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Abstract The analysis of person-related data in Big Data
applications faces the tradeoff of finding useful results while
preserving a high degree of privacy. This is especially chal-
lenging when person-related data from multiple sources
need to be integrated and analyzed. Privacy-preserving
record linkage (PPRL) addresses this problem by encod-
ing sensitive attribute values such that the identification of
persons is prevented but records can still be matched. In
this paper we study how to improve the efficiency and scal-
ability of PPRL by restricting the search space for matching
encoded records. We focus on similarity measures for met-
ric spaces and investigate the use of M-trees as well as
pivot-based solutions. Our evaluation shows that the new
schemes outperform previous filter approaches by an order
of magnitude.
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1 Introduction

Big Data applications in research, administration and busi-
ness increasingly require the processing, analysis or pub-
lishing of large amounts of person-related data. These tasks
have to ensure a high degree of privacy, i.e., the right of
individuals to determine by themselves when, how and to
what extent information about them is communicated to
others [1]. For this purpose, a large number of techniques
has been proposed in particular for privacy-preserving pub-
lishing, record linkage and data mining of sensitive data
[20, 21, 9]. We focus on Privacy Preserving Record Link-
age (PPRL), i.e., the privacy-preserving identification of
records in different datasets referring to the same person.
Use cases for PPRL include the integration of patient-re-
lated data from different sources, e.g. about certain diseases
and their treatment, or the analysis of financial transactions
and tax records to identify potentially criminal acts.

To ensure privacy, the parties involved in a PPRL ap-
proach (i.e., the data owners and possibly a dedicated link-
age unit) must not reveal sensitive information that would
allow the identification of persons. On the other hand, it
should still be possible to match and combine records refer-
ring to the same person, which speaks against a complete
anonymization of records, e.g., based on approaches such as
k-anonymity and its variations [9]. Instead, PPRL methods
apply a secure one-way pseudonymization on identifying
attributes, the so-called quasi-identifiers, to achieve both
privacy and the ability to link records. The quasi-identi-
fiers such as name, address or birth date are not unique and
can contain errors but in combination they are suitable to
identify persons and thus need to be protected. For this pur-
pose, most recent PPRL approaches use a set of one-way
hash functions to map the quasi-identifiers into bit vectors
(or bloom filters) of fixed sizes [18]. This approach has
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been shown to be secure against re-identification of persons
while still allowing an approximate matching since persons
with similar quasi-identifiers also have similar bit vectors.
In this paper, we will also follow such an encoding of sensi-
tive data. Furthermore, we assume that the matching using
the encoded bit vectors is done on a trusted third party to
avoid exchanging data between data owners.

Like traditional approaches for record linkage (RL),
PPRL has an inherent scalability problem if one matches
each encoded record with all other encoded records
(quadratic complexity w.r.t. number of records). Hence it
becomes necessary to adapt the proven RL performance
techniques to PPRL such as the reduction of the search
space by filter and blocking techniques or parallel match-
ing [6]. Here, we focus on filter techniques that utilize
characteristics of common similarity functions and a pre-
defined similarity threshold to limit the number of records
to be matched. While this approach is quite common for
RL [10] it has received relatively little attention for PPRL.
Two of the most promising schemes so far are adaptations
of the so-called multibit tree and PPJoin approaches [19].

In this paper, we study PPRL filter techniques for met-
ric space similarity measures that are quite common. In
particular we make the following contributions:

o We propose different approaches to utilize the so-called
triangle inequality of metric spaces to reduce the search
space for PPRL, in particular the use of M-trees as well
as pivot-based solutions.

o We comparatively evaluate the different approaches to
identify the most promising PPRL approach for metric
space similarity measures.

e We evaluate and compare the new approach with previ-
ously proposed PPRL approaches based on multibit trees
[2] and P4Join [19]. The evaluation shows that the new
approach performs one magnitude of order faster so that
we propose a highly promising technique for scalable
PPRL.

After a discussion of related work we outline the assumed
encoding scheme and PPRL architecture in Sect. 3. In the
main Sect. 4 we present different approaches for efficient
PPRL in metric spaces by using M-tree and pivot-based
solutions. In the evaluation Sect. 5 we analyze the runtime
efficiency of the metric space approaches and compare them
with previous approaches. Finally, we conclude.

