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Abstract: We present the first privacy-preserving approach for stress detection from wrist-worn
wearables based on the Time-Series Classification Transformer (TSCT) architecture and incorporating
Differential Privacy (DP) to ensure provable privacy guarantees. The non-private baseline results
prove the TSCT to be an effective model for the given task. Our DP experiments then show that the
private models suffer from reduced utility but can still be used for reliable stress detection depending
on the application. Our proposed approach has potential applications in smart health, where it can
be used to monitor smartwatch users’ stress levels without compromising their privacy and provide
timely interventions or suggestions to prevent adverse health outcomes. Another primary contribution
is our evaluation, which studies and shows negative effects of DP regarding model training. The results
of this work provide perspectives for future research and applications whenever the fields of stress
detection and data privacy intervene.
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1 Introduction

Stress is a prevalent issue that can have negative effects on both physical and mental health,
leading to various health problems, such as cardiovascular disease, depression, and anxiety
[Ya17]. Therefore, early detection is crucial for effective stress management and reduction,
which can improve the quality of life for affected individuals.

In recent years, wearable devices such as smartwatches have emerged as a promising tool
for monitoring stress levels, as they can collect various physiological signals such as heart
rate, skin conductance, and accelerometer data, among others [Gi22a]. Machine learning
techniques are widely used to analyze this data and detect patterns associated with stress
[Sc18a]. However, the use of sensitive health data raises concerns about user privacy [Ja22;
PZ18]. Through providing a provable privacy guarantee, users can benefit from health
reports without stressing over privacy concerns.

In this work, we present the first approach to stress detection using smartwatch health
data that preserves user privacy through Differential Privacy (DP) [Dw06]. We employ
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a transformer-based architecture that achieves high accuracy in detecting stress levels
from collected time-series data. The used WESAD dataset by Schmidt et al. [Sc18b] is
a common standard dataset for this task (e.g. in related work presented in Sect. 3). Our
privacy-preserving approach ensures that sensitive health information is protected while
still allowing accurate predictions. A primary focus and contribution of our experimental
evaluation are the provided insights into numerous drawbacks when training with DP. We
thereby contribute to the growing body of research on privacy-preserving machine learning
and its potential applications in healthcare.

Sect. 2 provides background information on relevant concepts. We then give an overview of
related work in the field of stress detection in Sect. 3. Sect. 4 details our proposed approach
and describes the conducted experiments. Their evaluation and results are then presented
in Sect. 5. Finally, Sect. 6 summarizes the main contributions, discusses potentials and
limitations, and suggests areas for future work.

2 Background

The following section goes over some of the fundamental concepts used in this work.

2.1 Stress detection

Stress detection, also known as stress recognition, is the process of detecting and identifying
patterns in physiological signals that are associated with stress. Physiological signals such
as heart rate variability, skin conductance, and respiration can provide valuable information
about a person’s stress level [Gi22a].

Machine learning techniques can be used to analyze these physiological signals and detect
patterns associated with stress [Sc18a]. Wearable devices such as smartwatches have
become increasingly popular for monitoring physiological signals related to stress and can
collect data continuously throughout the day, providing a rich source of data for detection
algorithms.

2.2 Time-Series Classification Transformers

Transformers as introduced by Vaswani et al. [Va17], are a type of neural network architecture
that has shown excellent performance in natural language processing tasks. They use a
self-attention mechanism to weigh the importance of different parts of the input sequence
when making predictions.

Time series transformers extend the transformer architecture to handle time-series data
[We23]. They incorporate temporal information into the self-attention mechanism by



operating on a sliding window of fixed length that moves along the time axis. This allows
them to better handle long-term dependencies and more efficiently train on longer sequences
[We23]. Time-Series Classification Transformers (TSCT) are a specific type of time series
transformer architecture designed for classification problems. It has no decoder part and is
better suited for our classification-based task of stress detection in physiological signals.

2.3 Differential Privacy

The concept of DP [Dw06] is a mathematical definition of privacy that ensures that the
inclusion or exclusion of any individual’s data in a dataset does not significantly change the
output of statistical queries on that dataset. The framework is based on the idea of adding
noise to query answers (including sensitive person-related information) to protect individual
privacy while preserving the utility of the dataset for analysis.

