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Abstract 

Background: Data analysis for biomedical research often requires a record linkage step to identify records from 
multiple data sources referring to the same person. Due to the lack of unique personal identifiers across these 
sources, record linkage relies on the similarity of personal data such as first and last names or birth dates. However, 
the exchange of such identifying data with a third party, as is the case in record linkage, is generally subject to strict 
privacy requirements. This problem is addressed by privacy-preserving record linkage (PPRL) and pseudonymization 
services. Mainzelliste is an open-source record linkage and pseudonymization service used to carry out PPRL pro-
cesses in real-world use cases.

Methods: We evaluate the linkage quality and performance of the linkage process using several real and near-real 
datasets with different properties w.r.t. size and error-rate of matching records. We conduct a comparison between 
(plaintext) record linkage and PPRL based on encoded records (Bloom filters). Furthermore, since the Mainzelliste 
software offers no blocking mechanism, we extend it by phonetic blocking as well as novel blocking schemes based 
on locality-sensitive hashing (LSH) to improve runtime for both standard and privacy-preserving record linkage.

Results: The Mainzelliste achieves high linkage quality for PPRL using field-level Bloom filters due to the use of an 
error-tolerant matching algorithm that can handle variances in names, in particular missing or transposed name 
compounds. However, due to the absence of blocking, the runtimes are unacceptable for real use cases with larger 
datasets. The newly implemented blocking approaches improve runtimes by orders of magnitude while retaining 
high linkage quality.

Conclusion: We conduct the first comprehensive evaluation of the record linkage facilities of the Mainzelliste 
software and extend it with blocking methods to improve its runtime. We observed a very high linkage quality for 
both plaintext as well as encoded data even in the presence of errors. The provided blocking methods provide order 
of magnitude improvements regarding runtime performance thus facilitating the use in research projects with large 
datasets and many participants.
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Background
Data analysis for biomedical research and clinical stud-
ies typically requires careful preparation and integration 
of relevant data from multiple data sources, in particular 

about patients who may have been treated in different 
hospitals and other institutions. Thus it is often required 
to identify records in different data sources referring to 
the same patients. This problem is known as record link-
age and is necessary in most multi-site research efforts to 
handle since unique record identifiers are typically not 
available across different data sources. Record linkage 
relies on comparing personal identifying data, such as 
name and date of birth, of patients. Moreover, especially 
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in the medical domain there are legal privacy require-
ments that generally do not allow to expose identifying 
data about patients to external parties thereby imped-
ing the linkage of patient-related information. The lat-
ter challenge is addressed by privacy-preserving record 
linkage (PPRL) and pseudonymization techniques. PPRL 
has been an active area of research in the last decade and 
many protocols and methods have been proposed [1, 2]. 
The linkage of records is performed often by a trusted 
linkage unit that may also perform pseudonymization. 
For the sake of this article, we assume one unique pseu-
donym per patient. To fulfill the privacy requirements, 
each record is encoded or encrypted before linkage, in 
order to prevent an identification of individuals. Most 
recent PPRL strategies encode records by transform-
ing identifying attributes into Bloom filters as proposed 
in [3]. Figure 1 illustrates the overall linkage process. At 
the data holders, we distinguish between two types of 
fields: identifying data (IDAT), needed for record linkage, 
such as name, date of birth and address, and medical data 
(MDAT), needed for data analysis, such as disease, blood 
pressure, medication etc. The linkage unit, e.g., Mainzel-
liste, only receives the IDAT values from the data holders 
but not the medical data to expose only minimal infor-
mation for record linkage. The linkage unit determines 
whether new patient records match with previously pro-
vided records and returns the unique pseudonym (PID). 
Matching records, i.e., records referring to the same 
patient, will thus receive the same PID. After linkage, the 
data holders can associate the medical data (MDAT) with 
the respective PID and provide this information for data 
analysis. The PID values allow to combine medical infor-
mation about the same patient from multiple sources, 
e.g., within a research database, without revealing sensi-
tive IDAT information.

The sketched approach has to meet several require-
ments to be viable in practice. In particular, the approach 

should support multiple ( ≥ 2 ) data holders and provide 
high linkage quality so that all matching patients from 
different data holders are identified (high recall) and 
multiple records with the same PID indeed refer to the 
same person (high precision). Furthermore, the approach 
should be efficient and scalable, i.e., allow a fast match-
ing and PID generation even for a very large number 
of records. Finally, a high degree of privacy should be 
maintained, in particular by supporting matching on 
encoded IDAT (C-IDAT) values. Thus, the linkage unit 
should never have access to unencoded sensitive infor-
mation. Most proposed PPRL approaches only consider 
an one-time matching of two or more datasets (batch 
matching). However, they do not support the incremental 
matching of new records, which requires a suitable data-
base to keep track of already matched records and their 
PIDs. Support for efficient incremental matching is often 
required in practice since previous linkage results can be 
accessed and updated.

Mainzelliste
The Mainzelliste is a web-based open-source soft-
ware for identity management [4]. Its core function-
alities, pseudonymization and de-pseudonymization of 
patients, are accessible via a RESTful interface allowing 
self-explanatory usage via widely used web technologies. 
The pseudonymization process includes a configurable 
record linkage process, which by default uses an error-
tolerant matching algorithm [5] to compute the similarity 
between pairs of records and find duplicates even in the 
presence of typos, interchanged fields, missing values etc.

Since its first release in 2013, Mainzelliste has been 
used by a constantly growing number of national medi-
cal research networks [6, 7], centralized biobanks [8], 
research platforms [9], commercial data capture and 
analysis suites [10, 11], registry software solutions [12, 
13] and patient organizations and related disease reg-
istries [14, 15]. The software is under continuous devel-
opment, incorporating community contributions from 
various research institutions [16].

Until now, however, there exists no detailed description 
of the Mainzelliste linkage process nor systematic evalua-
tion of its match quality or runtime performance, leaving 
open its current potential and issues to be improved.

