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Abstract
Privacy-preserving record linkage (PPRL) is the process aimed at identifying records that represent the same real-world entity
across different data sources while guaranteeing the privacy of sensitive information about these entities. A popular PPRL
method is to encode sensitive plain-text data into Bloom filters (BFs), bit vectors that enable the efficient calculation of
similarities between records that is required for PPRL. However, BF encoding cannot completely prevent the re-identification
of plain-text values because sets of BFs can contain bit patterns that can be mapped to plain-text values using cryptanalysis
attacks. Various hardening techniques have therefore been proposed that modify the bit patterns in BFs with the aim to prevent
such attacks. However, it has been shown that even hardened BFs can still be vulnerable to attacks. To avoid any such attacks,
we propose a novel encoding technique for PPRL based on autoencoders that transforms BFs into vectors of real numbers. To
achieve a high comparison quality of the generated numerical vectors, we propose a method that guarantees the comparability
of encodings generated by the different data owners. Experiments on real-world data sets show that our technique achieves
high linkage quality and prevents known cryptanalysis attacks on BF encoding.

Keywords Data linkage · Bloom filters · Reidentification · Sensitive data · Personal data · Privacy attack

1 Introduction

It is generally recognised that linked individual-level
databases facilitate data analysis that is not feasible on a
single database [3]. Therefore, in domains ranging from
business analytics and national security to health and social
science research, increasingly records about individuals need
to be linked across databases that are often held by different
organisations. Record linkage has been an active research
area since the 1950s [27].

The lack of common unique entity identifiers (such as
social security numbers or patient identifiers) across the
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databases to be linked means that linking records is com-
monly based on available quasi-identifiers (QIDs), such as
the names, addresses, and dates of birth of the individuals
whose records are to be linked [7]. Given these are per-
sonally identifiable information [26], concerns about privacy
and confidentiality limit or even prevent such personal data
from being used for the linkage of records across databases
[16,40].

Techniques generally known as privacy-preserving record
linkage (PPRL) have been developed in the past two decades
[16,43] with the aim of tackling the challenge of linking
sensitive datawithout revealing any private or sensitive infor-
mation about the entities being linked. The general approach
of PPRL techniques is to encode or encrypt sensitive identify-
ing information and conduct the linkage using these encoded
or encrypted values. At the end of a PPRL process, only the
organisations being involved learn which of their records are
matches (based on some decision model) with records from
the other database(s), but no organisation is able to learn any
sensitive information about records in the database(s) held by
other organisations. Furthermore, external adversaries must
be denied the discovery of anymeaningful information about
the sensitive data [7].
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A diverse range of PPRL techniques has been devel-
oped [42], including techniques based on secure multiparty
computation (SMC), secure hash encoding, and encoding of
values into bit vectors. While SMC techniques are accurate
and provably secure, because PPRL generally requires the
calculation of similarities between encoded values (due to
errors and variations that can occur in QID values [9]) these
techniques often have high computational costs [16]. PPRL
techniques based on some form of hashing or embedding
of sensitive values, known as perturbation-based techniques
[43], on the other hand provide adequate privacy, linkage
quality, and scalability to link large sensitive databases.
However, perturbation-based techniques commonly lack the
security proofs provided by SMC techniques [7].

As we discuss further in Sect. 3, one popular perturba-
tion technique used in PPRL is based on BF encoding [4],
where elements of a set (such as character q-grams extracted
from QID values) are hashed into bit vectors [32]. BF-based
PPRL is now being employed in practical linkage applica-
tions, mainly in the health domain [5,29,31].

The general PPRL workflow follows a three-party proto-
col [7], where the (DOs) generate BFs based on encoding the
QID values of records, and send these BFs to a third party,
called the linkage unit (LU). The LU then compares pairs
of BFs to calculate their similarity and classifies pairs into
matches (two BFs assumed to represent the same entity) and
non-matches (two BFs assumed to represent two different
entities).

While BF encoding facilitates scalable and accurate link-
age of large databases, its drawback is the lack of provable
security. As a result, various attacks on BF-based PPRL
encoding techniques have been developed [47]. These attacks
mainly exploit the bit patterns and their frequencies in a set
of BFs [6,8,10,20–22,25,28], or the similarities between BFs
[11,44].

To overcome such attacks, different hardening techniques
have been proposed [30,34,35,39]. These techniques modify
the bit patterns of BFs with the aim of removing the asso-
ciation of frequent patterns or the positions of 1 bits with
encoded values (such as character q-grams) that would allow
the re-identification of encoded values [47]. Other methods
add fake records or BFs to perturb frequency patterns [18].
However, due to the addition of noise or modification of bit
patterns, existing hardening techniques have shown to neg-
atively influence the final linkage quality by increasing the
number of false matches (false positives) and/or reducing the
number of true matches (false negatives) [14].

