
R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 574–583, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Efficient Management of
Biomedical Ontology Versions

Toralf Kirsten1,2, Michael Hartung1, Anika Groß1, and Erhard Rahm1,3

1 Interdisciplinary Centre for Bioinformatics, University of Leipzig
2 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

3 Department of Computer Science, University of Leipzig
{gross,hartung,tkirsten}@izbi.uni-leipzig.de,

rahm@informatik.uni-leipzig.de

Abstract. Ontologies have become very popular in life sciences and other do-
mains. They mostly undergo continuous changes and new ontology versions are
frequently released. However, current analysis studies do not consider the on-
tology changes reflected in different versions but typically limit themselves to a
specific ontology version which may quickly become obsolete. To allow appli-
cations easy access to different ontology versions we propose a central and uni-
form management of the versions of different biomedical ontologies. The pro-
posed database approach takes concept and structural changes of succeeding
ontology versions into account thereby supporting different kinds of change
analysis. Furthermore, it is very space-efficient by avoiding redundant storage
of ontology components which remain unchanged in different versions. We
evaluate the storage requirements and query performance of the proposed ap-
proach for the Gene Ontology.

Keywords: Ontology versioning, integration, management.

1 Introduction

Many ontologies have recently been developed and are frequently used in life sci-
ences and other domains. In particular, ontologies are used to annotate resources by
semantically describing their properties. For instance, molecular-biological objects
are annotated with concepts of the well-known Gene Ontology (GO) [4] to describe
their function or to specify the biological processes the objects are involved in. More-
over, personal properties of patients such as diseases can be described by concepts of
medical ontologies, e.g., OMIM (http://www.ncbi.nlm.nih.gov/omim) or NCI Thesau-
rus [12]. Many analysis studies utilize such ontology-based annotations to better un-
derstand the real-world impact of certain observations. For instance, GO annotations
are used for functional profiling [1] of large gene expression datasets to determine the
semantic function of certain sets of heavily expressed genes.

Most ontologies especially in life sciences are frequently changed to capture new
insights or correct previous specifications [5, 14]. Such evolutionary changes typically
include the addition, deletion and modification of concepts, relationships, and attribute
values/descriptions. These changes are incorporated in newer ontology versions that

 Efficient Management of Biomedical Ontology Versions 575

are released periodically. Current analysis studies do not consider the ontology changes
reflected in different versions but typically limit themselves to the most current ontol-
ogy version which may, however, become obsolete to a larger degree within a short
period of time. Providing an easy access to different versions of an ontologies is cur-
rently not supported but would be helpful for applications to check the stability of
analysis results and decide about the need to re-run earlier analysis studies.

There has been comparatively little previous research on efficient ontology ver-
sioning for large ontologies [3]. Klein and Fensel [8] proposed requirements for on-
tology versioning, in particular identification, change tracking and transparent evolu-
tion. As one task of ontology versioning some ontology management systems support
the detection of differences between ontology versions (DIFF operation). The
PROMPTDIFF approach [9] uses heuristics which automatically determine structural
differences for OWL-based ontologies. OntoView [7] and OBO-Edit [2] include simi-
lar algorithms that produce information at the level of elementary changes, e.g., added
and deleted ontology concepts. SemVersion [13] provides structural and semantic
versioning of RDF-based ontologies with support for different triple stores. However,
these systems do not explicitly utilize the information about changes for an efficient
storage of ontology versions especially in case of large ontologies.

Compared to previous work our method focuses on the efficient storage and man-
agement of many versions of large biomedical ontologies. We utilize the observation
that most succeeding versions differ only to a smaller extent to achieve an efficient
ontology storage with a minimum of redundancy between different versions. We
make the following contributions in the paper:

• We propose a scalable and space-efficient approach to integrate and manage
many versions of different ontologies in a central repository providing appli-
cations a uniform ontology access. We have successfully applied our ap-
proach to large biomedical ontologies but it is generic and thus can also be
applied for ontologies of other domains.

