
Toward an adaptive String Similarity Measure for
Matching Product Offers

Andreas Thor

Dept. of Computer Science, University of Leipzig ∗

thor@informatik.uni-leipzig.de

Abstract: Product matching aims at identifying different product offers referring to
the same real-world product. Product offers are provided by different merchants and
describe products using textual attributes such as offer title and description. String
similarity measures therefore play an important role for matching corresponding prod-
uct offers. In this paper, we propose an adaptive string similarity measure that au-
tomatically adjusts the relevance of terms for the product matching. This adapta-
tion is done step-by-step during the match process and does not require training data.
We demonstrate that this approach improves the match quality in comparison to the
generic TFIDF string similarity measure.

1 Introduction

Product matching deals with the identification of different product offers referring to the
same real-world product. Product offers are typically represented as entities (e.g., database
records) with several domain-specific attributes, e.g., title, description, price, and manufac-
turer. Product matching is therefore a special application of entity matching (also known
as deduplication, entity resolution, or reference reconciliation; see [EIV07, KR10] for re-
cent surveys) that is a fundamental problem for data management and data integration,
in particular. Product matching is obviously a crucial aspect for e-commerce portals that
combine offers from several merchants to allow users to find the best price for a certain
product or to efficiently find suitable products from a variety of merchants.

We have analyzed a large real-world dataset that was provided by such an e-commerce
portal.1 It comprises several different product families (e.g., cars, electronics) with a total
of more than 7 million offers that refer to an estimated 5 million products. The dataset
reveals that only 10% of all offers are annotated with the standardized product identifiers
UPC (universal product code) and MPN (manufacturer part number). Therefore price
comparison websites have to carry out a product matching based on product attributes such
as offer title, description, product category, or price. The enormous number of product
offers requires an (at least semi-) automatic approach to efficiently match product offers.

∗Currently on leave at University of Maryland Institute for Advanced Computer Studies (UMIACS)
1Because of a non-disclosure agreement we are not able to provide any details on the e-commerce portal.



Figure 1: Duplicate web entities related to the Canon VIXIA HF camcorder series in Google Product
Search

A potentially high update rate on product offers (including offers for new products) may
additionally limit the feasibility of a manual matching approach.

Numerous approaches for automatic entity matching have been proposed in the literature
but only a few of them have been evaluated using real world product data.2 One reason for
this fact is that product offers are particularly challenging to match as they are often highly
heterogeneous and of different data quality. Figure 1 illustrates some of the problems
for the popular entity search engine Google Product Search and duplicate entries in its
search result for a specific camcorder. The entries refer to different merchants that use
heterogeneous names, descriptions and other attributes for the same product and may also
contain misspellings and other errors. For example, the product names for the considered
product Canon Vixia HF S10 contain additional information that may complicate entity
matching, e.g., to find out that the first three entries refer to the same product. On the
other hand, this information can help to recognize that the fourth entry is a similar but
different product and the last entry does not represent the camcorder of interest, but only
accessories.

In this paper we report on preliminary results toward an efficient and effective product
matching approach. We first show that generic string similarity measures are insufficient
for product matching. For example, the product titles of the second and fourth entry in
Figure 1 have a very high string similarity but they refer to different products. In contrast,
the first two offers for the same camcorder have more diverse titles. We then introduce
the concept of an adaptive string similarity measure that is tailored to the specific charac-

2See http://dbs.uni-leipzig.de/fever for an annotated list of research publications on entity matching.



teristics of product offers. The key idea of our similarity measure is that it automatically
adjusts term weights based on intermediate matching results. In the example of Figure 1,
the term S10 should be given a high weight for matching the first three entries and at the
same time separating them from the fourth entry. This automatic adaptation is done with-
out any training data and it is motivated from the observation that term relevance varies
across different subsets of product offers. We finally evaluate our approach and thereby
demonstrate that it improves upon the standard TFIDF similarity measure.