2 Related Work

The problem of record linkage, i.e., the identification of
records representing the same real-word entity, has been
addressed by numerous approaches and several surveys [13,
6, 8]. The main challenges are achieving both high match
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quality to find all matching records as well as high effi-
ciency and scalability to large datasets. For high match
quality it is generally necessary to consider the similarity
of several identifying attributes such as title and authors
for publications or name, address and sex for persons. Ef-
ficiency and scalability can be improved by blocking and
filter techniques to reduce the search space as well as by
executing the approaches on multiple processors in parallel
(e.g., using Hadoop [12]).

Filter strategies are especially utilized for so-called sim-
ilarity joins [10] requiring that the similarity of two records
exceeds a minimal threshold to be a likely match. The
PPJoin approach [22] is an efficient filter technique for the
Jaccard string similarity as it employs several filters, e.g.
to prune records from matching if they have high length
difference or an insufficient overlap of tokens. The char-
acteristics of similarity functions for metric spaces, in par-
ticular the triangle inequality (see next section) has also
been utilized in previous approaches to reduce the search
space for similarity search and record linkage, e.g., [15, 23].
Furthermore, dedicated index structures such as M-tree [7]
have been proposed to facilitate a fast similarity search in
metric spaces.

Privacy-preserving record linkage (PPRL) performs
record linkage on encoded attribute values such as bloom
filters [18] to ensure a high degree of privacy. PPRL
has found substantial interest and a large number of ap-
proaches has been classified in a recent survey [21]. These
approaches involve two or more data owners and either use
a dedicated and trusted linkage unit or apply a symmetric
protocol where encoded records are matched at the data
owners. As most previous approaches, we study the use of
a trusted linkage unit as it is less complex than symmetric
protocols and avoids the exchange of records between data
owners. PPRL approaches should be immune against dif-
ferent kinds of attacks to ensure a high degree of privacy.
The encoding of sensitive information should not allow
the re-identification of persons or specific attributes by
cryptoanalysis or frequency attacks [16], e.g., by analyzing
the frequencies and distributions of set bits in bloom filters
and comparing these to known frequencies of attribute
values such as last names. Furthermore, collusion attacks
need to be prevented where different parties, e.g. the data
owners and a linkage unit, violate the PPRL protocol and
exchange sensible information such as the encoding ap-
proach. Finally, there is the risk of dictionary attacks where
a leaked encoding scheme is applied to a dictionary such
as a publicly known person directory (e.g., phone book or
voter registry) to find specific persons.

For efficiency and scalability PPRL can in principle ap-
ply similar blocking, filtering and parallelization techniques
than regular linkage approaches but need to be adapted to
work with encoded data and its similarity measures. With
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respect to filtering the use of so-called multibit trees, origi-
nally proposed for fast querying large databases of chemical
fingerprints represented by bit vectors [14], has been shown
to perform well for PPRL with bloom filters and even bet-
ter than several blocking approaches [2]. An adaptation of
PPJoin for PPRL called P4Join (privacy-preserving PPJoin)
has been proposed in [19] and was found to be similarly
fast than the use of multibit trees; a parallel implementation
on GPUs achieved substantial runtime improvements. We
will consider these two methods (multibit tree and P4Join)
in our comparative evaluation with the new metric space
methods. One of the few previous PPRL studies for metric
spaces is [17]. They did not apply bloom filters for encod-
ing of records but mapped the attribute values of records
into a metric space to mask the original values; they then
applied Euclidean distance to identify similar records but
without focusing on reducing the search space as we do.

3 PPRL setting

We briefly outline the assumed PPRL setting in this sec-
tion, in particular the encoding with bloom filters and the
three-party architecture with two data owners and a trusted
linkage unit.