In this paper,we propose a novel encoding technique using
autoencoder networks [1] to transform bit patterns in BFs
that encode sensitive values into numerical vectors. For each
DO, our technique independently trains an autoencoder net-
work using the DO’s BFs. To guarantee comparability of
the encodings generated from the different autoencoders, we

Fig. 1 Three-party protocol for PPRL based on BF encoding and a
hardening technique applied

train a mapping function that transforms the encodings from
one DO into the latent space of the second DO. This mapping
allows the LU to accurately calculate the similarities between
the encodings from the different DOs.

We make the following contributions: (1) We propose a
novel PPRL encoding technique which applies autoencoders
on BFs to improve their privacy by preventing attacks on fre-
quent bit patterns in BFs. (2) Our technique generates linkage
results with high quality by using the calculated encodings
in a numerical vector space in combination with a mapping
function that allows the LU to accurately compare encodings
from multiple DOs. (3) We evaluate our proposed technique
using real-world data sets considering different parameter
settings, and we compare our method with existing harden-
ing techniques regarding linkage quality.

2 Related work

Different methods have been proposed to attack BFs with the
goal of re-identifying the sensitive values encoded in a set
of BFs [47]. Kuzu et al. [21] developed a method that maps
BFs to first names from theNorthCarolinaVoter Registration
database based on their frequencies and further constraints
regarding common q-grams and common BFs. Christen et
al. [6] proposed a frequent pattern mining-based approach
that identifies frequent bit patterns in BFs and aligns them
to q-grams considering the frequency distribution derived
from external resources such as telephone books. In contrast
to other attacks, this attack can also be applied on BFs that
encode more than one attribute.

Different from previous attacks is a graph-based attack
proposed by Vidanage et al. [44] that uses a similarity graph
built from BFs that is matched to a similarity graph built
from plain-text values. The idea is to generate for each BF
and each plain-text value a set of features that represent their
neighbourhood in the corresponding similarity graph, and
then perform a bipartitematching between the feature vectors
of BFs and the feature vectors of plain-text records. However,
for accurate matching of these graphs, a mapping between
BF and plain-text value similarities is required [44].
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Fig. 2 BF encoding of the word ‘bloom’ converted into the set of 2-
grams (bigrams) {‘bl’, ‘lo’, ‘oo’, ‘om’} and mapped into a bit vector of
length l = 24 using k = 3 hash functions which, for example, map ‘bl’
to bit positions 1, 5, and 16

To avoid the identification of associations between bit pat-
terns and plain-text values, hardening techniques manipulate
BFs by adding noise or modifying the encoding process of
BFs with respect to the frequency distribution of q-grams.
Ranbaduge and Schnell [30] provided a comprehensive
overview of different hardening techniques including XOR
folding, BLIP, Rule 90,WXOR, and Resampling. XOR fold-
ing [34] divides a BF into two halves and applies the bit-wise
XOR operation on the resulting shorter half-length BFs.
BLIP [34,39] uses a differential privacy mechanism to ran-
domly select a set of bit positions in a BF and flipping them (0
to 1 or vice versa) depending on a flip probability f . Rule 90
[35] generates a hardened BF by XORing the bit at position
p with the bits at position (p − 1) mod l and (p + 1) mod l,
where l is the length of a BF. The modulo function ensures
that each position in the hardened BF is based on three bits.

The WXOR hardening method [30] uses a window-based
XOR approach where two windows, W1 and W2, of width
w > 1 slide over a BF of length l. The starting position p
of W1 slides from 0 to l − w, while W2 is positioned at
(p + 1) mod l. For generating the window at position p, the
bit patterns of the two windows are XORed. The Resample
method [30] determines for each position p of the BF to
be hardened the XOR operation of two randomly selected
positions, i and j , ranging from 0 to l −1, with replacement.

All these discussed hardening techniques lower the risk
of a successful attack at the expense of linkage quality [14].
In contrast, we propose a novel encoding technique based
on autoencoders that offers a complete masking of any bit
patterns while still providing linkage quality comparable to
the quality of unhardenedBFs, aswe experimentally evaluate
in Sect. 6.

3 Background

We now describe the PPRL process, BF encoding, and
autoencoders, which form the basis of our approach.