Formally, an algorithm A training on a set S is called (𝜀,𝛿)-differentially-private, if for all
datasets D and D’ that differ by exactly one record:

𝑃𝑟 [𝐴(𝐷) ∈ 𝑆] ≤ 𝑒𝜀𝑃𝑟 [𝐴(𝐷′) ∈ 𝑆] + 𝛿 (1)

The 𝜀-parameter measures the level of privacy protection provided by the mechanism. It
thus determines the amount of random noise that is added to the output of queries on the
dataset to protect individual privacy. The smaller the value of 𝜀, the stronger the privacy
protection, but also the greater the amount of noise.

2.4 Differentially Private Stochastic Gradient Descent

Differentially Private Stochastic Gradient Descent (DP-SGD) [Ab16] is a variant of
the stochastic gradient descent optimization algorithm that provides differential privacy
guarantees. DP-SGD works by adding controlled noise to the gradients computed on each
mini-batch of data during the training process. The amount of noise added is controlled by
the DP privacy parameter 𝜀, which determines the strength of privacy protection. Tuning
the privacy parameter can be challenging, and careful selection and calibration of the noise
level are required to achieve the desired privacy-utility trade-off.

3 Related Work

Out of the numerous publications on stress detection (e.g. as reviewed in [Sc18a]), we
want to evaluate approaches from works also using the WESAD dataset by Schmidt et al.
[Sc18b]. Further, we focus on solely using sensors available to wearable wrist devices like



Related work Signals Method Accuracy F1-score 𝜀

Schmidt et al. [Sc18b] chest+wrist LDA 92.28 90.74 ∞
wrist Random Forest 87.12 ± 0.24 84.11 ± 0.31 ∞

Siirtola [Si19] wrist LDA 87.40 ± 10.4 N/A ∞

Gil-Martin et al. [Gi22b] chest+wrist CNN 96.62 ± 0.11 96.63 ± 0.11 ∞
wrist CNN 92.70 ± 0.16 92.55 ± 0.16 ∞

Lange et al. (ours)

wrist Transformer 91.89 ± 0.15 91.61 ± 0.34 ∞
wrist DP-Transformer 78.88 ± 4.32 76.14 ± 4.27 10
wrist DP-Transformer 78.16 ± 8.40 71.26 ± 4.42 1
wrist DP-Transformer 71.15 ± 10.5 68.71 ± 5.70 0.1

Tab. 1: Classifier evaluation on the WESAD dataset for modalities collected from either chest or wrist
devices regarding the binary (stress vs. non-stress) classification task. We compare accuracy (%) and
F1-score (%) and include our achieved models on their 𝜀-settings from DP.

smartwatches as per our goal, and compare performance for the binary task of classifying
stress vs. non-stress.

In Tab. 1 we present the collected related works and also include our results in the overview.
Approaches conforming to our criteria use the signals designated under the collective term
wrist, while chest+wrist additionally uses the chest wearable data also available in the
WESAD dataset. Currently, the best performing approach from related work for both signal
collections is a CNN by Gil-Martin et al. [Gi22b]. It also reigns over the other models
when omitting chest signals, where we see about 4% reduction in both its accuracy and its
F1-score to 92.70% and 92.55%, respectively. Our results are included for comparison but
evaluated later in Sect. 5.

We also find transformer models in related work, which however perform worse than the
CNN approach and do not conform to our goals: transformer-based model on ECG [Be21]
without wrist data, transformer-based model (Husformer) on wrist and chest signals [Wa23]
without binary task. In summary, there are no prior transformer stress detection models
solely based on wrist device data for our task, which is a gap we want to close.

We further find only one private approach for stress detection by Can; Ersoy [CE21].
However, they employ federated learning without additional privacy implementations,
which provides only limited privacy while processing data [Bo23] and also leaves the
resulting classification model open to attacks [Sh17]. With DP, we can guarantee provable
privacy for our classification model, thus making this work a valuable contribution [DR+14].



Fig. 1: Illustration of our DP-ensuring machine learning workflow. Instead of privatizing the data
itself, we utilize DP-SGD training to directly create a private classification model ready for publishing.

4 Experimental Setup

In this section, we outline our study and give background on the experiments. Reference
code is available from our GitHub repository: https://github.com/BDegenkolb/Privacy-
Preserving-Stress-Transformer.