Related work
The Mainzelliste can be used for conventional record 
linkage on original (plaintext) as well as for PPRL on 
encoded attribute values. A variety of other open-source 
record linkage tools exists [17], but most of them are lim-
ited to one-time batch matching. A comparison of the 
Mainzelliste with other tools for incremental matching 
on plaintext such as OpenEMPI was carried out in [4]. 

Fig. 1 Linkage process with a centralized linkage unit (e.g., 
Mainzelliste)
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While PPRL has already been applied for several medi-
cal use cases in different organizations [18–20], to the 
best of our knowledge the Mainzelliste is the only pub-
licly available PPRL tool with a RESTful web interface 
that has been used in a large number of real applications. 
In contrast to many other PPRL tools it is ready-to-use 
and easily deployable in medical applications rather than 
a prototype or library adding functionality to other pro-
grams. SOEMPI [21] builds on top of OpenEMPI and 
adds protocols for PPRL including encoding, matching 
and the exchange of the encoding secrets. The latter is 
necessary to ensure that all clients encode the IDAT in 
the same way. Such an exchange of parameters is not yet 
supported by the Mainzelliste which focuses on backend 
functionality. LSHDB [22] is a record similarity search 
system using parallel queries in distributed data stores 
for fast responses. However it does not assign matched 
records to a common PID and is designed to be used as 
a Java library instead of via a web interface. PRIMAT 
[23] is a toolbox providing many state-of-the-art encod-
ing and matching techniques for PPRL including post-
processing routines to achieve high linkage quality, but 
also lacks support for pseudonym management and web 
interfaces. All three tools provide blocking techniques to 
enhance the linkage performance, but focus on record-
level Bloom  filter in contrast to the field-level approach 
of the Mainzelliste (see below). Table 1 provides a com-
parison of the Mainzelliste and other open-source PPRL 
frameworks.

Objectives
We present the first detailed description of the Main-
zelliste record linkage software, in particular the tech-
niques and default settings used to match patient-related 
records. Moreover, we comprehensively evaluate the 
runtime and match quality of the Mainzelliste version 
1.8. We comparatively evaluate record linkage based 
on original (plaintext) IDAT values against PPRL on 
encoded IDAT (C-IDAT) using field-level Bloom fil-
ters. We observed a poor runtime and scalability of the 
Mainzelliste since it misses support for blocking so 

that every new patient record has to be compared with 
every already known record. To improve runtimes, we 
extended the Mainzelliste to support phonetic blocking 
based on Soundex for the plain-text matching. For PPRL 
scenarios we also included blocking based on locality-
sensitive hashing (LSH) that shows high efficiency and 
effectiveness in recent proposals [24]. However, LSH-
based blocking has so far only been applied to record-
level Bloom filter approaches, where all IDAT values are 
mapped into a single Bloom filter. Since the Mainzelliste 
utilizes field-level Bloom filter by default (see below), we 
have to adapt the standard LSH approach to work on 
multiple bit vectors. These optimizations were imple-
mented within the Mainzelliste, but can be added to 
other PPRL tools as well. Finally, we evaluated our exten-
sions, in particular the added blocking methods to iden-
tify suitable default parameter settings and to assess the 
improvements with respect to the previous implementa-
tion. Our key performance indicators were the execution 
time (runtime) for inserting a new patient to the Main-
zelliste database as well as the standard linkage quality 
metrics recall, precision and F1-score.

Methods
Bloom filter encoding
The use of Bloom filters [25] for PPRL has been pro-
posed by Schnell and colleagues [3] and has become the 
most popular encoding scheme for PPRL in research as 
well as in real applications [1, 2, 4, 18]. In general, iden-
tifying attributes are split into substrings of length q 
(q-grams) to build a set of record features S = {e1, . . . , en} 
that should be represented in a Bloom filter. The original 
strings can be surrounded by leading and trailing padding 
characters to ensure that all characters are included in 
the same number of q-grams. At first, a bit vector of size 
m is initialized with each bit set to zero. Moreover, k hash 
functions h1, . . . , hk are defined and used to hash (map) 
the elements of S into the bit vector. Therefore each hash 
function is applied on each element of S and produces as 
output a position in the range [0,m− 1] . Finally, the bits 
at the resulting positions are set to one. Setting a bit to 

Table 1 Comparison of the Mainzelliste with other tools for Entity Resolution (ER) and PPRL

Product Core Functionality Incremental Blocking Usability

Mainzelliste Identity Management with 
ER and PPRL

Yes Soundex, LSH (Field-level 
Bloom filter) (our contribu-
tion)

RESTful web interface

Standard ER-Software ER Rarely Yes Library, Desktop Application

SOEMPI PPRL Yes LSH (Record-level Bloom filter) Web-Interface

LSHDB PPRL Yes LSH (Record-level Bloom filter) Library

PRIMAT PPRL Planned LSH (Record-level Bloom filter) Library, Desktop Application
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one multiple times will have no effect. Given that identi-
cal q-grams are mapped to the same bit positions, a high 
overlap of q-grams leads to similar Bloom filters making 
them suitable for determining the record similarity e.g. 
using the Hamming Distance, the Jaccard index or the 
Dice coefficient (see Equation 4).

Record linkage in the mainzelliste
In the following, we illustrate the process of adding a 
patient to the Mainzelliste as depicted in Figure  2. At 
first, the data holder sends the patient’s identifying data 
as HTTP request to the Mainzelliste server. The identify-
ing data can be transmitted either as plaintext values, i.e., 
IDAT, or encoded as several field-level Bloom filters, i.e., 
C-IDAT.

Operating on IDAT, the Mainzelliste can execute a vali-
dation and transformation step before the actual linkage. 
Validity can be checked for attributes to identify errors, 
for instance invalid dates like 13-1990 (mm-yyyy). Fur-
thermore, the data may be transformed into a standard 
form to facilitate the linkage process, e.g., remove diacrit-
ics and umlauts from names.