3.1 Encoding with Bloom Filter

For data encoding we follow the Bloom filter approach pro-
posed by Schnell et al. [18]. In this approach the original
values of all attributes to be used for matching are tokenized
into a set of n-grams which are then mapped into a common
bit vector (array) of fixed size I. Specifically, each n-gram
(of each n-gram set) is hashed to multiple bits by apply-
ing k independent hash functions, each defining an index
position of a bit which is set to 1. This can be achieved
by a double hashing scheme combining two independent
base hash functions f and g to determine the k hash values
hi(x), ..., hg(x) for each n-gram x [11]:

hi(x) = (f(x) + i- g(x))modI. (1)

As base hash functions the authors proposed the usage
of two keyed hash message authentication codes (HMACsS),
namely, HMAC-SHA1 and HMAC-MDS for f and g, re-
spectively. The mapping of records and their n-grams to
bit arrays is illustrated in Fig. 1 for the two names tomas
and fommas.

The security aspect of Bloom filter was also discussed by
the authors [18]. They analyzed the weaknesses of this en-
coding and presented methods to harden it against different
kinds of attacks.

t toomma as s_
A

Fig. 1 Bit vector encoding of two names tomas and tommas, each
tokenized to bigrams, using k = 2 hash functions and bit vectors of
length I = 20

owner B

owner A

parameters

trusted
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linkage
algorithm
[

matches

Fig. 2 Three-party protocol for PPRL

3.2 Use of Linkage Unit for PPRL

As in previous PPRL methods [21] we follow a so-called
three-party protocol where the datasets R and S from two
data owners A and B are matched in a privacy-preserving
manner by a trusted third party or linkage unit (see Fig. 2).
We also assume a so-called Honest-but-Curious coopera-
tion scheme where each party tries to know as much as
possible about the data of the other party while following
the predefined protocol to perform record linkage. In par-
ticular there is no collusion between any data holder and the
linkage unit. Thus, the data owners have to agree upfront
on the PPRL parameters, in particular the attributes to be
used for record linkage and their encoding. After exchang-
ing this information the data owners encode their datasets
(resulting into R, and S.) and send the masked data to the
linkage unit for matching. The linkage unit only returns the
IDs of the true matches to the data owners. Depending on
the use case only the data for matching records can then be
exchanged and combined for further analysis. The proto-
col thus avoids revealing information about non-matching
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records, e.g. about patients that are not represented in both
datasets. The linkage unit only sees encoded data that must
not allow the identification of the underlying attribute val-
ues and persons.

4 PPRL for Metric Spaces

We start with explaining the triangle inequality of metric
spaces and how it can be used to reduce the number of
comparisons for record linkage. Next, we outline its use
for matching bit vectors based on an approximation of the
search radius. We then explain the use of M-tree and dif-
ferent pivot-based approaches for PPRL.

4.1 Metric Space

A metric space M(U,d) consists of a set of data objects
U and a metric d to compute the distance between these
objects. Examples of such a metric are Minkowski dis-
tances (e.g., Euclidean distance), edit distance, Hamming
distance and Jaccard coefficient [23]. These functions are
commonly used for record linkage so that their optimiza-
tion is of great interest. The main property satisfied by these
distance functions and characteristic of metric spaces is the
triangle inequality, which can be expressed as follow:

Vx,y,zeld :d(x,z) <d(x,y) +d(y,2)

The triangle inequality is especially valuable as it can be
used to reduce the search space for similarity search and
record linkage. In both cases we have to find for a query
object g those objects x with a distance d(q,x) lower or
equal a maximal distance threshold (or above a minimal
similarity threshold) which can be seen as a radius rad(q)
around g (Fig. 3). The triangle equality allows one to avoid
computing the distance between points y and q based on
predetermined distances for y and q against reference points
or pivots, such as point p in the figure. The triangle inequal-
ity implies that:

d(y.q) 2d(p,q) —d(p,y).

If the difference between the precomputed distances
d(p,q) and d(p, y) exceeds the maximal distance, i.e.,

d(p,q) - d(p, y) > rad(q),

we know that y and q cannot be similar enough so that we
can avoid the distance computation d(y,g). Analogously,
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Fig. 3 Triangle inequality. Object y cannot lie within the search ra-
dius of query object g since the difference between d(p, q) and d(p, y)
exceeds rad(q)

we only have to compute the distance d(q, x) for objects x
satisfying the triangle inequality expressed as:

d(p,q) - d(p,x) <rad(q) 2

The actual savings depend on the number and choice of
pivots influencing the cost for predetermining the distances
with the pivots as well as the number of objects assigned
to a pivot (objects are always associated with their clos-
est pivot). We will therefore study different alternatives to
choose the pivots in Sect. 4.4.