The PPRL process Figure 1 shows the three-party PPRL
protocol [7], where a LU receives QID values from two or
more DOs that have been encoded, for example, into BFs
and (optionally) further hardened. The LU compares these

encodings and classifies the corresponding pairs of records
as matches or non-matches. The record identifier (ID) pairs
of matched encodings are returned to the DOs as result of the
linkage.

The DOs encode their own QID values independently
according to the agreed encodingmethod and parameters that
define which QIDs are used and how they are to be encoded.
For BF encoding [32], this includes the number of hash func-
tions k and the length of BFs l to be used, and so on [7]. The
DOs potentially also apply an agreed hardening technique to
transform the generated BFs into hardened encodings [30].

Employing a LU avoids the direct exchange of data
between the DOs which would increase the risk of reveal-
ing sensitive information in the encoded QID values. This is
because BFs are easy to decode for DOs that have knowledge
about the encoding parameters [25].

Bloom filter encoding BFs are bit vectors of length l with
an associated set of k independent hash functions that map
the elements of a set to positions in the bit vector [4]. The
idea of using aBF is to efficiently determinewhether a certain
element in a set has been encoded in a BF or not, based on
the bit patterns generated by the hash functions.

In the context of PPRL, BFs are generally based on the
encoding of textual QID values, such as the names and
addresses of people, that are converted into character q-gram
sets [32]. Such sets are then mapped to positions in a BF by
using k hash functions, hi (with 0 ≤ i < k), as shown in
Fig. 2. Methods to encode numerical values (such as ages or
medical data) [19,41] and categorical codes (such as disease
or occupation codes) [36] into BFs have also been developed.

Autoencoders Our approach is based on autoencoders to
further encode BFs to prevent cryptanalysis attacks. Autoen-
coders [1] are neural networks (NNs) that can generate
lower-dimensional representations with a small information
loss for high-dimensional input data. In our case, we use the
reduction of dimensions and the transformation of BFs from
a binary l-dimensional space into a continuous space as an
advantage to hide potentially vulnerable bit patterns in BFs.

Autoencoders are generally composed of two connected
NNs: an encoder f that maps data into a low-dimensional
space (of dimension d, with d < l), and a decoder g, that
maps values from the low-dimensional space back into the
original space. The two NNs are trained in combination,
and aim to fit the identity function on the data. Formally,
an encoder f and a decoder g are defined by the following
functions, where w1 and w2 are trainable weights [1]:

fw1 : [0, 1]l −→ R
d gw2 : Rd −→ [0, 1]l

An autoencoder A is then represented by the concatenation
of both functions utilising the trained NNs: A = g ◦ f . In
contrast to other dimensionality reduction methods, such as
principal component analysis or singular value decomposi-
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Fig. 3 Extended three-party PPRL protocol using autoencoders in
chronological order (left to right) and separated by the different par-
ties (the horizontal layers). The black-lined boxes represent the main

steps of the process, and the white boxes show the specific tasks for
generating the models (yellow) and the data (blue) required

tion [13], autoencoders can provide nonlinear transformation
functions for generating low-dimensional encodings. The
attained encoding function is sensitive towards changes of
the initial weights which are randomly drawn, and therefore
is a non-deterministic function. Both of these properties suit
our approach, because (1) the space of possible BFs of length
l, B = {0, 1}l , is not isomorphic to a low-dimensional linear
space and therefore requires a nonlinear mapping for good
low-dimensional representation; and (2) a deterministicmap-
pingwould be easier to attack compared to non-deterministic
mapping because the encoding dimensions might carry some
specific semantics.

4 PPRL using autoencoders

To decrease the risk of attacks on BFs [47], we develop a
novel PPRL technique based on autoencoders [1]. One main
requirement for any encoding to be used for PPRL is to pre-
serve similarities [7]. To achieve this goal, we have to select
the autoencoder layout such that information loss is minimal,
and apply data transformation steps to normalise the output
of the encoder. The first requirement ensures that most of
the information being encoded in BFs is preserved, while the
second requirement homogenises the similarities across the
different dimensions of the encodings. We now present an
extended PPRL protocol and describe its essential parts in
detail, as also outlined in Fig. 3.

Bloom filter hardening with autoencoders In addition to
the BF encoding step being the same as in the basic protocol
from Fig. 1, the extended protocol consists of an encoding,
a mapping, and a linking step.