The actual record linkage process consists of sev-
eral steps which are essentially the same for IDAT and 
C-IDAT. At this stage it is checked whether the record is 
already registered in the Mainzelliste. Therefore all previ-
ous records are retrieved from the database and matched 
with the query record x to find a possible duplicate. This 
matching is done by comparing the fields and computing 
an aggregated similarity score for each pair of records. 
In the next step (PID generation), a global identifier, a 
PID  [26], is assigned to record x. If x is considered as a 
duplicate of a previously added record y then y is treated 
as representative for x and thus the PID of y is assigned 
to x. On the other hand, if x has no match, then a new 
PID is assigned to x. In both cases, the input request, i.e. 

record x, and the assigned PID are stored in the database 
(persistence).

Matching of two records x and y for both original and 
encoded data is based on their similarity sim(x, y) that has 
to exceed a certain threshold t. This similarity is deter-
mined as weighted sum of the similarities of all fields 
(attributes) xi and yi [5]:

where the weight wi of the ith field is based on its average 
value frequency fi and error-rate ei:

Table 2 shows the default weights of the Mainzelliste for 
German person data that originate from the evaluation 
of a German cancer registry and will also be used in our 
evaluation. The values reflect the discriminatory power of 
the different fields for matching.

Depending on the data type of the fields several similar-
ity functions can be used for comparison. For string fields 
the Mainzelliste applies the Dice similarity based on the 
amount of overlapping q-grams, i.e., substrings of length q, 
where q = 2 is set by default (bi-grams). The Dice similarity 
can be calculated as

where q(s) is the q-gram set of a string value s.
Numerical fields, e.g., day, month or year of birth, are 

compared by value equality. Hence, the similarity value is 
either 0 (unequal) or 1 (equal).

For comparing encoded fields (field-level Bloom filters) 
the Dice similarity is also used:

where card (b) is the number of bits set to 1 in a Bloom 
filter b and ∧ denotes the bitwise AND operation.

(1)sim(x, y) =

∑
wi × sim(xi, yi)

∑
wi

,

(2)wi = log2
(1− ei)

fi

(3)sim(xi, yi) =
2× |q(xi) ∩ q(yi)|

|q(xi)| + |q(yi)|

(4)sim(xi, yi) =
2× card (xi ∧ yi)

card (xi)+ card (yi)

Fig. 2 Workflow to process a new record in the Mainzelliste

Table 2 Default field weights of the Mainzelliste

Attribute f e w

First name 0.000235 0.01 12.04

Last name 0.0000271 0.008 15.15

Day of birth 0.0333 0.005 4.9

Month of birth 0.0833 0.002 3.58

Year of birth 0.0286 0.004 5.12

Date of birth 0.00007 0.005 13.8
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The match classification of compared pairs uses two 
thresholds t1, t2 , with t1 > t2 . A pair of records x and y is 
considered as:

• Match ⇔ sim(x, y) ≥ t1
• Possible Match ⇔ t2 ≤ sim(x, y) < t1
• Non Match ⇔ sim(x, y) < t2

In principal, one record x can match to more than one 
other record. For example, assuming t1 = 0.8 , x can 
match to y1 with a similarity score of 0.9 and to y2 with a 
similarity score of 0.95. The Mainzelliste therefore adopts 
a best-match selection strategy, i.e., only the record with 
the highest similarity score is considered as match.

The class of possible matches is used for records where 
a definite match decision is not possible. In practice, pos-
sible matches could be manually verified by a domain 
expert. In the rest of this paper, we set t1 = t2 and thus 
consider only definite matches.

Standard blocking
A potential performance problem of record linkage with 
Mainzelliste is that comparing a record with all records 
in the database leads to poor scalability since the num-
ber of comparisons increases with more data. Blocking 
is a common technique to reduce the number of match 
comparisons  [27]. The standard blocking approach par-
titions the records according to a function on the values 
of selected fields, returning blocking keys. The similarity 
computation for matching is then restricted to pairs of 
records from the same partition, i.e., records sharing the 
same blocking key.

Phonetic blocking
A frequently used blocking approach for matching of 
unencoded data is phonetic blocking, e.g., based on the 
Soundex function [28]. Phonetic encoding functions, like 
Soundex, are typically applied on name attributes and 
aim to produce the same output for input values with a 
similar pronunciation (even with typographical varia-
tions or errors). For instance, the Soundex value for both 
names ’Sara’ and ’Sarah’ is S600. However, since the first 
letter of the attribute value is preserved in the Soun-
dex code, typographical variations at the beginning of a 
name, e.g., ’Zarah’ (Z600) vs. ’Sarah’ (S600), can not be 
compensated. Such problems can be reduced by choos-
ing several blocking functions, e.g., Soundex for both first 
name and last name.

LSH‑based blocking
Locality-sensitive hashing (LSH) was proposed for solv-
ing the nearest neighborhood problem in high-dimen-
sional data spaces [29]. The basic idea of LSH is to apply 

a set of hash functions on the objects of interests, e.g., bit 
vectors. These hash functions are sensitive to a certain 
distance measure d, e.g., Hamming or Jaccard distance. 
Each hash function has the property that the probabil-
ity of a collision, i.e., same output value for two different 
input value is much higher for objects with a small dis-
tance (high similarity) than for objects with greater dis-
tance (low similarity). Please note that the hash functions 
used for LSH are completely different from those used to 
construct Bloom filters.

LSH can be utilized as blocking approach for PPRL 
using bit vectors (Bloom filters) [30]. For this purpose 
hash functions that are sensitive to the Hamming dis-
tance can be used (HLSH). These functions fi return the 
bit value at position i in the bit vector [30]. For instance, 
applying the function f7 on the bit vector 11011001 
would return the bit value on position 7 and therefore 
1. In order to group similar records, a blocking key is 
constructed by using � such hash functions which are 
selected randomly. Then, the output values of these � 
hash functions are concatenated to obtain the blocking 
key.