4.2 Similarity and Search Radius for Bit Vectors

As shown in [18] the encoding scheme presented in
Sect. 3.1 is similarity preserving for measures such as
the Jaccard similarity. To determine likely matches we can
thus use the bit vectors to find all pairs of records with
a similarity above a threshold t. The Jaccard similarity
between bit vectors x and g measures the degree of overlap
between the set bit positions and is defined as follows:

Clxnagl o xagq

3

Simy(4:%) = gl " W lalx

with |x| denoting the number of set bits (or cardinality) in
bit vector x. For the example of Fig. 1 the 11 set bits for the
first name are also set in the second bit vector of cardinality
12. Hence, the Jaccard similarity is 11/12 = 0.92.

For finding similar objects in metric space it is common
to consider the distances between objects rather than their
similarity. For a Jaccard similarity sim;, this can be eas-
ily achieved by considering the distance 1 - sim;. We can
also use alternate distance functions such as the Hamming
distance which was shown to be equivalent to the Jaccard
similarity [22]. The Hamming distance d;, measures the ab-
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solute number of bit positions that differ in two bit vectors,
ie.,

dn(q,x) =lx v gl =|x A ql = |x] +[q] - 2x|]x 7 q] @)

For the two bit vectors in Fig. 1 the hamming distance is
1. Since we want to use the Hamming distance in this pa-
per we need to determine the maximal absolute distance (or
query radius) for a query record g so that a certain relative
similarity threshold ¢ is met. For this we use the follow-
ing equivalence relation between the Jaccard similarity and
Hamming distance from [22]:

1-t
sim]-(q,x)Ztc*dh(q;x)§(|‘J|+|x|)x(th) ®

For the example in Fig. 1 and for a similarity threshold
t = 0.8 we would obtain d; < (11 +12)x0.2/1.8 = 2.56.
Hence only a hamming distance of 1 or 2 would meet the
similarity threshold.

Equation 5 for the maximal hamming distance dj, refers
to two input objects g and x. To determine a maximal
distance (or radius) only with respect to a query object g
we utilize the observation that only those points x with
a cardinality |x| < |q|/¢ can meet the similarity threshold ¢
(Iength filter). By bringing this inequality into formula 5
we obtain the following approximation for the maximal
hamming distance d,(q):

gl 1-t\ 1-t
s (1 (1 3) -l

By using this approximation as the query radius rad(q)
we can utilize the triangular inequality in Eq. 2 to eliminate
unsimilar objects. For the example in Fig. 1 and a similarity
threshold ¢t = 0.8 we obtain an approximate query radius
(maximal hamming distance) of 2.75 and 3 for the first and
second record, respectively.

4.3 PPRL with M-Tree

The M-tree is a dynamic index structure to organize the
objects of a metric space based on the distances between
objects and facilitates a fast similarity search [7]. For PPRL,
we have to adapt the index structure to store bit vectors and
to use a suitable distance measure such as the introduced
Hamming distance. In our setting, the linkage unit first
indexes the encoded objects of the first dataset R, with the
M-tree. For each encoded object g of the second dataset S,
the M-tree is then used to find the most similar R, objects
which are finally tested whether they match g.

The M-tree consists of two types of nodes: internal and
leaf nodes both with a maximum number ¢ of objects they

store. An internal node p stores routing objects, that restrict
a region of the metric space M, and have the following
format:

routing(p) = [p, ptr(T(p)),rad(p), du(p, parent(p))],

where p represents the bit vector of p, ptr(T(p)) is
a pointer to the subtree covered by p, rad(p) is the cov-
ering radius of p in the metric space, i.e., the maximal
distance between p and the bit vectors in its subtree. Fi-
nally dj,(p,parent(p)) is the distance between p and its
parent (routing) object.

Leaf nodes are used to store all bit vectors of objects or
records r and have the following format:

leaf (r) = [r,id(r), dy(r, parent(r))],
where r represents the bit vector of r, id(r) its identifier

and dj, (r, parent(r)) is the distance between r and its parent
object (a routing object).