4.1 Methodology

The general scenario for this work is presented as a basic workflow illustration in Fig. 1.
To provide smart health services, a trusted institution or data owner collects the sensitive
health data from their users’ smartwatches to form a unified dataset for analysis. This data
is then funneled into training machine learning models, like in our case for stress detection.
To provide good results to all users, especially new device owners, it is important to achieve
a generalizing model and this one-for-all approach is therefore favorable compared to
creating only a personal model for each user. The final models are later delivered back to
the devices for operation, leading to privacy concerns regarding the sensitive training data.
A provable protection through DP is achieved by applying the DP-SGD training algorithm.
Incorporating this workflow, the final private model is then safe for publishing and can
provide health insights at a decreased privacy risk.

Our main objective is to investigate the feasibility of using transformer-based architectures
for stress detection using smartwatch health data while preserving user privacy through
DP. To evaluate the addition of DP, we first establish a baseline classification model for
comparison and as a starting point for our private model. In our baseline performance we
want to compete with the current best model by Gil-Martin et al. [Gi22b] (for more related
work see Sect. 3). We choose a transformer model instead of CNN because of its capability
of capturing long distance dependencies in time-series data [Li22]. On the basis of this
baseline, we then evaluate the consequences of using DP regarding model performance.

Our private approach takes the existing baseline model and applies DP-SGD to train for
DP. To better quantify the performance loss from DP, we train multiple models for different
privacy levels of 𝜀 = {10, 1, 0.1}. As a non-private model, the baseline is designated with
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the privacy level 𝜀 = ∞. Values of 𝜀 ≤ 1 are a common choice for good privacy [Ca19b;
Na21] and through also including 𝜀-values a magnitude larger and smaller than 𝜀 = 1,
we can better analyze the utility-privacy trade-off regarding our task [La23]. Our privacy
accounting needs specific considerations due to the time series data and subject-oriented
evaluation, which are given in Sect. 4.6.

4.2 Environment

This section details the software and hardware environment in which all experiments were
implemented and run. Our description ensures reproducible results, which is also achieved
by useing a random seed set to a fixed number of 42 to get comparable training results.

Software-wise, we employ the Python programming language with machine learning
workflows implemented using the Tensorflow4 and Keras5 libraries. For DP-SGD and other
privacy-related implementations, we use Tensorflow Privacy6. For running the experiments
we relied on Google Colab7, which enabled us to use a NVIDIA V100 Tensor GPU and 25
GB of system memory for our Jupyter notebooks.

4.3 Dataset

We study the performance of our proposed approach on the publicly available multimodal
WESAD dataset [Sc18b], which is the standard dataset for our task. This dataset contains
15 healthy subjects (12 male, 3 female) with about 30 minutes of recorded health data
each, which was acquired during a lab study. The physiological and motion data is
sampled continuously and simultaneously from a wrist- and a chest-worn device, with the
Empatica E4 wrist device offering the following modalities in different sampling frequencies:
blood volume pulse (BVP), electrodermal activity (EDA), body temperature (TEMP), and
three-axis acceleration (ACC). The three affective states recorded are stress, neutral, and
amusement.

We focus on binary classification as stress vs. non-stress and only consider signals available
from a wrist-worn wearable like smartwatches—i.e. the Empatica E4 device modalities
from the WESAD dataset.

4.4 Preprocessing

An important prerequisite for working with continuous time-series data is signal preprocess-
ing. Our methods are based on prior work by [Gi22b], who presented a throughout process.
4 Available at https://github.com/tensorflow/tensorflow
5 Available at https://github.com/keras-team/keras
6 Available at https://github.com/tensorflow/privacy
7 Available at https://colab.research.google.com

https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
https://github.com/tensorflow/privacy
https://colab.research.google.com


Signal Sampling frequency Frequency range Subwindow length Model inputs

ACC 64 Hz 0–30 Hz 7 seconds 210
BVP 64 Hz 0–7 Hz 30 seconds 210
EDA 64 Hz 0–7 Hz 30 seconds 210
TEMP 64 Hz 0–6 Hz 35 seconds 210

Tab. 2: Processing details for each signal sampled by the Empatica E4, based on [Gi22b].