In the encoding step, eachDOtrains their ownautoencoder
model as shown in Fig. 3. Each layer is fully connected with
the next layer since we cannot make any assumptions about
the order of bits in BFs (as shown in Fig. 2). As activation
function, we use the below function (which we call leaky-
capped ReLU), where x is the sum of the input values of a
neuronmultiplied by the trainable weights, andα is a leakage
parameter:

SRα(x) =

⎧
⎪⎨

⎪⎩

α · x x < 0

x 0 ≤ x < 1

1 + α(x − 1) 1 ≤ x

(1)

The use of this activation function is motivated by the fact
that the correct output values of the autoencoder can only be
0 or 1, so any values outside the interval [0, 1] are handled
by mapping them to the boundary of the interval, which is
attained by choosing α = 0. This would, however, result in
a partially constant activation function for values below 0 or
larger than 1, and thus, the gradient would be zero for those
values, which is undesirable for training.

For each BF of DOs A and B, the resulting encoders f A
and fB compute the corresponding encoding. To ensure that
each dimension of the encodings has the same scale, we
normalise the generated encodings using the Mahalanobis
transformation [24], as illustrated in Algorithm 1. To trans-
form the encodings Ei of a DO A or B by Mahalanobis, the
covariance matrixC of Ei and the inverse square root matrix
T ofC are computed. The encodings Ei are then transformed
by computing the dot product between Ei and T .

Due to different autoencoders resulting from different
training data held by the DOs, the generated encodings of the
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Algorithm 1 Mahalanobis transformation applied on the encoded records Ei from data owner i ∈ {A, B}.
1: function mahalanobis(Ei )
2: Ei ← Ei - COLUMN_MEAN(Ei ) � Row-wise subtraction of column means
3: C ← 1/(n − 1) · ET

i · Ei � Calculate covariance matrix, where n is the number of encodings in Ei
4: T ← inverse_matrix_root(C) � Calculate the square root of the inverse of the covariance matrix
5: return Ei · T
6: end function

7: function inverse_matrix_root(M)
8: Λ, B ← EIGEN(M) � Compute the list of eigenvalues Λ and the corresponding list of eigenvectors B of M
9: S ← DIAG(1/

√
λ f orλ in Λ) � Compute the diagonal matrix using the eigenvalues

10: T ← B · S · BT � Determine the inverse square root matrix
11: return T
12: end function

same or similar BFs are potentially quite dissimilar, since the
internal representation of the learned function is highly sen-
sitive to the training data. Therefore, a direct comparison of
encodings does not lead to meaningful results. To guarantee
comparability, in the mapping step the LU trains a function
m enabling the transformation of encodings EB from DO B
to the vector space of DO A, as we describe in detail below.

The normalised encoded BFs, EA and EB , from both DOs
A and B are sent to the LU where the encodings EB are
transformed using the trained functionm. In the linking step,
the LU calculates the similarities between the transformed
encodings EB and EA being used to classify record pairs into
matches and non-matches according to a similarity thresh-
old δ. Due to the high computational effort for evaluating
the full Cartesian product between the encodings EA and
EB by the LU, we use an approximate nearest neighbour
method [17] to reduce the number of encoded record pairs to
be compared. As similarity measure, we use the Cosine sim-
ilarity and employ a threshold for classifying record pairs as
matches and non-matches. At the end, the classified matches
are sent as the result of the linkage process from the LU back
to the DOs, where each match consists of a pair of record
identifiers [7].

Comparing separately generated encodings The crucial
issue of separated encoder models is that the resulting encod-
ings are not directly comparable. Therefore, the LU trains a
mapping functionm to map an encoding e ∈ EB to the space
of EA. Training such amapping function requires knowledge
of a large number of pairs of encodings, generated by the two
encoder networks, for the same BF. Due to privacy issues, it
is, however, impracticable to generate such a set of BFs that
can be shared between the DOs and the LU.

Therefore, we propose a different method for generating
training data, exploiting the fact that decoders can generate
records that resemble actual data, when fed with random
noise of the same distribution as the actual encodings.Having
two autoencoders AA = gA ◦ f A and AB = gB ◦ fB (for
two DOs A and B), the relevant mapping is given by m :
fB(b) 	→ f A(b) for any BF b. This mapping can formally
be approximated by m = f A ◦ gB , where f A and gB are

known. Due to the sensitivity regarding the privacy aspects
we will discuss in Sect. 5, both the decoder function gB of
DO B and the encoder function f A of DO A are learnt by
the DOs independently and not shared with any other party.
To determine a model for the function m, we generate pairs
(x,m(x)),where x ∈ R

d is a randompoint from the encoding
space. To prevent having to send gB and f A, as well as the
original BFs to the LU, we use several steps as we describe
next. This generation of training data is shown in theMapping
box in Fig. 3:

1. The LU generates a list of random vectors R from the
encoding space R

d . As the Mahalanobis normalisation
from Algorithm 1 is applied to encodings, and those are
approximately normally distributed based on the Central
Limit Theorem [23], these vectors can be drawn from a
d-dimensional standard normal distribution, where d is
the dimension of the encoded vectors generated by the
encoders. The generated random vectors R are sent from
the LU to DO B.