As a consequence, the parameter � represents the 
length of the blocking key, i.e., number of selected bits. 
Due to the probabilistic nature of LSH, it is possible 
that two bit vectors with a small distance (high similar-
ity) may produce different blocking keys, namely if the 
bit value(s) at one or several of the � positions are dif-
ferent. To improve the error tolerance, � blocking keys 
are therefore generated to increase the probability that 
two similar but different bit vectors agree in at least one 
blocking key so that the encoded records are compared 
with each other to decide about whether they match.

The two LSH parameters � and � need to be carefully 
selected. A higher value for � increases the probability 
that only bit vectors with a high similarity are assigned 
to the same block. Hence, a higher � will lead to smaller 
blocks and thus fewer intra-block comparisons. On the 
other hand a lower � will instead produce larger blocks 
but also decreases the probability that two similar bit 
vectors are missed due to erroneous data. On the other 
hand, the higher � , the higher is the probability that two 
similar bit vectors share one blocking key. However, at 
the same time, the number of blocks and thus the num-
ber of candidates that need to be processed increases 
leading to increased execution time.

LSH‑based blocking on FBFs
LSH has been used as a blocking method for PPRL in 
several approaches [24, 31]. However, LSH-based block-
ing has so far only been applied to record-level Bloom 
filters where a single bit vector represents all identifying 
data of a person. In contrast, the Mainzelliste has focused 
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on field-level Bloom filters (FBF) as they promise higher 
linkage quality which is strictly required in most medical 
contexts. The LSH-based blocking method thus needs to 
be modified as it has to operate on multiple input Bloom 
filters instead of only a single one. In the following, we 
propose two methods to apply LSH on a set of field-level 
Bloom filters {bv1, . . . , bvp} where p denotes the number 
of Bloom filters (fields) used for blocking. Figure 3 shows 
an example of these methods.

Field‑level LSH
As a first approach, we consider a field-dependent selec-
tion strategy, where a certain number �i , i ∈ {1, . . . , p} , 
of LSH blocking keys is constructed for each field sepa-
rately. All bits of a single LSH key are drawn from the 
same FBF and hence each key is affected by exactly one 
field. For the example of Figure 3, we have chosen a sin-
gle key of length 4 for each of the three considered fields. 
The two sample records have the same blocking key for 
two of the three keys.

The main benefit of this approach is that it is error-
tolerant even if several field values are different or miss-
ing. At least one matching field is sufficient to assign two 
records into the same block. On the other hand, as each 
blocking key solely depends on a single FBF, the resulting 

blocks can become large when there are only few differ-
ent field values or frequent field values, e.g., popular last 
or first names.

Record‑level LSH
We also consider a field-independent selection strategy. 
For each LSH blocking key bki with i ∈ {1, . . . ,�} we 
select a certain number {�1, . . . ,�p} of positions from 
each FBF. As a consequence, the � =

∑p
i=1�i bits of 

each LSH key will be drawn from different FBFs. For the 
example of Figure 3, we have again � = 3 blocking keys 
of length � = 4 but the bits are selected from all three 
fields (1 bit each from the first two fields and 2 bits from 
the third field). Only the third key has the same value for 
the two considered records.

In contrast to the field-level LSH approach, the record-
level strategy can lead to smaller blocks as each LSH 
blocking key depends on several FBFs and thus fields. 
Therefore the record-level LSH strategy is assumed to 
produce less candidates and consequently less record 
pair comparisons. However, the record-level strategy may 
also be less error-tolerant than the field-level strategy. In 
particular, if attributes are erroneous or contain miss-
ing values, then the probability that these attributes will 
affect several or even all LSH blocking keys increases. As 

Fig. 3 LSH-blocking variants on field-level Bloom filter



Page 7 of 12Rohde et al. J Transl Med           (2021) 19:33  

a consequence, such cases can lead to missing matches 
(false-negatives). Therefore, more LSH keys may be 
needed to avoid or limit this problem.

Treatment of compound fields
Duplicate patient records differing in small details, e.g. 
typos, can be matched by error-tolerant algorithms. 
However, real-world records of the same patient can also 
differ significantly, e.g. if one has only simple first or last 
names while the other contains several first names (or 
one first and a middle name) or double last names, e.g. 
due to marriage. For plaintext data, the record linkage 
algorithm of the Mainzelliste can be configured to split 
such compound names on hyphens and whitespace. The 
calculation of the overall similarity of two compound 
fields can then be determined per component. For exam-
ple, compound-sensitive matching would yield a similar-
ity value of 1 for the comparison of last name “Pinkett 
Smith” with “Pinkett” (instead of 0.5).

We implemented a similar approach for encoded 
matching using field-level Bloom filters. This is achieved 
by an additional preprocessing step to create multiple 
Bloom filters for compound field values. Matching and 
blocking is then performed for each of the component 
Bloom filters.

Implementation as database‑side blocking
The Mainzelliste uses a database to store the patient 
identifiers. The duration of adding a new patient mainly 
depends on the database query for candidates and the 
subsequent matching. In the original implementation 
without blocking all patients are retrieved from the data-
base. A subsequent blocking would significantly reduce 
the number of comparisons and thereby the matching 
time. However the unnecessary query of most patient 
records should also be avoided. Therefore we implement 
a database-side blocking to improve the runtime of both 
subprocesses. Fig. 4 illustrates how our contributions are 
integrated into the interactions within the Mainzelliste 
backend, specifically for the communication between the 
patient processing logic and the database. After receiv-
ing a new request the Mainzelliste determines blocking 
keys for this record according to the configured blocking 
method (e.g., Soundex for plaintext or a LSH method for 
Bloom filter) (step 2). These blocking keys are passed to 
the database when retrieving the matching candidates 
(3). The database uses these keys to select and return 
only those stored patients that share at least one key (4). 
The matching step (6) is not altered as the filtering of the 
patients is already conducted within the database. For 
new or updated patients the backend submits the block-
ing keys to the database along the patient data (7) to 
allow inclusion of the patient in future queries.