Block Layer Settings Data shape

Input Input layer N/A (6, 210)

Encoder (x8)

Layer normalization epsilon 1e-6 (6, 210)
Multi head attention 256 head size, 4 heads (6, 210)
Dropout 0.25 (6, 210)
Add residual connection (6, 210)
Layer normalization epsilon 1e-6 (6, 210)
Convolution 1D 4 filters of 1x1, ReLU (6, 4)
Dropout 0.25 (6, 4)
Convolution 1D 6 filters of 1x1, linear (6, 210)
Add residual connection (6, 210)

Output

Avg-Pooling 1D reduce feature space (6)
Fully connected 128 units, ReLU (128)
Dropout 0.25 (128)
Fully connected 2 units, sigmoid (2)

Tab. 3: Detailed view of our TSCT architecture based on the basic model introduced by Keras [Nt].
Data shape is given as (features, sequence length), which is a ordering we found to be desirable.

In general, our preprocessing workflow is divided into three steps: 1. upsampling (Fourier
method), 2. segmentation (windows), and 3. Fast Fourier Transformation (FFT).

The Empatica E4 wristband collects its modalities in differing heterogeneous sampling
rates, which for consistency are upsampled to 64 Hz for all signal types using the Fourier
method. This adjustment is important to have the signals available at equal time intervals
when inputting in our transformer architecture. Aferwards, the data streams are segmented
into 60-second windows and subdivided into different length P-second subwindows with
a shift of 0.25 seconds. The subwindow length depends on the signal’s frequency range
and is used to average the 60-second window’s spectrum (Fourier transform module) along
the subwindows using FFT. This signal-specific spectrum transformation allows to gain
a consistent 210 frequency points per 60-second window. These 210 frequency points
represent the input for our machine learning model, which then classifies the data at the
60-second window level. We give an overview of preprocessing settings for each signal in
Tab. 2. The overall preprocessing result for each subject in the dataset are time series inputs
with 6 signals and a sequence length of 210 frequency points per signal.



4.5 None-Private Baseline

The basic structure of our TSCT architecture is shown in Tab. 3 and based on the Keras time
series transformer [Nt], where the projection layers are implemented as 1D Convolutions.
The model underwent a rigorous hyperparamter tuning process delivering the presented
model architecture and settings. We found an optimum at 8 stacked encoder blocks inside
the model. We train for 110 epochs with a batch size of 50 and a learning rate of 1e-4. Our
input shape takes the form of (features, sequence length), with features being the 6 available
signals and 210 points of measurement each. While this is an unusual ordering compared to
(sequence length, features), we found this setup to produce better classification results.

For effectively measuring performance in a small dataset of different patients, the evaluation
is subject-based using the Leave One Subject Out (LOSO) method. We cycle through the
15 subjects and in each step take one subject as test and the other 14 as training sets for our
machine learning model. The overall metrics are then averaged over all 15 single test results.
The LOSO method is also used in related work which helps our comparability, especially to
the CNN model by [Gi22b].

4.6 Privacy-Preserving Approach

We have to define multiple relevant variables when transferring a non-private baseline model
to DP. Total epochs, training set size, batch size, and 𝛿 all influence the needed noise scale
to achieve our desired 𝜀-guarantees. While the batch size is fixed at 50, there are further
calculations needed for the other values. Due to our evaluation strategy, we specifically
consider the DP for our averaged LOSO model over all subjects, instead of a single subject.

For the relationship between epochs and DP, we take into account how often a single sample
from the training set is seen during the whole training, since each appearance increases
privacy risk [DR+14]. For us, this single sample is one data point in the time series. One
epoch including the data point translates to one appearance and we therefore assume the
maximum epochs of one subject. This is due to the implementation of our LOSO method,
which means each of our 15 subject taking part in 14 training sets for the other subjects.
Thus the subject’s data points are involved in 14 training processes with 110 epochs each,
leading to a total epoch count of 𝑒𝑡𝑜𝑡𝑎𝑙 = 14 ∗ 110 = 1, 540.

Regarding our training set size, preprocessing results in multiple windows with 210 data
points and 6 measurements each for our 15 subjects. We want privacy on the data point
level of our time series, which is called event-level DP [Ca19a; Mi23]. In our setting
however, in addition to hiding just single data points, we additionally want to hide the
correlations between windows. We therefore only consider one window per subject to
be unique, while the others are treated as copies, which is the worst-case regarding their
sampling rate [DR+14]. Again, increasing the sampling rate of an item leads to higher noise
needs, because the influence of the single sample on the model is rising proportionally.



Fig. 2: Average performance over multiple runs each for our non-private and private models (DP).