• Our approach includes an ontology versioning model that is the basis for an
efficient ontology management. It also allows the identification of changes
for concepts, relationships and attributes across different ontology versions.
Compared to seeing static ontology versions the versioning model provides a
dynamic view in which ontology elements are managed (versioned) accord-
ing to their life time.

• We evaluate the storage efficiency and query performance of our approach
on ontology version management utilizing various versions of the popular
Gene Ontology.

The presented approach is fully operational and has been used in diverse applications.
Firstly, the Ontology Evolution Explorer (OnEX, online access under http://www.izbi.
de/onex) [6] is built upon the versioning system and provides different kinds of ontol-
ogy change exploration and analyses. It currently integrates approx. 560 versions of 16
life science ontologies. Secondly, the ontology version system is used to study the im-
pact of ontology evolution on functional profiling results using the FUNC package [11].

The rest of the paper is organized as follows. In Section 2 we introduce our ver-
sioning model and corresponding relational repository schema. Section 3 describes a
method for assessing changes when a new ontology version will be imported. Results

576 T. Kirsten et al.

of our performance analysis are illustrated in Section 4. We summarize and conclude
in Section 5.

2 Versioning Model

We assume that an ontology O=(C,R) consists of a set of concepts C={c1,…,cn} and a
set of relationships R={r1,…,rm}. Concepts represent the entities of a domain to be
modeled and are interconnected with relationships of R. Each relationship is associ-
ated with a specific type, such as 'is-a' or 'part-of', describing the semantics of the
relationship. Concepts and relationships form together the structure of the ontology
which can range from a flat vocabulary over a hierarchical representation to a directed
acyclic graph (DAG). Each concept is described by a set of attributes, such as concept
ID, name, definition or description. We assume that each concept is uniquely identi-
fied by the concept ID; in life sciences this identifying attribute is mostly called ac-
cession number.

An ontology is usually released by the ontology provider at specific points in time
to provide the current state of the ontology as a designated version. An ontology ver-
sion Ov=(Cv,Rv,t) of the ontology O in version v at timestamp t is defined by a set of
concepts Cv ⊆ C and a set of relationships Rv ⊆ R that are valid at the creation time t of
Ov. Ontology versions follow a linear version schema, i.e., there is a chain of ontology
versions, such that each version vi has at most one predecessor vi-1 and one successor
vi+1. To find out the validity of concepts at a specific point in time, we associate with a
life time (tstart, tend) with each concept and each relationship. A life time period begins
with the date tstart of the ontology version in which the concept or relationship occurred
for the first time. It ends with a date tend of the ontology version in which the concept or
relationship has been valid for the last time (tstart < tend). Therefore, the set of concepts
Cv (set of relationships Rv) of an ontology version Ov released at time t consists of all
concepts ci ∈ C (relationship r ∈ R) which satisfy tstart ≤ t ≤ tend.

In addition to the versioning of concepts and relationships at the ontology level,
our versioning model also supports versioning for attributes at the concept level. At
this level, we consider two aspects, a) the non-empty attribute set that is used to de-
scribe an ontology concept and b) the associated values per attribute. Associating the
specific values of a concept attribute with a life time, i.e., a start and end date, allows
selecting the concrete attribute value that is valid at a specific point in time t.