Evaluation
The goal of the evaluation is to comparatively analyze 
match quality and runtime performance for both plain-
text and encoded field values for both the original Main-
zelliste and the changed version. Furthermore, we want 
to analyze the impact of the proposed blocking strategies.

Datasets
For the evaluation we use one real world and four syn-
thetically generated, near-real datasets each with the 
fields first name, last name and date of birth. Table  3 
shows main features of the five datasets, in particular 
their sizes and error rates.

Dataset R is based on a real-world dataset with approx-
imately 50 000 person records that were drawn from the 
civil register of a German city. This dataset is of high 
quality and contains only 565 duplicate records. An anal-
ysis of the duplicates shows that approximately 80% are 
equal in all of their fields, but the remaining duplicates 
contain missing values, diacritics and multiple names 
in first and last name fields. All records of dataset R are 
sequentially inserted so that each additional record is 
matched against the records already stored in the Main-
zelliste database.

To systematically evaluate the impact of the dataset 
size and data quality, we synthetically generated four 
additional datasets with near-real person names derived 
from look-up files and frequency distributions from Ger-
man census data. For this purpose, we employ a custom-
ized version of the GeCo data generation and corruption 
tool used in previous research on record linkage [32]. 
The G datasets are generated in three sizes to evaluate 
the scalability of the linkage: small, medium, and large 
with 10 000 , 100 000 and 1 000 000 records in total. For 

Fig. 4 Communication within the Mainzelliste between the backend 
logic and the database before (black) and after our contributions 
(green)
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these datasets we assume that a subset A of 70% of the 
records are already inserted in the Mainzelliste database 
and that the records of the remaining subset B are added 
(matched and inserted) one by one. For the large dataset 
GL the runtimes without blocking were already too high 
so that we only evaluate it for a randomly selected sub-
set of B encompassing 10% of its records. The quality of 
the GL datasets is lower than for the real dataset R since 
we assume a relatively high share of duplicate records 
(50% of the records in subset B). Furthermore, 30% of the 
duplicates are assumed to contain one or two erroneous 
field values as indicated in the last column of Table 3.

For quality evaluation, we additionally consider the 
“dirty” dataset DM . Dataset DM has the same size than GM 
but more errors, e.g., phonetic variation, OCR errors and 
typos, that are introduced by GeCo’s corruption compo-
nent. In DM 40% of the duplicate records are erroneous 
including 5% with errors in all three fields to provide a 
pessimistic scenario for achieving high match quality.

Bloom filter encoding
Bloom-filter-based record linkage requires the preproc-
essing steps to be done before the actual encoding and 

therefore by the data holder. Table  4 shows the data 
cleaning methods used for each field. For dataset R an 
additional step was performed to split compound fields 
as described above. After preprocessing, all fields are 
split into bigrams that are mapped into the Bloom fil-
ters. The three components of the birthday have been 
encoded in a joint Bloom filter. An essential parameter 
for encoding is the ratio of the number of hash func-
tions to the length of the Bloom filter. The larger the 
ratio, the more bits are set on average in the bit vec-
tor. The applied encoding parameters shown in Table 4 
result in an average share of approximately 25% 1-bits.

Evaluation metrics
We use the standard metrics recall, precision and 
F1-score to evaluate linkage quality. Recall measures 
the proportion of found true matches from all true 
matches. Precision measures the proportion of true 
matches from all found matches. The F1-score is the 
harmonic mean of these two metrics.

Runtime for inserting patients is measured within the 
Mainzelliste and therefore it does not include the net-
work latency (delay) of the HTTP requests. Please note 
that the time for inserting a patient includes the retrieval 
of records from the database, the actual matching as well 
as the time needed for persistence.

Furthermore, we determine the average number of 
candidates for each record and calculate the reduction 

Recall =
#TruePositives

#TruePositives+ #FalseNegatives

Precision =
#TruePositives

#TruePositives+ #FalsePositives

F1-score =
2 · Recall · Precision

Recall+ Precision

Table 3 Description of  the  datasets, each with  the  size 
of  the  initial patient list |A|, the  number of  inserted 
patients |B|, the  number of  duplicate records |A ∩ B| 
and  the  proportion of  records with  a  certain amount 
of erroneous fields

Table 4 Bloom filter encoding used for  the  evaluation 
with  k as  the  number of  hash functions and  m 
as the length of the Bloom filter
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ratio (RR) which is defined as the proportion of com-
parisons that is evaded by the use of blocking:

For example, a value RR=0.999 (99.9%) refers to a reduc-
tion of the number of comparisons by a factor of 1,000.

Blocking parameters
For blocking on plaintext fields we use two Soundex 
codes on first and last name. As a result two records 
are compared if they share the same Soundex value for 
either the first or the last name. LSH blocking requires 
the configuration of the two parameters � and � (num-
ber and length of blocking keys). We therefore evaluated 
different settings on dataset GM to determine suitable 
default parameters for each LSH method. Fig.  5 shows 
the obtained F1-score and runtime results for different 
values for � and � . For FieldLSH (left part of Fig. 5) the 
F1-scores are very stable as at least one of the three fields 
per record is error-free for GM . We therefore chose � = 3 , 
corresponding to one key per field and � = 36 as it 
results in short runtimes. However for RecordLSH (right 
part of Fig.  5) a higher number of blocking keys � = 9 
and shorter keys with � = 24 , i.e., 8 hashes for each field 
( 8 · 3 = 24 ), yield a good compromise between linkage 
quality and runtime.