𝜀 Accuracy F1-score Precision Recall Poor models

∞ 91.89 ± 0.15 91.61 ± 0.34 91.90 ± 0.42 91.35 ± 0.49 None
10 78.88 ± 4.32 76.14 ± 4.27 77.58 ± 10.1 78.78 ± 16.0 ≈ 33%
1 78.16 ± 8.40 71.26 ± 4.42 68.05 ± 10.2 79.09 ± 14.6 ≈ 50%
0,1 71.15 ± 10.5 68.71 ± 5.70 60.77 ± 9.30 85.39 ± 18.2 ≈ 75%

Tab. 4: Comparison of average model results for non-private and private DP-models. Accuracy,
F1-score, precision, and recall are given as %. We also consider their standard deviation. The ratio of
poor models tells us how many of the trained model runs failed to reach more than 30% performance.

Meaning, a smaller dataset leads to higher DP noise. Our training set size for determining
DP noise is thus given as 𝑛 = 210 ∗ 6 ∗ 15 = 18, 900. From that we can also determine
𝛿 = 1𝑒 − 5 according to 𝛿 ≪ 1

𝑛
[Dw06].

5 Results

To stabilize the results and get a more representative view, we run reach LOSO experiment
multiple times and retrieve the best and averaged performance over these runs. On our
machine learning task some models either classify all given samples as only stress or only
non-stress, thus failing to learn a useful representation of the underlying data. For ease
of use we denote these non-representative models as poor models in the following. Poor
models, in our case, hover around low performance levels of under 30%. When presenting
averaged metrics in our evaluation we therefore only consider models achieving more than
30% to not disproportionally decrease the average.



Fig. 2 shows the averaged results for each evaluated privacy level over their tracked
experiments. For our non-private performance, we did not manage to outperform the related
work by Gil-Martin et al. [Gi22b] but came close with under 1% difference, see Tab. 1
for a full comparison to related work. Our averaged model results show a general trend
of decreasing utility when training for better privacy guarantees. The actual reduction in
performance from non-private to 𝜀 = 10 (max. 15.45%), however, is more significant than
inbetween the private models (max. 7.43%). In our case, F1-scores generally takes a bigger
hit than accuracy when introducing DP.

In Tab. 4, we present more details in addition to the averages from Fig. 2. We include the
recall and precision for each model, which shows that the lowering F1-scores at 𝜀 = {1, 0.1}
are mostly due to a reduction in precision, while recall keeps higher values. Additionally,
the now given standard deviation for our averages is significantly higher when training with
DP and for the most part increases further when tightening the 𝜀-setting. We also provide
information on the ratio of poor models, i.e. models with less than 30% performance,
and see a stern increase when lowering 𝜀 for better DP-guarantees. While in non-private
training all models were able to achieve feasible results, we recorded between 33–75%
failures on 𝜀 = {10, 1, 0.1}. These results mark the importance of running several rounds of
experiments when working with random noise from DP to get an idea of actual performance.
We find the induced noise from DP significantly influences model convergence on all levels.

6 Conclusion

We presented the first differentially-private approach to smartwatch stress detection and
considering a transformer architecture. While not being able to surpass them, we can
however confirm to be close to the related best CNN results from Gil-Martin et al. [Gi22b]
regarding our averaged non-private baseline results with under 1% less performance (91.89%
accuracy and 91.61% F1-score). The utility-privacy loss recorded for our DP-enabled models
lies at over 15%, which is a significant drop to consider. An accuracy of 78.16% and an
F1-score of 71.26% at the strong privacy guarantee of 𝜀 = 1 is a fair result but the model’s
feasibility depends on the actual usage scenario. In critical healthcare settings it could be
intolerable to lose over 15% utility, while simple lifestyle recommendations from smart
health applications on smartwatches might still be reasonable. Regarding the F1-score,
we mainly saw a rapid lowering in precision when tightening the DP-guarantees. A low
precision score can contribute to increased false positives, which could in the end could
annoy users to a point of not using the stress detection feature. We can thus not recommend
using very strong privacy guarantees in precision-dependent applications.

A central limitation is the unclear generalizability because of the WESAD dataset character-
istics regarding its small size and distribution of gender, age, etc. [Sc18b]. Thus, a highly
relevant future venture would be the transition from research to real world studies, where
the larger amounts of user data available could also result in better performance for our
transformer. In the same vein, generating more training data through synthetization methods



could have a positive impact. Another promising opportunity for future work would be the
inclusion of other mobile data sources that could be relevant for stress detection, e.g. mobile
phone usage [SP13].
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