The version model has been realized within a generic database repository to store the
versions of different ontologies and supporting uniform version access. The relational
repository schema for the versioning model is shown in Fig. 1. The schema consists of
different entities to consistently represent ontologies (entity Ontologies), ontology ver-
sions (entity Ontology Versions), concepts (entity Ontology Concepts) and the ontology
structure (entity Ontology Relationships). The latter entity represents the set of relation-
ships; each of them is associated with a relationship type (e.g., is-a, part-of). To flexibly
store attribute values for each ontology concept we apply the entity-attribute-value con-
cept (EAV) [10]. In this way, the entity Attributes holds the set of attributes describing
the semantics of the associated attribute values (entity Element Attribute Values) of an
ontology concept. Hence, new attributes and attribute values can be inserted without
changing the repository schema. Each ontology concept, relationship, and attribute

 Efficient Management of Biomedical Ontology Versions 577

Fig. 1. Relational repository schema to efficiently manage ontology versions

value is associated with a life time represented by the fields 'date-from' and 'date-to'.
Using these time periods, any ontology version can be completely reconstructed by tak-
ing the 'version date' attribute (entity Ontology Versions) into account, such that it holds
date-from ≤ version date ≤ date-to. Actually, one can determine the snapshot of an on-
tology for any point in time after the creation date.

3 Data Import and Change Detection

Given the frequent release of new versions it is important that new versions be auto-
matically imported into the central version management system (repository). Fur-
thermore, ontology changes compared to the previous version should automatically be
detected to adapt the lifetime information of ontology components. The data flow for
importing new versions from different ontology sources consists of three sub-
processes, namely download and import of raw ontology versions, change detection,
and loading changed objects into the repository.

Most ontology versions can automatically be integrated depending on the physical
source type of an ontology. While some ontology providers store versions within a
concurrent version system (e.g., CVS and SVN), other ontology versions can be
downloaded from web pages or publicly accessible FTP directories. Download-
wrappers for different physical source types regularly look up and automatically
download data whenever a new version of a specified ontology is available. A new
ontology version is then temporarily imported into a so-called staging area for further
processing. Format-specific importers are used to import ontology versions taking the
ontology representation into account. While OWL is the dominant ontology represen-
tation in the Semantic Web, many biomedical ontologies are provided in the OBO
format or other formats, such as CSV, XML, and relational databases. We combine
several format-specific importers with the download-wrappers to avoid ontology-
specific wrapper and import implementations. During the download and import phase
the version metadata including the version number and the creation timestamp of an

578 T. Kirsten et al.

ontology version is recognized. This metadata is often encapsulated in file names es-
pecially when ontology versions are made available on web pages. In other cases, this
metadata are available in specific documentation files or can be retrieved from sys-
tems such as CVS.

The version metadata is the basis for the change detection phase which derives the
dynamic life time information from the static ontology versions. This transformation
includes the following steps. Firstly, the predecessor Ovi-1 is identified for the given
import ontology version Ovi. Secondly, this version is compared with the import ver-
sion to determine concepts and relationships which have been added and those that
were deleted. This comparison is primarily performed by using the accession numbers
(ID attribute) of ontology concepts. Finally, the detected changes are used to update the
existing repository content. Newly introduced objects are added to the repository with
a life time start equal to the timestamp of the import version. For deleted concepts and
relationships the life time end is set to the date where an object was available for the
last time which is normally the day before the import version Ovi was released.

The life time of added and deleted concept attributes is adapted similarly than for
the addition and deletion of concepts/relationships. Changes on attribute values are
treated in the following way. The old attribute value stored in the repository is anno-
tated with an end timestamp to indicate the end of its validity period. Furthermore, a
new attribute entry is created with the modified value and a life time start equal to the
import version.

The example in Fig. 2 illustrates repository updates for selected changes between
the May and June 2007 versions of the GO Cellular Components ontology. The con-
cept GO:0009572 has been deleted, thus the end timestamps of this concept as well as
its attributes and relationships are set to 2007-05. By contrast, the concept
GO:0000446 with attributes (name, obsolete status, definition) as well as relationships
to GO:0000347 and GO:0008023 were added. As a result the system creates new en-
tries with a start timestamp of 2007-06. Finally, the name of GO:0009356 has
changed from ‘p-aminobenzoate synthetase complex’ to ‘aminodeoxychorismate syn-
thase complex’, hence the end timestamp of the corresponding attribute entry is set to
2007-05 and a new entry with start timestamp 2007-06 is inserted.