Additionally, we apply the key restriction approach 
proposed in [24] to exclude bit positions that are fre-
quently set to 0 or 1 and they can cause larger block sizes. 
The bit frequencies are determined at runtime based on 
the first 1000 inserted records and a prune ratio of 0.5 is 
applied.

(5)RR = 1−
#candidates with blocking

#records in database

Matching parameters
To determine a suitable threshold to maximize the 
F1-score of the linkage result without blocking, we 
systematically evaluated different threshold settings 
t = {0.8, 0.85, 0.9, 0.95} . For dataset R , we apply the 
threshold t = 0.9 for plaintext matching and tBF = 0.95 
for PPRL with Bloom filters. For the more erroneous 
datasets G∗ and DM we set t = 0.8 and tBF = 0.85.

Benchmark setup
All experiments are conducted on a desktop computer 
equipped with an Intel i7-6700, 32 GB main memory and 
a SSD running Ubuntu 18.04, MySQL 5.7 and Tomcat 
8.5.

Results and discussion
Table  5 shows the results of all evaluations for the five 
datasets and without and with Bloom Filters (BF), with-
out and with (Soundex or LSH) blocking. Rows without 
blocking correspond to the original implementation of 
the Mainzelliste whereas rows with blocking represent 
the respective results with our improvements. For each 
of the five configurations per dataset, the table shows the 
linkage quality results (recall, precision, F1 score) as well 
as the average (insert) runtime per record, the number of 
blocks, the number of match candidates and the achieved 
reduction ratios.

Comparison of plaintext and encoded matching 
without blocking
The evaluation results of the original Mainzelliste (rows 
in Table 5 without blocking) show excellent linkage qual-
ity for both plaintext matching and PPRL using Bloom fil-
ter for the real dataset R and the small and medium sized 
datasets GS and GM . For these datasets precision values of 

Fig. 5 F1 score against runtime for different numbers of LSH keys ( � ) and LSH key lengths ( � ) determined for dataset GM
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almost 100% and F1-scores of about 99% are achieved. 
This has been made possible by the error-tolerant match-
ing approaches. For the real dataset R the match support 
for compound names also proved essential. The results 
in Table 6 show that the special treatment for compound 

names improves recall from 89% for plaintext matching 
and 92% for Bloom filter matching to 98% and a corre-
sponding improvement of the F1-score to almost 99%. 
The execution time is generally faster for Bloom Filter 
matching than using plaintext data, e.g., for dataset GM by 
almost 30%, since the similarity computation for bit vec-
tors is faster than for string values.

Linkage quality is somewhat reduced for the dirtier 
dataset DM (to about 95% F1 score) and the large dataset 
GL (to 94.6-97.5% F1 score) for both plaintext and Bloom 
filter matching. For DM , the high precision is retained but 
recall is decreased since the increased error rates lead to 
lower similarity for duplicate records that are partially 
missed for the default thresholds. A reduced threshold 
would improve recall at the expense of a lower precision 
which is considered more harmful since it could lead to 

Table 5 Evaluation results

Table 6 Comparison of  quality metrics for  dataset 
R with  and  without the  use of  compound fields (CF) 
and Bloom filters (BF)

BF CF Threshold Recall Precision F1 score

✗ ✗ 0.90 0.8920 0.9980 0.9420

✗ ✓ 0.90 0.9805 0.9964 0.9884

✓ ✗ 0.90 0.9204 0.9980 0.9515

✓ ✓ 0.95 0.9805 0.9964 0.9884
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consider different persons as matches. For the large data-
set GL , however, we observe a decrease in precision for 
the default threshold values since there are many more 
match candidates than for GM leading to more wrong 
match decisions. In this respect, Bloom filter match-
ing achieves a lower precision (about 0.91) compared to 
plaintext matching (0.97). We believe that the problem 
can be reduced by an optimized configuration, e.g. using 
additional fields for matching and longer bit vectors, but 
a more detailed analysis is beyond of this paper.

Impact of the proposed blocking methods
The newly introduced blocking methods lead to dramatic 
improvements in the runtime of the Mainzelliste soft-
ware by several orders of magnitude. Figure 6 illustrates 
the average insert time per record vs. the dataset size. In 
the original implementation without blocking (left part of 
Fig.  6) these excution times rise linearly with the num-
ber of records. This leads to an unacceptably long runt-
ime per record for dataset GL of up to 9.5 (7) seconds 
for plaintext (Bloom filter) matching and thus to execu-
tion times of more than one month for 300.000 records. 
Applying blocking (right part of Fig.  6 with different 
scaling of the y axis) leads to drastically improved execu-
tion times, e.g. by a factor of almost 500 using Record-
LSH on dataset GL . Moreover, runtimes are stable for 
RecordLSH on datasets of different size. FieldLSH and 
especially Soundex are more dependent on the data vol-
ume and experience an increase in runtimes with more 
records. This is because their number of blocks increases 
only modestly with more data so that the average size of 
blocks and thus the number of comparisons per record 
increase with larger data volumes. Still for dataset GL 
the execution time for blocking with FieldLSH (Soun-
dex) is a factor of 130 (65) faster than without blocking. 

The reduction ratios achieve even better values of up to 
99.98%, i.e. a factor 5000 in the number of comparisons.

These high runtime improvements are achieved with-
out reduction in linkage quality as can be seen from the 
F1 score values in Table 5. There are some relatively small 
differences between the two LSH variants. FieldLSH 
leads to larger blocks than RecordLSH thereby enabling 
a slightly better recall. On the other hand, the smaller 
blocks of RecordLSH favor a better precision, especially 
for the large dataset GL . RecordLSH is much faster than 
FieldLSH for the large dataset GL , but the runtimes are 
almost the same (actually slightly worse) for the smaller 
datasets. This is because the reported insert time are only 
partially determined by the match time but also include 
the time to store new records and their blocking keys into 
the database. The latter persistence step needs slightly 
more time for RecordLSH than for FieldLSH because of 
the higher number of LSH blocking keys (9 vs. 3).