Algorithm 1: Insertion in M-tree

Input: M-tree node N;
x bit vector to insert;

1 if N is not a leaf then

2 let E be routing objects held by N;

3 find P C E s.t. Vp; € P: dp(pi,z) < rad(p;);

4 if P # 0 then

5 L choose p € P s.t. Vp' € P: dp(p,z) < dn(p’,);
6 else

7 choose p € E s.t. Vp' € E:

L dn(p, ) — rad(p) < dn(p’,z) — rad(p’);

8 set rad(p) = dn(p, z);

9 insert(p, z); // recursive call
10 // N is a leaf node
11 else
12 let E be bit vectors held by IN;
13 insert z in E;
14 if |E| =c+ 1 then // c: max node capacity
15 //split operation
16 promote(E, o1, 02);
17 partition(FE, o1, 02);

Building Process: The design of the M-tree aims at storing
similar objects together within few nodes so that similarity
search can be restricted to a small subset of all objects. The
building process (Algorithm 1) works in a bottom-up way
and leads to a height balanced tree. To insert a new bit
vector x the algorithm starts from the root and descends
recursively through one of its subtrees until the leaf level.
At each level the algorithm searches a routing object that
can hold x without updating its radius. If there are sev-
eral such routing objects the one closest to x is chosen
(lines 3-5). If such a node does not exist, a routing object
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that needs the minimal enlargement of its radius is cho-
sen and its covering radius is updated to its distance to x
(lines 7-8). The insertion of x in a leaf node leads to an
overflow if the leaf contains already c¢ bit vectors. In this
case a split operation on the overflowed node is trigged by
choosing two bit vectors o; and o, from the leaf (line 16)
to be promoted as routing objects and then partitioning the
¢ +1 bit vectors on o; and 0, (line 17). This promote and
partition operations may be propagated until the root, in
which case a new root is designated and the tree grows up
by one level.

In [7] several implementations of the functions promote
and partition are discussed. In our implementation we keep
the parent object of the overflowed node as the first routing
object; as the second promoted object we choose the leaf
object with the maximal distance to the parent object. Our
partition function assigns each leaf object to the nearest
promoted object.

Algorithm 2: Search in M-tree
: M-tree node N;

q query bit vector;

maxd maximal hamming distance;
Output: M set of match pairs;

Input

1 Let p be the parent of N;

2 M= 0;

3 // Step 1: find potential routing objects
4 if N is not a leaf then

5 foreach r € routing objects in N do

6 if |dn(p, q) — dn(p,7)| < rad(r) + rad(q) then
7 compute dp (7, q);

8 if dp (r,q) < rad(r) 4+ rad(q) then
9 | Search(ptr(T(r)), q, maxd);
10 // Step 2: find similar records
11 else
12 foreach z € bit vectors of leaf N do
15 if |dn (p, q) — i (p, @)| < rad(q) then
14 compute dp(q, z);
15 if dp (g,z) < maxd then
6 | M=M+{@2)}

Search Process: The main goal of M-tree is to find the
similar objects for a query object g within few nodes in
order to reduce the amount of similarity computations. To
achieve this goal M-tree utilizes the precomputed distances
between (routing) objects and their parents and tries to filter
out irrelevant nodes by applying the triangle inequality in
two steps. Algorithm 2 shows how the similarity search for
query object q and maximal distance maxd is performed.
The search starts at the root and calls the procedure of
Algorithm 2 for each node under the root which has a parent
routing object in the root. In the first step the algorithm
checks each routing object in the inner nodes whether its
radius overlaps with the radius of the query object g by
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Fig. 4 The farthest object assigned to a pivot defines the radius of
this pivot e.g. rad(p1) = d(p1,y). Due to radii overlap the objects
assigned to p; must be checked, but all the objects assigned to p, can
be safely pruned

applying the triangle inequality (lines 6 and 8). The differ-
ence between the two forms of triangle inequality is that
the first form approximates the radii overlap between the
routing object r and query g by using p the parent of 7. The
second form is more accurate and starts by computing the
distance between g and r (line 7) then testing whether their
radii overlap or not. This process continues recursively un-
til the leaves are reached. In the second step the bit vectors
in the leaves are tested individually for possible similarity
by applying the triangle inequality of Eq. 2. Only records
that satisfy it are finally compared with q.