2. DO B applies the inverse Mahalanobis transformation
with the parameters of its normalisation on the received
random data from the LU and decodes the normalised
random vectors R with its decoder gB .

3. The resulting BF-like bit vectors are sent to DO A that
encodes them with its encoder f A and normalises the
resulting vectors by applying the Mahalanobis transfor-
mation (using the same parameters as for normalising its
real encodings). DO A then sends these vectors back to
the LU. The resulting set of encodings R′ represents the
output of the concatenation of the decoder gB and the
encoder f A.

The randomly generated encodings R and the computed
encodings R′ are utilised by theLU to train aNN representing
the mapping function m to map DO B’s encoded data to DO
A’s encoding space.

While in general the LU should have minimal informa-
tion about the encoding, having some knowledge about the
complexity of the autoencoders used by the DOs does not
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(a) I(he, hn) = 0.971 (b) I(he, hn) = 0.928

Fig. 4 Example of histograms of two dimensions resulting in different
histogram intersections for a set of 50,000 encodings he (blue) and the
corresponding normal distribution hn (red) using b = 634 bins

enable it to decode the actual encodings EA and EB . It will,
however, be beneficial for choosing a suitable network lay-
out, as this network should replicate the concatenation of
B’s decoder and A’s encoder. Choosing the layout too small
would result in a low accuracy of the mapping whereas an
overly complex layout could lead to overfitting [2]. There-
fore, we choose a configuration to simulate the concatenation
of a decoder and an encoder, such that the first half replicates
the layer dimensions of the decoder, while the second half
replicates the layer dimensions of the encoder. We thereby
obtain a NN with input and output dimensions being equal
to the encoding dimension d.

5 Discussion of privacy aspects

The goal of applying autoencoders on sensitive data encoded
into BFs is to increase the robustness of these encodings
against attacks. We claim that this encoding method can
decrease the vulnerability of BF encoding by improving the
following privacy aspects:

1. The majority of existing attacks on BFs exploit informa-
tion about the frequencies of bit patterns in sets of BFs
and the corresponding q-gram frequencies [47].
Due to the transformation of BFs from {0, 1}l into encod-
ings E inRd , existing attacks on bit patterns [8,46] are not
applicable. This is because pattern analysis methods such
as frequent pattern mining cannot be used to determine
frequent 1-bit patterns from numerical vectors in Rd .
No existing attacks can determine a correlation between
the frequency of q-grams and the frequency of a certain
pattern of numerical values.

2. The dimensionality reduction from l to d (with d < l)
results in information loss which potentially is relevant
for an attack. This loss therefore decreases the accuracy
of a possible attack on the encodings generated by the
autoencoders.

The transformation of BFs into numerical vectors might,
however, result in new patterns in the data that were not avail-
able previously. We therefore need to assess the distribution
of the encodings in order to establish their resilience against
privacy attacks.

Bloom filter reconstructionWefirst consider strategies for
reconstructing BFs based on the generated encodings and
information about the trained autoencoder models.

The task of the decoders, gA and gB , is to reconstruct
BFs. Therefore, the DOs have to guarantee that these models
are secure and they are not shared. Moreover, the encoders,
f A and fB , allow the generation of training data that can be
used to train a NN that determines the inverse mapping of
the encoder and therefore replicates the decoder. Therefore,
the encoders must also be kept private by the DOs.

Similar to the autoencoders, publication of the mapping
functionm by the LU also imposes a security risk, because it
would allowDOA to transform the encoding fromDOB into
its vector space and decode the results, while DOB could run
a similar attack by training an inverse mapping. After that,
DO A could use its decoder to approximately reconstruct the
BFs of DO B, from which it can potentially identify q-grams
in the QIDs held by DO B.

Considering this potential attack, the LU would have to
collude with one DO by releasing the private information
about the relation between the different encodings in the form
of themapping functionm. Furthermore, the adversarywould
have to gain access to the DO’s encoded data set Ei , either
directly or via the LU.

In addition to the publication of the function m, a further
risk is a decomposition of m so that the LU can generate
a function gLU that can decode encodings EB from DO B.
Due to the loss in the training process of m, we assume that
the component ofm approximating gB will results in inaccu-
rately decoded BFs. We plan to investigate possible attacks
based on the decomposition of m by the LU as future work.