Given the comparable linkage quality and runtimes 
for both FieldLSH and RecordLSH in most cases, we 
recommend FieldLSH as the default blocking strategy 
for the Mainzelliste except for very large datasets. This 
is because it is much easier to configure than Record-
LSH and a simple approach with a single blocking key 
per field proved to perform very well.

Conclusions
We presented an evaluation of the Mainzelliste soft-
ware for privacy-preserving record linkage with regard 
to its linkage quality and runtime performance. We 
also developed and analyzed an optimized version of 
the software for fast execution times. Our results using 
real-world and near-real datasets showed mostly excel-
lent linkage quality for both standard (plaintext) and 
privacy-preserving matching using field-level Bloom 
filters. However the previous implementation showed 
poor runtime performance and limited scalability 
as new records have to be compared with all previ-
ously known records. The new version of the software 
includes Soundex blocking for plaintext matching and 
two new variants of LSH blocking at the field level. 
These methods drastically improve the runtime without 
reducing linkage quality and can also be used by other 
PPRL tools as they are not specific to the Mainzelliste. 
Our improvements have been integrated into the offi-
cial source code repository of the Mainzelliste and will 
be made available with the upcoming release of version 
1.9.

Acknowledgements
Not applicable

Fig. 6 Comparison of average insertion times per patient on datasets 
GS , GM and GL without (left) and with (right) blocking



Page 12 of 12Rohde et al. J Transl Med           (2021) 19:33 

Authors’ contributions
FR, MF and ZS implemented the blocking methods in the Mainzelliste and 
contributed to the conception and design of the manuscript. FR conducted 
the evaluation. MF modified the dataset generation tool GeCo to generate 
more realistic data and contributed to the evaluation. ML is a main contributor 
to the Mainzelliste, contributed to the evaluation setup and to the conception 
and design of the manuscript. ER reviewed the manuscript and contributed to 
its conception and design.

Funding
This work was partially funded by the TMF e.V. and the German Federal Minis-
try of Education and Research within the project Competence Center for Scal-
able Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B). 
We acknowledge support from Leipzig University for Open Access Publishing.

Availability of data and materials
The datasets used during the evaluation are available in the Zenodo reposi-
tory, https://zenodo.org/record/3695363.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 Database Group, University of Leipzig, Leipzig, Germany. 2 Federated 
Information Systems, German Cancer Research Center, Heidelberg, Germany. 
3 Complex Data Processing in Medical Informatics, University Medical Center 
Mannheim, Mannheim, Germany. 

Received: 5 May 2020   Accepted: 14 December 2020

References
 1. Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving 

record linkage techniques. Inform Syst. 2013;38(6):946–69.
 2. Vatsalan D, Sehili Z, Christen P, Rahm E. Privacy-preserving record linkage 

for big data: Current approaches and research challenges. In: Handbook 
of Big Data Technologies, pp. 851–895. Springer, Cham 2017.

 3. Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using 
Bloom filters. BMC Medical Informatics and Decision Making. 2009;9:41.

 4. Lablans M, Borg A, Ückert F. A RESTful interface to pseudonymization ser-
vices in modern web applications. BMC Medical Informatics and Decision 
Making. 2015;15(2).

 5. Contiero P, Tittarelli A, Tagliabue G, Maghini A, Fabiano S, Crosignani 
P, Tessandori R. The epilink record linkage software: presentation and 
results of linkage test on cancer registry files. Methods Inform Med. 
2005;44(1):66–71.

 6. Lablans M, Schmidt EE, Ückert F. An architecture for translational cancer 
research as exemplified by the German Cancer Consortium. JCO Clin 
Cancer Inform. 2018;2:1–8. https ://doi.org/10.1200/CCI.17.00062 .

 7. Hoffmann W, Rienhoff O. Verfahrensbeschreibung und Datenschutz-
konzept des Zentralen Datenmanagements des Deutschen Zentrums für 
Herz-Kreislauf-Forschung. https ://dzhk.de/filea dmin/user_uploa d/Daten 
schut zkonz ept_des_DZHK.pdf Accessed 03.03.2020.

 8. Bernemann I, Kersting M, Prokein J, Hummel M, Klopp N, Illig T. Zen-
tralisierte Biobanken als Grundlage für die medizinische Forschung. 
Bundesgesundheitsblatt. 2016;59(3):336–43. https ://doi.org/10.1007/
s0010 3-015-2295-2.

 9. Skripcak T, Just U, Simon M, Büttner D, Lühr A, Baumann M, Krause 
M. Toward distributed conduction of large-scale studies in radiation 
therapy and oncology: Open-source system integration approach. IEEE 
J Biomed Health Inform. 2016;20(5):1397–403. https ://doi.org/10.1109/
JBHI.2015.24508 33.

 10. interActive Systems: secuTrial – Module. http://www.secut rial.com/modul 
e/ Accessed 03.03.2020

 11. Caumanns J. 100% Standards: CDA, FHIR, CTS-2 und EFA für elektronische 
Fragebögen. https ://cdn3.scriv ito.com/fokus /57a53 7e2ec 27cb7 b/0a3a0 
655dc c079f 58890 e39db dca47 81/E-HEALT H_Stand ards_PB_03-2015_v03.
pdf Accessed 03.03.2020.

 12. Muscholl M, Lablans M, Wagner TO, Ückert F. OSSE - open source 
registry software solution. Orphanet J Rare Dis. 2014;9(1):9. https ://doi.
org/10.1186/1750-1172-9-S1-O9.

 13. Storf H, Schaaf J, Kadioglu D, Göbel J, Wagner TOF, Ückert F. Register für 
seltene Erkrankungen. Bundesgesundheitsblatt. 2017;60(5):523–31. https 
://doi.org/10.1007/s0010 3-017-2536-7.