2 Matching product offers using string similarity measures

We consider product matching as a partitioning problem within a single data source. Given
a set of product offers O = {o1, o2, ..., on}, a match result is a partitioning of O, i.e., a set
of non-overlapping partitions P = {p1, p2, ..., pk} with pi∩pj = ∅ for any 1 ≤ i < j ≤ k
and p1 ∪ p2 ∪ ... ∪ pk = O. The goal is that all offers oi of a partition pj refer to the same
real world product (precision = 100%) and all other offers refer to a different product
(recall = 100%).

A reasonable match/partitioning strategy would make use of several attributes. Product
categories, manufacturer names, and price information can be used for blocking [BCC03],
i.e., to calculate a coarse-grained partitioning of product offers to limit the search space
and thus help increase matching efficiency. Afterwards, offer title and description should
be analyzed to identify corresponding products within partitions. In the remainder of this
paper we focus on the second step and investigate how string similarity measures can be
applied to match product offers based on their title.

Similarity functions are a common tool to identify entities sharing similar attribute val-
ues (e.g., product offer title). For a similarity function sim one can distinguish between
matching and non-matching entity pairs by introducing a threshold t. Two entities ox and
oy are considered to match if sim (ox, oy) ≥ t. The partitioning can then be determined
based on the computed similarity values. Given a similarity function sim and a threshold
t, {ox, oy} is a subset of a partition if and only if the transitive closure of the binary re-
lation S = {(oi, oj) |sim (oi, oj) ≥ t} contains (ox, oy). The quality of such a matching
approach obviously depends on the similarity function and on an appropriate threshold.

Generic string similarity measures such as TFIDF have been successfully applied for en-
tity matching in several domains [CRF03]. Unfortunately, they fall short for the scenario
of product offers. Figure 2 shows the distribution of the TFIDF similarity for all corre-
spondences of the perfect match result (determined by UPC/MPN codes). For a given
similarity threshold t Figure 2 plots the percentage of correspondences that have a sim-
ilarity smaller or equal to t. For example, approx. 25% of all correspondences of the
product category Video Games have a similarity below or equal to 0.5. For comparison
reasons, Figure 2 also shows the string similarity distribution for matching research pub-
lications based on the publication title of a dataset (comprising data from DBLP and the
ACM Digital Library) we have used in previous work on entity matching [KTR10, TR07].

The main observation from Figure 2 is that the TFIDF string similarity measure does not



Figure 2: Cumulative distribution of TFIDF similarity of product offer titles for matching offer
correspondences (determined by UPC/MPN)

discriminate well between matching and non-matching product offers. This is especially
valid for the category Video Games where the similarity values are close to an uniform
distribution. This makes it nearly impossible to find a reasonable threshold for the match
decision. For example, given a minimal recall of 90% the TFIDF threshold must not be
greater than 0.3 for products whereas the threshold can be set to 0.98 for publications.
The low thresholds in turn lead to very a low precision. We have repeated the analysis of
Figure 2 with other similarity measures (e.g., QGram, Levenshtein, amongst others) and
have achieved similar results.

The overall match result can, of course, be improved by combining several similarity mea-
sures and using multiple attributes including the aforementioned product description, cat-
egory, and price. Background knowledge such as reference lists of manufacturers, colors,
or synonyms may also increase match effectiveness. Moreover, with the help of training
data and machine learning techniques optimal match parameters for combining different
similarity values can be calculated. In this work we focus on an orthogonal problem and
try to develop a more sophisticated similarity measure for product offers because similarity
measures are the foundation for any reasonable match strategy.

3 Adaptive string similarity measures for product offers

The string similarity measure applies the vector space model that is commonly used for
representing textual information such as the title or description of product offers. Two
strings s1 and s2 are represented as term vectors, i.e., s1 = [w1,1, w1,2, ..., w1,n] and
s2 = [w2,1, w2,2, ..., w2,n]. Each dimension corresponds to a term t, i.e., the non-negative
weight wi,k reflects the weight of term tk. If tk doesn’t occur in the string si, the cor-



responding weight wi,k is set to zero. The similarity of s1 and s2 is then defined as the
cosine similarity of the two vectors.