DistributionanalysisSimilarly to thepattern-based attacks
on BFs [6,46], we assume that our autoencoder-based encod-
ing might be vulnerable to attacks if it is possible for an
adversary to extract specific characteristics from similarities
in the encodings, for example by clustering groups of vectors
of encodings. The resulting clusters might contain informa-
tion about encodings, such as common q-gram combinations,
which could be assigned to characteristics of plain-text val-
ues (like q-grams) using frequency information extracted
from plain-text data such as telephone directories or voter
databases [47].

To analyse the possible effectiveness of such cluster-based
attacks, we consider the distribution of encodings in the gen-
erated numerical vector space. We assume that an arbitrary
clustering approach does not result in accurate andwell sepa-
rated clusters if the encodings generated by the autoencoders
have a distribution that is close to a multidimensional nor-
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mal distribution (a normal distribution in all d dimensions).
We therefore evaluate how closely the generated encodings
approximate such a normal distribution as an indicator for
their vulnerability with regard to such a clustering attack.

To quantify the similarity of the distribution of a set of
autoencoder encodings compared to a normal distribution
N (0, 1), we use the histogram intersectionmeasure [38,45]1.
For each of the d dimensions, we generate a histogram he
of the encodings using b bins of equal width and similarly
generate a histogram hn for a normal distribution with the
same width and the same number of bins and data points as
for the number of encodings.We automatically determine the
width and the number of bins using the approach by Freed-
man and Diaconis [15]. We show examples of these normal
distributions for two selected dimensions in Fig. 4.

We calculate the histogram intersection I (he, hn) as fol-
lows [38], where he[i] and hn[i] represent the number of
data points in bucket i (with 1 ≤ i ≤ b):

I (he, hn) =
b∑

i=1

min(he[i], hn[i]). (2)

To obtain a value between 0 and 1,we normalise I (he, hn)

by the number of records, and to obtain a single privacy eval-
uation measure, we calculate the average of the I (he, hn)

over all d dimensions. The closer the resulting value is to
1.0, the more similar the distribution of encodings is to a
normal distribution.

Vulnerability to similarity attacksAttacks on PPRL based
on similarity graphs [11,44] compare a graph generated
when comparing plain-text values with a graph generated
comparing encoded values, where the aim is to determine
correspondences between plain-text values and encoded val-
ues based on node features. The success of a similarity
graph attack depends on the comparability of both similar-
ity graphs, and therefore, any PPRL method that calculates
accurate similarities between encodings can be vulnerable
to a similarity attack [47]. Our autoencoder-based PPRL
approach also calculates similarities; therefore, we cannot
prevent similarity attacks completely. Nevertheless, due to
the use of encodings in Rd , a mapping between the different
similarity spaces is not trivially derivable. We plan to inves-
tigate how to prevent similarity attacks on our approach in
the future.

1 Because we do not have probability distributions we cannot use
Kullback–Leibler divergence or similar measures, while tests for nor-
mal distributions such as the Shapiro–Wilk test [37] are known not to
work well on large data sets.

Table 1 Used QID attributes and the average number of q-grams per
record from theNCVR (N) andOhio (O) voter data sets used to generate
BFs

Data Set Attributes Avr. q-gram

N-A4 First name, Last name, Middle name,Year
of birth

14.8

N-A5 N-A4 ∪ {City} 21.4

O-A4 First name, Last name, Middle name,
Birth date

14.3

O-A5 O-A4 ∪ {City} 21.4

6 Experimental evaluation

In this section, we evaluate our proposed autoencoder-based
technique using real-word data sets. We first compare the
linkage results of our technique considering a range of
autoencoder layouts. We then compare our technique with
a standard BF-based PPRL method as baseline, as well as
existing hardening techniques [30].

Data sets To evaluate our proposed encoding technique,
we use voter registration databases from the US states of
North Carolina (N)2 and the Ohio (O)3 as used by Franke
et al. [14]. We use the same subsets obtained by selecting
records from two different snapshots with a certain overlap
in matching records and different ratios of variations and
errors per record. The North Carolina subset consists of two
data sources of 50,000 sampled records each where 10,000
record pairs are matching, while the Ohio voter files consist
of two data sources containing 120,000 records and 80,000
records, respectively, with 40,000 matching record pairs.

