized by Catalyst and translated into an executable Spark

program. In the tutorial, we give an introduction into the CAPS

compilation phases as well as optimization techniques like reuse

of intermediate results, tree rewriting and Catalyst optimization.

3.5 Demonstration
To highlight the analytical benefits of the graph data model

as well as the Cypher query language and its proposed exten-

sions, we will end the tutorial with a live demonstration of

CAPS. The demonstration will illustrate a hypothetical analyt-

ical workflow including graph data integration from multiple

data sources, graph transformation and graph analytical queries.

We also demonstrate the integration of CAPS within the Spark

ecosystem by using Apache Zeppelin, a tool for browser-based

interactive data analytics.
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