...

Concepts

2007-06GO:0000446
2007-052002-02GO:0009572

endstartaccession number

...

Concepts

2007-06GO:0000446
2007-052002-02GO:0009572

endstartaccession number
Attributes

2007-06The THO complex when ...definitionGO:0000446
2007-052002-12p-aminobenzoate synthetase

complex
nameGO:0009356

2007-06nucleoplasmatic
THO complex

nameGO:0000446

2007-06falseobsoleteGO:0000446

2007-052002-02desmotubule central rodnameGO:0009572

aminodeoxychorismate
synthase complex

false

value

name

obsolete

attribute

2007-06GO:0009356

2007-052002-02GO:0009572

endstartconcept
Attributes

2007-06The THO complex when ...definitionGO:0000446
2007-052002-12p-aminobenzoate synthetase

complex
nameGO:0009356

2007-06nucleoplasmatic
THO complex

nameGO:0000446

2007-06falseobsoleteGO:0000446

2007-052002-02desmotubule central rodnameGO:0009572

aminodeoxychorismate
synthase complex

false

value

name

obsolete

attribute

2007-06GO:0009356

2007-052002-02GO:0009572

endstartconcept

Relationships

2007-06is_aGO:0000347GO:0000446
2007-06is_aGO:0008023GO:0000446

2007-052006-05is_aGO:0044459GO:0009572
part_of

type

GO:0009510

target

2007-052003-05GO:0009572

endstartsource
Relationships

2007-06is_aGO:0000347GO:0000446
2007-06is_aGO:0008023GO:0000446

2007-052006-05is_aGO:0044459GO:0009572
part_of

type

GO:0009510

target

2007-052003-05GO:0009572

endstartsource

Fig. 2. Extract of the versioning repository for GO cellular components

4 Evaluation

In this section we evaluate the storage efficiency and query performance of the pre-
sented approach for managing ontology versions. We first introduce different measures

 Efficient Management of Biomedical Ontology Versions 579

for the storage and query evaluation. We then describe the evaluation scenario in the
life science domain and analyze the evaluation results.

4.1 Evaluation Measures

To assess the storage requirements we determine the number of stored ontology
elements. We also compare the storage requirements of our proposed versioning re-
pository (approach) with the ones for a fully redundant storage of ontology versions
(naïve version management). We use these measures for the number of elements in a
particular ontology version:

|C|vi, |R|vi, |A|vi
Number of concepts, relationships and attributes available
in ontology version Ovi

|E|vi = |C|vi + |R|vi + |A|vi Number of elements available in ontology version Ovi

We denote the first version by v1 and the latest considered version by vn. The overall
number of elements stored in a repository when integrating n succeeding ontology
versions Ov1, …, Ovn of an ontology can be calculated as follows.

 ∑ == n

i vi

naive

n
EE

1
 ∪n

i vi
approach

n
EE

1=
= (1)

Since the naive approach completely stores each version, we need to sum up the ele-
ments available in each version to determine the overall number of elements for n ver-
sions. In contrast, our approach avoids the redundant storage of unchanged elements
but only stores the differences between versions. To estimate the resulting storage need
we can consider the number of elements in the union of all versions thereby consider-
ing elements only once irrespective of their number of occurrence. Since both ap-
proaches store the same number of elements |E|v1 for the initial version, we further cal-
culate |E|n

naive / |E|v1 and |E|n
approach / |E|v1 to measure the growth w.r.t. first version v1.

To determine the influence of ontology changes on the two versioning approaches
we consider additions, deletions and modifications of ontology elements. We denote
with add, del and mod the average number of added, deleted and modifies elements,
respectively, per version change. Based on the number of elements in the first version
|E|v1 we estimate the overall number of stored elements for n versions as follows.