The most prominent weight computation is TFIDF, i.e., wi,k = tfi,k × log (1/dfk). Here
tfi,k denotes the term frequency (i.e., number of occurrences of term tk in si divided by
the sum of all term occurrences in si) and dfk denotes the document frequency (i.e., the
number of strings where tk occurs divided by the total number of strings).

The development of a product-specific string measure is driven from two observations.
First, the product offer title usually contains several information such as the product name,
product type, manufacturer, a manufacturer-specific product code (e.g., HF S10 for Canon
camcorder; see Figure 1), and information about size, color, weight, or other product
specific attributes. Second, products are very heterogeneous and different terms should be
used as “key terms” for matching. For example, for camcorders a manufacturer-specific
product code should be used whereas for car accessories the combination of product type
and size might be the most relevant information. Even products of the same product family
(e.g., electronics) may have different key aspects (e.g., size of TV sets vs. storage capacity
for MP3 players).

We are therefore looking for terms that are relevant in a subset of product offers but not
in the complementary set. The idea is that such terms receive a higher weight than other
terms for the similarity computation. Since TFIDF calculates term weights mainly based
on their global frequency it cannot capture this type of information. We propose a mea-
sure that makes use of an existing partitioning, i.e., an intermediate match result. In other
words, the same term tk may have therefore different weights in different partitions. Such
an adaptive string similarity measure can be applied consecutively because the compu-
tation of a new partitioning may lead to different term weights and, thus, may change
the partitioning again. In particular, the application of the adaptive string measure may
split an existing partition into two or more partitions. The intention is that this iterative
segmentation increases the precision while at the same time preserving the recall.

To this end we introduce the Term Partition Relevance (TPR) as follows: TPRk (pm) =
N (tk, pm) /N (tk). Here N (tk) denotes the number of strings that contain the term tk;
N (tk, pm) is the number of strings in the partition pm that contain tk. The term partition
relevance falls in the [0, 1] range and a high value indicates that a term tk occurs in the
partition pm more frequently than in other partitions.

Often similar products are described with terms of the same type (product codes, storage
capacity, ...). Obviously such terms are very important for distinguishing between similar
but different products. Hence we also take into account the partition relevance of terms
of the same type. For simplicity we assume that two terms t1 and t2 are of the same type
if they have the same length n and the i’s character (for all 1 ≤ i ≤ n) of both t1 and
t2 are either both letters or both numbers or both special characters (i.e., neither letters
nor numbers). For example, the terms XSU002B and XSU321A are of the same type but
XSU002B and TV-IP7 are not. We leave the development of a more sophisticated definition
of term types for future work.

Based on the term type and the TPR we introduce the Term Type Partition Relevance
(TTPR) as TTPRk (pm) = N

(
t̂k, pm

)
/N

(
t̂k
)
. This definition is accordant to TPR but



uses the term set t̂k instead of tk. The set t̂k is the set of all terms that share the same type
with tk.

Our adaptive similarity measure then combines TFIDF, TPR, and TTPR as follows:

wi,k (pm) = tfi,k × log (α× 1/dfk + β × TPRi,k (pm) + γ × TTPRi,k (pm))

with α, β, γ ∈ [0, 1] and α + β + γ = 1. The weighted sum allows for a flexible control
of the impact of both TPR and TTPR. We will investigate parametrization strategies for
α, β, γ in future work. In the following evaluation we use a fixed parametrization scheme.

4 Evaluation

We briefly evaluate our approach for two selected product families of the real-world dataset
mentioned in Section 1. The product family Cars contains 2,645 product offers that refer to
2,444 real-world products; there are 4,477 Video Games offers referring to 2,353 distinct
products.