4.4 Pivot-based PPRL

The pivot-based PPRL approaches also work in two steps:
preprocessing and similarity search. Preprocessing (Algo-
rithm 3) entails selecting a certain number m of the data
objects (of the first dataset R,) as pivots or reference points.
Furthermore each object x in R, is assigned to its closest
pivot p and the distance d,(p, x) and the maximal distance
per pivot rad(p) are precomputed. In Fig. 4, object y is
farer away from pivot p; than all other objects assigned to
p1 so that rad(p;) is set to d(p;, y). Similarity search is
performed for each object g in the second dataset S, against
the pivots and utilizes the triangle inequality to minimize
the number of distance computations.
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There are several possibilities to select the pivots incur-
ring different preprocessing overhead and potentially dif-
ferent efficiency for similarity search. We consider three
approaches that will be comparatively evaluated:

® M-tree leaves: We use a M-tree and select the routing
parent object of each leaf as a pivot, i.e., we have as many
pivots as leaves in the M-tree. The number of pivots is
inversely proportional to the chosen node capacity of the
M-tree. Since the M-tree places already every object in
a leaf we do not require a new assignment of objects to
pivots, i.e., we do not have to apply Algorithm 3 in this
case.

e Far-away pivots: Pivots are iteratively determined from
the set of all objects such that the object with the greatest
distance to all previously determined pivots becomes the
next pivot [3].

o Sample-based: This approach uses the far-away scheme
but only on a sample of the objects to reduce the prepro-
cessing overhead. As proposed in [4], we use a randomly
determined sample of 3m objects, where m is the number
of pivots.

Algorithm 3: Pivot-based preprocessing
Input

: Re set of bit vectors;
m number of desired pivots;

=

// Step 1: find pivots by selecting one of
several possible methods
P = findPivots (Re, m)
// Step 2: assign bit vectors to closest pivots
foreach z € R. \ P do
assign x to the nearest pivot p € P;
store the distance dj, (p, z);
if dp (p,x) > rad(p) then
| rad(p) = dn(p,z); // update pivot’s radius

o N o ok WwN

Algorithm 4: Far-away pivot selection

: Rc set of bit vectors;
m number of desired pivots;
Output: P set of pivots;

Input

P=y
pick a random record x € R;
find p € Rg : Vp' € Re,dp(z,p) > dn(z,p');
P =P+ {p};
while |P| < m do
find p € Re s.t. Vp' € Re :

7 ZLZ'O dn(pi,p) > ZLZB dn(pi,p’),Vpi € P;
s | P=P+{p}h

9 return P

O ok W N

The rationale behind the far-away approaches is to select
pivots that will probably lead to a low overlap of their
regions so that the data space is well partitioned which can

help restricting distance computations to few partitions. The
approach is detailed in Algorithm 4. It starts from a ran-
domly selected object (bit vector) and determines the far-
thest object from it as the first pivot (lines 3—4). The fol-
lowing pivots are chosen successively to be the bit vectors
having the maximal distance from the already selected piv-
ots (lines 6-8). The complexity of this pivot selection is
O(nm) for n objects which is reduced to O(m?) for the
sample-based approach.

Algorithm 5: Search by means of pivots

: P set of pivots generated in algorithm 3;
q € Se query bit vector;
maxd maximal hamming distance;
Output: M set of match pairs;

Input

1 M=0;

2 foreach p € P do

3 // step 1: check radii overlap

4 if dp(p,q) < rad(p) + rad(q) then

5 foreach r assigned to p do

6 // step 2: check triangle inequality
7 if dp(p,r) — dn(p,q) < rad(q) then

8 // step 3: compare bit vectors

9 if dp (r,q) < mazd then
10 | M=M+{(g,n)}

11 return M

Similarity search for a query object g includes three main
steps as outlined in Algorithm 5. Initially all pivots p;
are determined that may contain similar records to g by
checking whether the radii rad(p;) and rad(q) overlap or
not:

d(pi,q) <rad(p;) +rad(q) (6)

If the radii of p; and g do not overlap we know that all
bit vectors assigned to p; can be pruned so that similarity
computations between them and g are saved.

In step 2, we check for the remaining pivots p; for each
of its assigned records r whether the triangle inequality
holds w.r.t. g. If not, record r can safely be pruned from
further consideration. Otherwise we have to compute the
distance dj(q,r) and include r in the set of matches if it
lies within the maximal distance from g (step 3).