)(

2

)1(
1

deladd
nn

EnE
v

naive

n
−−+= mod))(1(

1
+−+= addnEE

v

approach

n
 (2)

The elements stored using the naive versioning technique are n-times the elements of
the first version corrected by the elements added or deleted during evolution. Modifi-
cations on elements (e.g., attribute value changes) do not affect the overall number of
stored elements for the naïve approach. By contrast, our versioning approach stores
all elements of the first version plus only the changes (additions, modifications) oc-
curred during evolution. Deletions of elements do not reduce the overall number since
the timestamp-based versioning only sets end timestamps for deleted elements, i.e.,
these elements remain stored.

Since we do not separately store each ontology version, individual versions must
be reconstructed utilizing the timestamp information which might be comparatively
slow for larger ontologies. Hence we not only evaluate storage requirements but also

580 T. Kirsten et al.

Table 1. Typical ontology queries

Table 2. Storage requirements for |E|v1=1000,
add = 20, del = 5, mod = 10

Q1
Retrieve details (attributes, parents,
children) of a given concept

Q2
Retrieve all siblings of a given
concept

Q3
Retrieve all concepts in the sub tree
of a given concept

n
usual

n
E

approach

n
E usual

n

approach

n

E

E

10 10,675 1,270 0.12

20 22,850 1,570 0.07
30 36,525 1,870 0.05

the query performance of our versioning approach. For this purpose we analyze query
execution times of three typical ontology queries (Table 1). We determine the average
execution times, tQ, for ten executions per query. We also determine the number of
result items returned by Q, rQ, and the average time per result item, tQ/rQ.

4.2 Evaluation Scenarios and Results

We first analyze the storage needs of an sample hypothetical ontology and then evalu-
ate our approach on real world data. Table 2 compares the resulting storage require-
ments for both versioning approaches for a sample ontology of 1,000 elements in the
first version and for a different number of versions (n = 10, 20, 30). We further as-
sume average change rates of add=20, del=5 and mod=10 per version. In table shows
that the proposed approach has a drastically reduced storage overhead compared to
the naive versioning approach. For n versions, our approach requires almost n-times
fewer elements than the naive versioning method. Furthermore, our approach per-
forms the better the more versions are included. This is due to the fact that our
approach only considers the differences between ontology versions whereas naive
versioning redundantly stores ontology elements.

For a real evaluation scenario, we use the Biological Process (BP) ontology. The
BP ontology is managed by the Gene Ontology source that provides two further on-
tologies namely the Molecular Function (MF) and Cellular Component (CC) ontol-
ogy. These ontologies are typically used to semantically describe properties of gene
products or proteins, e.g., in which biological processes they are involved. While
changes of these ontologies occur on a daily basis, we restrict ourselves to monthly
summarizations between January 2004 and June 2009 (62 versions1) in our analysis.
The initial version of January 2004 had the smallest number of elements (8,112 con-
cepts, 12,456 relationships, 25,268 attribute values). This number increased by a more
than a factor of 3 in the latest version of June 2009 (17,104 concepts, 34,248 relation-
ships, 85,767 attribute values). The following evaluation considers three aspects. We
first show a comparison of the storage requirements between our approach and the
naive versioning method. We then study the influence of the storage interval (e.g.,
monthly, quarterly) on our approach. Finally, query performance is analyzed. All
analyses for the proposed approach use a MySQL database to store the ontology ver-
sions; the overall database size for 62 BP versions is 40 MB. The database runs on a

1 Note that at the time of this study GO did not provide versions for 4 months in this time

period.