 14. Burkhart M, Wiese B. Deutsches Mukoviszidose-Register – Berichtsband 
2015, Bonn. https ://www.muko.info/filea dmin/user_uploa d/angeb ote/
quali taets manag ement /regis ter/beric htsba ende/beric htsba nd_2015.pdf 
Accessed 03.03.2020.

 15. chILD-EU research consortium: Ethics/Data Safety. http://www.klini kum.
uni-muenc hen.de/Child -EU/en/child -eu-regis ter/regis ter/ethic s_data_
safet y/index .html Accessed 03.03.2020

 16. Mainzelliste Community: Mainzelliste code repository. https ://bitbu cket.
org/medic alinf ormat ics/mainz ellis te Accessed 03.03.2020

 17. Christen P. Data Matching. Springer, Berlin, Heidelberg 2012. https ://doi.
org/10.1007/978-3-642-31164 -2

 18. Kuehni CE, Rueegg CS, Michel G, Rebholz CE, Strippoli M-PF, Niggli FK, 
Egger M, von der Weid NX. For the Swiss Paediatric Oncology Group 
(SPOG): Cohort profile: The swiss childhood cancer survivor study. Int J 
Epidemiol. 2012;41(6):1553–64.

 19. Gibberd AJ, Supramaniam R, Dillon A, Armstrong BK, O’Connell DL. Lung 
cancer treatment and mortality for aboriginal people in new south wales, 
australia: results from a population-based record linkage study and medi-
cal record audit. In: BMC Cancer 2016.

 20. Luo Q, Yu XQ, Smith DP, Goldsbury DE, Cooke-Yarborough C, Patel MI, 
O’Connell DL. Cancer-related hospitalisations and ‘unknown’ stage 
prostate cancer: a population-based record linkage study. BMJ Open. 
2017;7(1).

 21. Toth C, Durham E, Kantarcioglu M, Xue Y, Malin B. SOEMPI: A Secure Open 
Enterprise Master Patient Index Software Toolkit for Private Record Link-
age. AMIA Annual Symposium Proceedings. 2014;1105–14.

 22. Karapiperis D, Gkoulalas-Divanis A, Verykios VS. LSHDB : A Parallel and 
Distributed Engine for Record Linkage and Similarity Search. IEEE 16th 
International Conference on Data Mining Workshops, 2016;1336–1339. 
https ://doi.org/10.1109/ICDMW .2016.200

 23. Franke M, Sehili Z, Rahm E. PRIMAT. Proceedings of the VLDB Endowment. 
2019;12:1826–9. https ://doi.org/10.14778 /33520 63.33520 76.

 24. Franke M, Sehili Z, Rahm E. Parallel Privacy-Preserving Record Linkage 
using LSH-based blocking. In: Proceedings of the 3rd International 
Conference on Internet of Things, Big Data and Security (IoTBDS), pp. 
195–203 (2018)

 25. Bloom B. Space/Time Trade-offs in Hash Coding with Allowable Errors 
13(7), 422–426.

 26. Faldum A, Pommerening K. An optimal code for patient identifiers. Com-
put Methods Programs Biomed. 2005;79(1):81–8.

 27. Christen P. A survey of indexing techniques for scalable record linkage 
and deduplication. IEEE Trans Knowledge Data Engi. 2012;24(9):1537–55.

 28. Odell M, Russell R. The Soundex Coding System. US Patent. 1918.
 29. Gionis A, Indyk P, Motwani R, et al.: Similarity search in high dimensions 

via hashing. In: Proceedings of the 25th VLDB Conference, vol. 99, pp. 
518–529

 30. Durham EA. A framework for accurate, efficient private record linkage. 
PhD thesis, Vanderbilt University.

 31. Karapiperis D, Verykios VS. A fast and efficient Hamming LSH-based 
scheme for accurate linkage. Knowledge Inform Syst. 2016;49(3):861–84.

 32. Tran K-N, Vatsalan D, Christen P. Geco: an online personal data generator 
and corruptor. In: Proceedings of the 22nd ACM International Conference 
on Information and Knowledge Management, pp. 2473–2476 (2013). 
ACM.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1200/CCI.17.00062
https://dzhk.de/fileadmin/user_upload/Datenschutzkonzept_des_DZHK.pdf
https://dzhk.de/fileadmin/user_upload/Datenschutzkonzept_des_DZHK.pdf
https://doi.org/10.1007/s00103-015-2295-2
https://doi.org/10.1007/s00103-015-2295-2
https://doi.org/10.1109/JBHI.2015.2450833
https://doi.org/10.1109/JBHI.2015.2450833
http://www.secutrial.com/module/
http://www.secutrial.com/module/
https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://doi.org/10.1186/1750-1172-9-S1-O9
https://doi.org/10.1186/1750-1172-9-S1-O9
https://doi.org/10.1007/s00103-017-2536-7
https://doi.org/10.1007/s00103-017-2536-7
https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/berichtsband_2015.pdf
https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/berichtsband_2015.pdf
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
https://bitbucket.org/medicalinformatics/mainzelliste
https://bitbucket.org/medicalinformatics/mainzelliste
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1109/ICDMW.2016.200
https://doi.org/10.14778/3352063.3352076

	Optimization of the Mainzelliste software for fast privacy-preserving record linkage
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Mainzelliste
	Related work

	Objectives
	Methods
	Bloom filter encoding
	Record linkage in the mainzelliste
	Standard blocking
	Phonetic blocking
	LSH-based blocking
	LSH-based blocking on FBFs
	Field-level LSH
	Record-level LSH
	Treatment of compound fields
	Implementation as database-side blocking

	Evaluation
	Datasets
	Bloom filter encoding
	Evaluation metrics
	Blocking parameters
	Matching parameters
	Benchmark setup


	Results and discussion
	Comparison of plaintext and encoded matching without blocking
	Impact of the proposed blocking methods

	Conclusions
	Acknowledgements
	References