For the example of Fig. 4 we can prune pivot p, and
its objects in the first step. Pivot p; is further considered
and its objects x and y both satisfy the triangle inequality
in step 2. In the last step it is found that only x is close
enough to g so that (g, x) is determined as a match.
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5 Evaluation

We now evaluate the proposed methods for metric space
PPRL and compare them with previously proposed filter
techniques. After the description of the experimental setup
we evaluate the use of M-trees and the three pivot-based
methods. In Sect. 5.3, we present the comparison with
P4Join [19] and Multibit trees [2].

5.1 Experimental setup

For our experiments we used the tool from [5] to generate
five differently sized datasets of person records similarly as
in previous studies, e.g., [19]. Each generated dataset of
size n consists of two subsets R and S of sizes 4n/5 and
n/5 respectively as shown in Fig. 5. The records of S are
obtained by introducing some common errors in 25 % of
the R records. All records are encoded on three attributes
(name, surname and birth date) by tokenizing the values
into bigrams (for birth date unigrams). The tokens of each
record are mapped to a bit vector of size 1000 using 20
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Fig. 5 Sizes of the input datasets
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Fig. 6 Correspondence between the M-tree maximal node capacity ¢
and the number of leaves representing pivots
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hash functions. The similarity function used in Multibit
tree and P4Join is Jaccard (Eq. 3) with a threshold ¢ = 0.8.
The analogous threshold is used for the hamming distance
of the new metric space approaches.

Our evaluation focuses on the runtime efficiency and
not match quality. We verified that all algorithms return the
same set of matches due to the use of the same or equivalent
similarity measures and thresholds.

All experiments are conducted on a desktop machine
equipped with an Intel i7 - 4770 (3.4 GHz) CPU and 16 GB
main memory and running Ubuntu 14.04.3.

5.2 M-Tree vs. pivot-based approaches

In the first experiment, we compare the efficiency of using
the M-tree index structure and the three pivot-based PPRL
approaches described in Sect. 4. We use the largest dataset
|Ds| = 500,000 (|S,| = 100,000 and |R,| = 400,000) to run
this experiment. For the sample-based pivot strategy we
used a random sample of size 3m of bit vectors from R,
to choose m pivots from. The number of leaf nodes in
the M-tree (and thus the number of pivots in the leaf-based
approach) depends on the maximal node capacity. The table
in Fig. 6 shows that a small capacity of 100 objects per node
results in 17,873 leaves (pivots) and a tree of height 4. On
the other hand larger nodes with 1,600 objects or more
result in a tree of height 2 with only 1,509 leaves (pivots)
or less.

Figure 7a shows the runtime results of the four alter-
natives for metric space PPRL for different numbers of
pivots or leaf pages for the M-tree based approaches. To
simplify the comparison we chose the number of pivots as
they resulted for different node capacities for the M-tree
(Fig. 6). To help explain the results, we also show the run-
time portions for preprocessing (indexing, pivot selection)
in Fig. 7b. We observe that for most choices of the num-
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Fig. 7 Comparison of metric space PPRL approaches (M-tree and three pivot-based strategies). a Runtimes for M-tree and the pivot-based PPRL

strategies, b Runtimes for preprocessing/indexing
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ber of pivots (up to about 4000 pivots) the runtimes for
the different approaches are largely stable. In this range
the sample-based pivot approach (pivot_sample) performs
best with a runtime of mostly about 120s (its optimum is
103 s) while the far-away pivot selection for the full dataset
(pivot_full_ds) performs worst and needs almost twice as
much time (230s). Using M-tree and the leaf-based pivot
selection perform very similar and achieve a medium per-
formance. They remain largely stable even for a larger
number of of pivots (>7,000) while the two other (far-away)
pivot-based approaches suffer in this range from strong run-
time increases.