 Efficient Management of Biomedical Ontology Versions 581

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ja
n

-0
4

Ju
l-

04

Ja
n

-0
5

Ju
l-

05

Ja
n

-0
6

Ju
l-

06

Ja
n

-0
7

Ju
l-

07

Ja
n

-0
8

Ju
l-

08

Ja
n

-0
9

version vi

|E
| vi

 /
|E

| v1

naive versioning method
our approach

40000

60000

80000

100000

120000

140000

160000

180000

Ja
n

-0
4

Ju
l-

04

Ja
n

-0
5

Ju
l-

05

Ja
n

-0
6

Ju
l-

06

Ja
n

-0
7

Ju
l-

07

Ja
n

-0
8

Ju
l-

08

Ja
n

-0
9

version

el

em
en

ts

monthly
quarterly
half year

Fig. 3. Comparison of space efficiency of our
approach compared to naïve versioning

Fig. 4. Comparison of monthly/ quarterly/
semiannually storage requirements

Linux-based 2x Dual-Core 2 GHz Intel machine with 8 GB physical RAM. The tests
were performed with disabled database caching in single-user mode.

Fig. 3 illustrates the space efficiency of our approach compared to the naïve ver-
sioning method for the considered versioning period (January 2004 - June 2009). The
storage requirements (integrated number of elements |E|vi) of both approaches are
normalized according to the initial version. For both approaches the integration of the
initial version takes the same number of elements (about 45,000). For the naïve ver-
sioning method, the storage requirements increase substantially with each version and
reach 5.6 million elements after the final version corresponding to a growth factor of
124 compared to the first version. By contrast, our approach finally results in only
170,000 stored elements and a very modest growth factor of 3.8 (which corresponds
to the overall increase of ontology elements). Given that the naïve versioning needs a
32-fold amount of storage we estimate that the corresponding database would have a
size of approx. 1.3 GB compared to the 40 MB of the optimized scheme.

Fig. 4 compares the space requirements for monthly, quarterly and semiannually
versioning using our approach. Of course, the space requirements of monthly version-
ing are in general higher than for quarterly and semiannual versions. However, the
difference between the three variants is marginal. For the considered time period until
June 2009, monthly storage consumes approx. 170,000 elements compared to about
165,000 and 160,000 elements for quarterly and semiannual versions. The greater
accuracy of monthly versions can thus be supported with a minimally increased stor-
age. This underlines the scalability of the proposed versioning approach which is es-
pecially valuable when a large number of frequently released ontology versions need
to be dealt with.

Finally, we study the query performance of our versioning approach for the three
query types of Table 1. For this experiment we use 22 ontology versions from Jan. 2004
to Apr. 2009. The queries are applied to the biological process behavior (GO:0007610)
that is located on the third level (biological process response to stimulus behav-
ior) of the GO-BP ontology. Fig. 5 depicts that the execution times for Q1, Q2, and Q3
are nearly constant over different ontology versions. It takes on average merely 0.17 ms
to retrieve all concept details and the siblings of the selected biological process whereas

582 T. Kirsten et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Ja

n
-0

4

Ju
l-

04

Ja
n

-0
5

Ju
l-

05

Ja
n

-0
6

Ju
l-

06

Ja
n

-0
7

Ju
l-

07

Ja
n

-0
8

Ju
l-

08

Ja
n

-0
9

version

ti
m

e
(i

n
 m

s)
 p

er
 it

em

Q1
Q2
Q3

0

5

10

15

20

25

30

35

Ja
n

-0
4

O
ct

-0
4

Ju
l-

05

A
p

r-
06

Ja
n

-0
7

O
ct

-0
7

Ju
l-

08

A
p

r-
09

version

re
su

lt
 s

iz
e

(Q
1,

Q
2)

0

50

100

150

200

250

re
su

lt
 s

iz
e

(Q
3)

Q1
Q2
Q3

Fig. 5. Query performance analysis, Q1, Q2,
Q3 for GO:0007610

Fig. 6. Number of result items, Q1, Q2, Q3
for GO:0007610

the execution times for querying the complete sub-graph are on average 1.47 ms. This
holds despite the increase in the number of stored ontology elements for newer versions.
Fig. 6 shows the result sizes of the three queries for the selected biological process
which grow for newer versions. The number of concept details (Q1) increases from 20
to 31 between January 2004 and April 2009 (growth factor: 1.55), while the number of
concepts in the set of siblings (Q2) and in the sub-graph (Q3) grow by a factors 1.4 and
3, respectively. In summary, our versioning approach is not only very space-efficient
but also provides nearly constant execution times of the considered query types.