In a pre-processing step the product offer titles are tokenized using a standard tokenizer as
provided by the Lucene search engine framework [HG04]. Thus, multiple string variants
such as VIXIA and (VIXIA) (see Figure 1) are mapped to the same term. Unfortunately,
white spaces may lead to heterogeneous term representations for certain pieces of infor-
mation, e.g., product codes (S10 vs. S 10). The development of a tailored tokenizer for
product titles is therefore subject to future work.

For the evaluation we use the common metrics recall and precision which are defined as
follows: Recall = |CorrP ∩ CorrM | / |CorrP | and Precision = |CorrP ∩ CorrM | /
|CorrM |. Here CorrP denotes the perfect match result determined by the UPC/MPN
code, i.e., the set of all pair-wise correspondences between offers referring to the same
product. CorrM is the set of all correspondences determined by the match approach, i.e.,
the set of all correspondences (o1, o2) where o1 and o2 are in the same partition.

The evaluation results have been achieved using the following procedure: We start with the
computation of TFIDF (α = 1, β = 0, γ = 0) on the offer title with a fixed threshold t. We
then repeatedly apply our similarity measure (using the same threshold) to the achieved
partitioning and gradually decrease the TFIDF impact and increase the TPR impact in
steps of 0.05 until we reach the configuration (α = 0.05, β = 0.95, γ = 0). Afterwards
we decrease the influence of TPR and increase the impact of TTPR simultaneously in steps
of 0.05. Finally we end up with (α = 0.05, β = 0, γ = 0.95) and evaluate the resulting
partitioning (named “Adaptive” in Figure 3).

The repeated application of the similarity measure increases the number of partitions step-
by-step. The conducted parametrization scheme reflects the intuition that TFIDF should
be used for a first match result because TPR and TTPR are only beneficial if there is a
significant number of partitions. This is especially true for TTPR that considers sets of
terms of the same type. The TTPR impact therefore increases at the end of the procedure



Figure 3: Evaluation result for product family Cars (left) and Video Games (right)

at the expense of the TCR impact. We conduct the described procedure several times while
varying the similarity threshold t from 0.2 to 1 in steps of 0.05.

In this evaluation we are interested how the adaptive string similarity measure can im-
prove an existing match result determined by the TFIDF similarity. In particular, Figure 3
plots the precision against the recall for TFIDF (lower curve) and the adaptive similarity
measure (upper curve). The main observation is that the adaptive similarity measure in-
creases the precision while at the same time preserving the recall. This proofs our initial
assumption that an adaptive term weight approach based on an intermediate match result
may increase the match quality. It is therefore reasonable to further investigate on adaptive
term weighting approaches.

The comparison of the two product families Cars and Video Games also shows the influ-
ence of the string similarity measure on the match quality. As illustrated in Figure 1, the
TFIDF similarity measure is more suitable for Cars than for Video Games. As a result,
both TFIDF and the TFIDF-based adaptive measure achieve a better match quality for the
product family Cars than for Video Games. This observation also justifies the assumption
that a string similarity is a key element of any effective product match approach.

Figure 3 also demonstrates that the sole use of a string similarity for product offer titles
does not solve the product matching problem satisfactorily. The maximal achieved F-
Measures are 67% (Cars) and 50% (Video Games), respectively. The adaptive similarity
measure could not substantially increase these maxima. Nevertheless, when combined
with other match approaches (e.g., blocking techniques, similarity of other attributes) an
improved similarity measure may help improve the overall match result.

5 Related work

Entity matching has received a lot of attention in the research community (see [EIV07,
KR10] for recent surveys) and numerous approaches have been proposed but only a few
have been evaluated using real-world product data. [BBS05] proposes an adaptive ap-
proach that learns a composite similarity function for product offers based on a training



data. The presented results with data from Froogle show a F-Measure below 60% and
are in line with our experience that product matching is exceptionally challenging. Our
work focuses on a basic similarity function and can therefore complement [BBS05]. The
work presented in [BGMG+07] also deals with matching product offers (from Yahoo) but
focuses on scalability aspects. Efficiency is very important due to the large number of
product offers and complex similarity functions. To this end, the authors present a family
of algorithms (D-Swoosh) that allows for distributed entity matching across multiple pro-
cessors. The presented evaluation therefore only focuses on performance measures but not
on the match quality.