We consider two sets, A4 and A5, of different QID
attribute combinations from which we generate the q-gram
sets to be encoded, as shown in Table 1. We use q = 2
(bigrams) and employ k = 30 hash functions and BFs of
length l = 1024 using Random Hashing [33] for both data
sets, where we generate one BF per record.

Experimental setup To evaluate the BF baseline using the
original BFs and existing hardening techniques, we use the
Dice coefficient to calculate similarities between BFs [7]
and the cosine similarity for the autoencoder encodings. To
compare the linkage quality of the different methods, we cal-
culate the area under the precision–recall curve (AUC-PR)
[12] with respect to different similarity thresholds δ to clas-
sify matches, ranging from 0.4 to 1 in intervals of 0.02. To
efficiently compare encodings and BF, we use the Annoy
library4 for nearest neighbour search. To facilitate repeata-
bility, we make our code and data sets available at https://
github.com/vicolinho/pprl_autoencoder.

2 https://www.ncsbe.gov/.
3 https://www.ohiosos.gov/.
4 https://github.com/spotify/annoy.
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(a) (b) (c) (d)

Fig. 5 Precision–recall curves showing results for different autoencoder models with different numbers of dimensions (64, 128, and 256) and their
complexity (normal versus shallow) for the four data sets

For our proposed method, we evaluate different autoen-
coder layouts. In order to generate the training data for the
mapping function m, we sampled 200,000 d-dimensional
standard normal distributed vectors (where d is the encod-
ing dimension). The required training pairs (x,m(x)), where
x,m(x) ∈ R

d , are then generated in the mapping step
described in Sect. 4.

Autoencoder layouts andparametersFor the autoencoders
used in our encoding technique, we evaluated different lay-
outs to investigate the resulting linkage quality. Specifically,
we considered different dimensions of the encoding layer
(d = 64, 128, and 256) and two different depths for the
network where the shallow network consists of three lay-
ers (input, encoding, and output) while the other network
includes an additional hidden layer of 512 neurons, both in
the encoder and in decoder networks. We set the value of the
customised activation function in Eq. (1) to α = 0.2 for all
layouts as this provided good results in setup experiments.

Figure 5 shows the linkage quality for the four data sets.
We observe that an increase in the dimension leads to an
improvement of quality. For instance, the AUC-PR values
increase by up to 0.1 for N-A5 and by around 0.2 for O-A5
when using 256 rather than 128 dimensions for the shallow
layout autoencoder model.

The network complexity influences the quality depending
on the number of dimensions. The models with an additional
layer perform better up to a certain dimension, namely 128
for N-A5 and O-A5. With more dimensions, the shallow
models performed better than the normal ones, as can be
seen from the PR curves of the models with 256 dimensions
(where the shallow model performs better). We hypothesise
that autoencoders with an extra layer can represent complex
patterns more effectively than shallow models up to a certain
dimensionality. However, the additional layer seems to lead
to overfitting for higher-dimensional models because linkage
quality decreases.

Comparison with hardening methods We now compare
our proposed method with the hardening techniques [30]
XOR, WXOR, BLIP, Rule-90 (R90), and Resample (RES),

as we described in Sect. 2. In Table 2, we show the AUC-PR
results for the different data sets and hardening techniques.

To investigate the impact of different BF encodings, we
use different numbers of hash functions, k. The results
we obtain indicate that our autoencoder-based technique
achieves results comparable to existing hardening tech-
niques. Our approach outperforms the BF-based approaches
for the larger data sets O-A4 and O-A5 when using the shal-
low networks with 256 dimensions.

We explain these improvements in linkage quality in that
the autoencoder learns to distinguish differences in BFs
resulting from rare q-gram variations compared to com-
mon variations. Rare variations are usually a non-frequently
occurring character sequence, and therefore, the correspond-
ing 1-bit patterns do occur rare in BFs. Due to their rareness,
their impact on the loss function is negligible if these 1-bit
patterns are ignored during the training of autoencoders.

Moreover, the results show the robustness of the results
regarding linkage quality when we consider different fill
ratios, collision ratios, and number of hash functions. This
robustness can be seen by similar results obtained with a dif-
ference below 0.07 AUC-PR for 256 dimensions considering
different attribute combinations being encoded. In contrast to
the autoencoder method, the results of using BF-based meth-
ods show drops of up to 0.25 AUC-PR between the O-A4 and
O-A5 data sets for k = 20.

We conclude that BF-based methods are more sensitive
with regard to the number of hash functions and the ratio
of collisions in BFs. In general, a smaller number of hash
functions leads to a decreasing linkage quality, while a higher
average collision ratio per record results in a lower AUC-PR,
as given inTable 2.The sensitivity of the encodingparameters
is also shown for the data set N4, as the BF-based methods
lead to a higher AUC-PR by 0.01 compared to our method
only for the configuration k=30 and a certain fill rate.