5 Conclusion and Future Work

We propose a scalable and space-efficient approach to manage the versions for large
ontologies. Our ontology versioning model maintains a life time for all ontology con-
cepts, relationships and attribute values. This allows the reconstruction of the valid
state of an ontology for any point in time while avoiding the redundant storage of
unchanged parts in succeeding ontology versions. We applied our approach to bio-
medical ontologies but it is not limited to this domain. The evaluated of the storage
requirements confirmed the high space efficiency of the proposed approach resulting
in up to a n-fold reduction for n versions compared the separate storage of ontology
versions. The evaluation of query performance over numerous versions also showed
excellent results indicating that the space efficiency does not result in a significant
penalization of query execution times.

In future work we plan to extend our approach to the efficient versioning of map-
pings, e.g., mappings among ontologies (ontology mappings) and mappings associat-
ing ontology concepts with objects to semantically describe their properties (annotation
mappings). Moreover, the approach can be applied to other domains, e.g. for an evolu-
tion analysis of Wikipedia categories.

Acknowledgments. This work is supported by the German Research Foundation,
grant RA 497/18-1.

 Efficient Management of Biomedical Ontology Versions 583

References

1. Berriz, G.F., et al.: Characterizing gene sets with FuncAssociate. Bioinformatics 19(18),
2502–2504 (2003)

2. Day-Richter, J., et al.: OBO-Edit - an ontology editor for biologists. Bioinformat-
ics 23(16), 2198–2200 (2007)

3. Flouris, G., et al.: Ontology change: Classification and survey. Knowledge Engineering
Review 23(2), 117–152 (2008)

4. The Gene Ontology Consortium: The Gene Ontology project in 2008. Nucleic Acids Re-
search 36(Database issue), D440–D441(2008)

5. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science Ontologies
and Mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008.
LNCS (LNBI), vol. 5109, pp. 11–27. Springer, Heidelberg (2008)

6. Hartung, M., et al.: OnEX – Exploring changes in life science ontologies. BMC Bioinfor-
matics 10(1), 250 (2009)

7. Klein, M., et al.: Ontoview: Comparing and versioning ontologies. In: Collected Posters of
1st Intl. Semantic Web Conforence, ISWC (2002)

8. Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: Proc. of the Interna-
tional Semantic Web Working Symposium (SWWS), pp. 75–91 (2001)

9. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An
Open Development Environment for Semantic Web Applications. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243.
Springer, Heidelberg (2004)

10. Nadkarni, P.M., et al.: Organization of heterogeneous scientific data using the EAV/CR
representation. Journal of American Medical Informatics Association 6(6), 478–493
(1999)

11. Prüfer, K., et al.: FUNC: a package for detecting significant associations between gene sets
and ontological annotations. BMC Bioinformatics 8(1), 41 (2007)

12. Sioutos, N., de Coronado, S., Haber, M.W.: NCI Thesaurus: A semantic model integrating
cancer-related clinical and molecular information. Journal of Biomedical Informatics (40),
30–43 (2007)

13. Völkel, M., Groza, T.: SemVersion: RDF-based ontology versioning system. In: Proc. of
the IADIS Intl. Conference WWW/Internet, ICWI (2006)

14. Journal of Biomedical Informatics, Special Issue on Auditing of Terminologies 42(3),
402–580 (2009)

	Efficient Management of Biomedical Ontology Versions
	Introduction
	Versioning Model
	Data Import and Change Detection
	Evaluation
	Evaluation Measures
	Evaluation Scenarios and Results

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