Adjusting parameters such as thresholds or weights for improving entity matching has
been intensively studied for learning-based techniques using training data [KTR10]. Based
on generic similarity functions (see [CRF03] for a comparison) there is also work on learn-
able string similarity measures (e.g., [BMC+03] introduces an adaptive version of edit
distance). In contrast to our work, all these approaches require training data. To the best of
our knowledge, our approach is the first that automatically adapts term weights for string
similarity computation based on intermediate match results in the absence of any training
data.

Product matching is also related to document classification and document clustering be-
cause relevant information is stored in textual attributes, e.g., product title and product
description. Beside many natural language processing techniques (e.g., part-of-speech
tagging [Sch94]) weighting schemes have also been applied for classification and cluster-
ing of documents. For example, [FYL02] introduces a document classification approach
based on discriminative category matching. Similar to our approach, extracted document
features are assigned higher weights if they appear in fewer categories.

6 Summary and future work

We have presented our preliminary results toward an adaptive string similarity measure
for matching product offers. We have proposed a flexible approach that makes use of
intermediate match results and adjusts term weights accordingly. We could demonstrate
that our adaptive measure can improve the TFIDF measure for product matching.

In future work we will further investigate on our similarity measure. We will use other
attributes (e.g., product category) for generating a first partitioning of product offers and
apply our term weighting scheme for both offer title and offer description. We will also
apply the measure in product matching strategies and combine it with other matching tech-
niques. Our implementations will be incorporated into our object matching framework
FEVER [KTR09] which allows for comparative evaluations and automatic parameter tun-
ing of different match approaches.



References

[BBS05] Mikhail Bilenko, Sugato Basu, and Mehran Sahami. Adaptive Product Normaliza-
tion: Using Online Learning for Record Linkage in Comparison Shopping. In Proc.
of International Conference on Data Mining (ICDM), 2005.

[BCC03] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking
methods for record linkage. In Proc. of Workshop Data Cleaning, Record Linkage,
and Object Consolidation, 2003.

[BGMG+07] Omar Benjelloun, Hector Garcia-Molina, Heng Gong, Hideki Kawai, Tait Eliott Lar-
son, David Menestrina, and Sutthipong Thavisomboon. D-Swoosh: A Family of
Algorithms for Generic, Distributed Entity Resolution. In Proc. of International Con-
ference on Distributed Computing Systems (ICDCS), 2007.

[BMC+03] Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep D. Ravikumar,
and Stephen E. Fienberg. Adaptive Name Matching in Information Integration. IEEE
Intelligent Systems, 18(5), 2003.

[CRF03] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A Compar-
ison of String Distance Metrics for Name-Matching Tasks. In Proc. Workshop on
Information Integration on the Web (IIWeb), 2003.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
Record Detection: A Survey. IEEE Trans. Knowl. Data Eng., 19(1), 2007.

[FYL02] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, and Hongjun Lu. Discriminative Category
Matching: Efficient Text Classification for Huge Document Collections. In Proc. of
the International Conference on Data Mining (ICDM), pages 187–194, 2002.

[HG04] Erik Hatcher and Otis Gospodnetic. Lucene in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2004.

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A comparison.
Data Knowl. Eng., 69(2), 2010.

[KTR09] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation of entity
resolution approaches with FEVER. PVLDB, 2(2), 2009.

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of learning-based ap-
proaches for matching web data entities. IEEE Internet Computing, 99, 2010.

[Sch94] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc.
of International Conference on New Methods in Language Processing, volume 12.
Citeseer, 1994.

[TR07] Andreas Thor and Erhard Rahm. MOMA - A Mapping-based Object Matching Sys-
tem. In Proc. of Conference on Innovative Data Systems Research (CIDR), 2007.