This behavior is due to the high preprocessing over-
head of the far-away approaches — both pivot_full_ds and
pivot_sample — that grows at least quadratically with the
number of pivots (Sect. 4.4). As can be seen in Fig. 7b, the
preprocessing time of these two approaches grows sharply
for more than 4,000 pivots and largely dominate the to-
tal runtime. Hence, the two approaches are dependent on
a small to moderate number of pivots. By contrast the
indexing time for M-tree is very small and virtually inde-
pendent from the node capacity and thus the number of
pivots. This however means that the time for similarity
search — which is the difference between the total runtime
and preprocessing time — is significantly better for the two
far-away pivot approaches than using the M-tree. Better
search times are the result of a higher filter effectiveness.
Hence, we could prune out more pivots and their associ-
ated objects from the distance computation with the pivot-
based approaches (especially for pivot_sample) than using
the M-tree which thus seems to have suffered from substan-
tial overlaps between the data regions of the leaf pivots and
inner nodes. As expected, pivot_sample has a faster pre-

processing than pivot_full_ds. However these differences
are smaller than the differences in the total runtime. This
implies that the search efficiency of pivot_sample is better
than for pivor_full_ds despite that the pivots are selected
from a much smaller objects set.

5.3 Comparison with previous filter techniques

We now study the relative performance of the metric space
approaches with the two previously proposed Multibit tree
and P4Join schemes. For metric space PPRL we focus on
the best approach pivot_sample and report the runtimes for
the best-performing number of pivots.

Figure 8a shows the runtime in minutes for each of the
three algorithms as well as for a naive Nested loop ap-
proach without any filtering. We observe that the run-
times grow nearly quadratically with the dataset size not
only for Nested Loop but also for the filter approaches.
However, we see that the proposed pivot-based filtering
dramatically outperforms both multibit trees and P4Join.
While pivot_sample needs only about 2 minutes runtime
for the largest dataset (Ds), Multibit tree and P4Join require
about 76 and 88 minutes, respectively. Hence the new ap-
proach achieves a speedup of about 40 for this data size (the
other metric space PPRL schemes also achieve an order of
magnitude improvement as they were less than a factor 2
slower than pivot_sample). These unexpectedly high im-
provements were favored by the fact that both Multibit tree
and P4Join achieved only modest improvements (less than
a factor 2) compared to the naive Nested Loop indicating
an insufficient filter effectiveness.

To illustrate the filter effectiveness we determined for
each algorithm the number of candidate pairs to check for
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a match and calculate the average number of candidates per
query. As illustrated in Fig. 8b the number of candidates
per query grows linearly with the data volume! and corre-
lates with the runtime reported in Fig. 8a. The pivot-based
approach has a much lower number of candidates per query
than the other algorithms, especially for large datasets. For
the largest dataset it generates only half as many candidates
to check than for the Multibit tree. An additional advantage
of the pivot-based method is its very low cost of pruning
dissimilar bit vectors. This method uses one distance func-
tion and the triangle inequality to prune either one record
or all records associated with a non-overlapping pivot.

To explore the scalability aspect a little further we dou-
bled the data volume to 1 million bit vectors (80 % in the
first and 20 % in the second dataset) for an additional test
run. In this case we achieved a runtime of 5.2 minutes for
pivot_sample compared to 216 minutes for Multibit tree and
345 minutes for P4Join. While the runtime for the pivot-
based approach also increases more than linearly it remains
40 times faster than using Multibit tree and even 66 times
faster compared to P4Join thus confirming the observations
from Fig. 8a.

6 Conclusion

We studied the runtime optimization of Bloom filter-based
privacy-preserving record linkage for metric space similar-
ity measures. The main goal is to significantly reduce the
search space by utilizing the triangle inequality for met-
ric space measures such as Jaccard similarity or Hamming
distance. We outlined the use of M-trees and three pivot-
based approaches for PPRL. A thorough evaluation showed
that the new schemes are highly effective and outperform
previous filter techniques such as Multibit trees and P4Join
by more than an order of magnitude. The best perform-
ing scheme is a pivot-based approach that selects the pivots
from a relatively small random sample of all objects and
that tries to minimize the overlap between the data regions
of the pivots.

Despite the high filter effectiveness the runtimes for the
new approaches still increase almost quadratically with the
data size. As a result we have to further improve the run-
time for PPRL to be able to deal with very large data vol-
umes. We thus plan to combine the pivot-based filtering
with blocking and parallel processing, either on GPUs or
Hadoop-based platforms.

! Since the number of queries also grows linearly with the data volume,
runtimes increase almost quadratically.
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