Privacy analysis We now discuss potential privacy risks
based on the analysis of the two data sets. Similarly to pattern
mining attacks [6,46] the encodings are vulnerable if they are
clearly separable and the separated encodings can bemapped

123



International Journal of Data Science and Analytics

Table 2 AUC of precision-recall curves for different hardening tech-
niques and autoencoder layouts considering 128 and 256 dimensions,
as well as the shallow (s) and normal models for the NCVR and Ohio

data set with different attribute combinations and different numbers of
hash functions k. The best results are highlighted in bold font

Data Autoencoder based Existing hardening techniques
k set Avr. 1-bit Avr. coll.% 128s 128 256s 256 None XOR WXOR R90 BLIP RES

30 N-A4 358.5 23.9 0.82 0.78 0.87 0.85 0.88 0.88 0.88 0.88 0.88 0.86

N-A5 475.4 35.3 0.71 0.72 0.81 0.77 0.73 0.72 0.72 0.73 0.72 0.71

O-A4 347.0 23.4 0.85 0.84 0.92 0.91 0.88 0.88 0.88 0.88 0.87 0.84

O-A5 490.4 31.2 0.73 0.79 0.93 0.91 0.66 0.67 0.66 0.66 0.65 0.64

20 N-A4 256.6 15.3 0.80 0.82 0.85 0.85 0.73 0.72 0.73 0.72 0.72 0.70

N-A5 349.7 22.6 0.73 0.74 0.81 0.77 0.75 0.75 0.75 0.75 0.75 0.72

O-A4 248.0 15.2 0.73 0.76 0.89 0.89 0.88 0.88 0.88 0.88 0.87 0.84

O-A5 347.1 23.6 0.66 0.68 0.89 0.88 0.63 0.64 0.63 0.63 0.63 0.61

Table 3 Average histogram intersection of encodings for the four data
sets compared to a multidimensional normal distribution, as discussed
in Sect. 5

Data Set Layout
64s 64 128s 128 256s 256

N-A4 0.959 0.959 0.963 0.949 0.964 0.955

N-A5 0.961 0.969 0.964 0.958 0.966 0.961

O-A4 0.950 0.924 0.963 0.946 0.968 0.956

O-A5 0.960 0.977 0.968 0.966 0.973 0.964

to a corresponding clear text value or q-gram cluster [47]. As
an indicator how well a data set is separable, we proposed
a method for measuring how similar our encodings are to a
multidimensional normal distribution.

Therefore, we quantify the similarity by analysing the
distribution of the data set using the distribution analysis
described in Sect. 5. The average histogram intersection
regarding all dimensions is shown in Table 3.

We observe that the average histogram intersection is
higher for shallow models compared to models with an extra
hidden layer except for d = 64 using 5 attributes. More-
over, an increasing number of dimensions leads to higher
histogram intersection results considering the shallow net-
works.

7 Conclusion

Privacy-preserving record linkage is an essential process for
integrating sensitive data [7], where Bloomfilter (BF) encod-
ing is a popular technique used to efficiently mask plain-text
values and facilitate similarity calculations between encoded
values. However, research has shown the vulnerability of BF
encoding with regard to various attacks [47]. This has led
to the development of multiple hardening techniques which

manipulateBFs such that the likelihood of associating a given
BFs or its bit pattern to a plain-text value, and therefore any
possible re-identification, decreases [14,30].

In this paper, we have proposed a novel encoding tech-
nique based on autoencoders [1] which transforms BFs into
numerical vectors. These vectors prevent existing attacks that
have shown to be successful on BFs. Moreover, compared to
other hardening techniques for BFs, our technique generates
high-quality linkage results by training a mapping function
which transforms the encodings of one DO into the vector
space of the other DO. This transformation guarantees the
comparability of numerical vectors.We showed that our tech-
nique can outperform existing hardening techniques for BF
both in terms of privacy and linkage quality.

In future work, we plan to analyse different autoencoder
architectures for the encoding process and investigate the
vulnerability of our method to clustering and graph-based
attacks in more detail [11]. Clustering attacks are similar to
pattern mining attacks [46] on BFs in that they exploit the
similarities between the frequencies of patterns in plain-text
and encoded values. Graph-based attacks aim at aligning the
nodes in two similarity graphs generated from a plain-text
and an encoded data set, respectively, based on attribute and
neighbourhood similarities [44].
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