
Concurrency and Coherency Control in

Database Sharing Systems

Erhard Rahm

University of Kaiserslautern, Dept. of Computer Science

Technical Report ZRI 3/91, Dec. 1991,

Revised: March 1993

Abstract:

Database sharing refers to a general architecture for distributed transaction and da-

tabase processing. The nodes of a database sharing system are locally coupled via

a high-speed interconnect and share the common database at the disk level ("shared

disk"). We discuss system functions requiring new and coordinated solutions for da-

tabase sharing. In particular, the most relevant alternatives for concurrency and co-

herency control are classified and surveyed. We consider the techniques used in ex-

isting database sharing systems as well as algorithms proposed in the literature. Fur-

thermore, we summarize previous performance studies on database sharing. Related

concurrency and coherency control schemes for workstation/server database sys-

tems, network file systems, and distributed shared memory systems are also dis-

cussed.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; C.2.4
[Computer-Communications Networks]: Distributed Systems

General Terms: Algorithms, Design, Performance

Additional Key Words: Database sharing, shared disk, concurrency control, coherency
control, locking, optimistic concurrency control, cache coherency, buffer invalidation

1. Introduction... 1

2. System model and functional components ... 5

3. Concurrency Control in Database Sharing systems................................. 10
3.1 Locking protocols.. 11

3.1.1 Basic locking schemes... 11
Central locking approach ... 11
Distributed locking with fixed lock authorities 12
Distributed locking with dynamic lock authorities......................... 14
Token ring protocols .. 15

3.1.2 Techniques to reduce the number of global lock requests.............. 16
Write and read authorizations.. 17
Hierarchical locks and authorizations .. 19

3.1.3 Combining the concepts.. 21
3.2 Optimistic concurrency control.. 23

3.2.1 Central validation .. 23
3.2.2 Distributed validation... 24

3.3 Performance studies... 24

4. Coherency Control ... 27
4.1 Buffer invalidation detection and avoidance strategies........................... 27

4.1.1 Broadcast invalidation ... 28
4.1.2 On-request invalidation ... 29
4.1.3 Avoidance of buffer invalidations .. 30

4.2 Update propagation .. 31
4.2.1 Page transfer schemes ... 32
4.2.2 Page ownership strategies.. 34

Central page ownership... 34
Distributed fixed page ownerships... 34
Distributed dynamic page ownerships ... 36

4.3 Combining the concepts ... 41
4.4 Support for reduced data contention .. 42

4.4.1 Multi-version concurrency control ... 43
4.4.2 Record-level locking.. 44

4.5 Performance studies... 46

5. Related Concurrency and Coherency Control Problems 49
5.1 Workstation/server DBMS .. 49
5.2 Network file systems... 50
5.3 Distributed shared memory... 51

6. Summary ... 53

Appendix.. 55

References .. 58

- iii -

- 1 -

1. Introduction

In this paper, we survey the main problems and the available solutions for the data-

base sharing ("shared disk") architecture for distributed transaction and database

processing. Database sharing assumes a locally distributed and homogeneous sys-

tem where all processors reside in close proximity and run an identical version of the

database management software. We discuss the database sharing approach prima-

rily with respect to supporting high performance, scalability and high availability.

In business data processing environments, database processing is traditionally per-

formed by centralized database management systems (DBMS) running on large

mainframe computers. The workload is dominated by a set of pre-planned functions

that are implemented by application programs. These programs interact with the

DBMS to retrieve and update records in the database. Typically, an application pro-

gram consists of multiple database operations that are executed as a single transac-

tion by the DBMS. According to the transaction concept [Gr78, Gr81, HR83, GR93],

the DBMS guarantees that transactions are completely executed or not at all (atom-

icity), that modifications of successful (committed) transactions survive system and

media failures, and that users see a consistent state of the database despite concur-

rent accesses by other users. Most transactions are comparatively simple and access

only a few database records; the typical resource consumption of such transactions

ranges between 50,000 and a few million machine instructions and 0-30 disk I/Os.

Due to the provision of high-level interfaces, however, an increasing workload share

of more complex queries, e.g., for decision support purposes, is expected.

Growing demands for high performance, modular system expandability, and high

availability require distributed transaction and database processing facilities. Large

on-line transaction processing (OLTP) applications such as airline reservations or

banking generate workloads of several thousand transactions per second [Gr85,

HG89]. Since the CPU requirements for such high-volume applications exceed the ca-

pacity of the fastest uniprocessors, multiple processors must be employed. While

CPU speed is improving at a high pace, the performance requirements grow even

faster in many cases thus amplifying the need for distributed transaction processing.

Furthermore, centralized systems face performance problems processing complex

database queries that access large volumes of data [Pi90]. To keep the response time

of such queries sufficiently small, multiple processors and parallel processing strate-

gies must be utilized. Supporting modular system expandability or scalability requires

that performance linearly be improved by adding new processors to the system (hor-

izontal growth). High availability is another critical requirement for many business da-

tabase applications which can only be met by distributed architectures [Ki84, GS91].

There are several architectural approaches in order to utilize multiple processors for

database processing. Three general architectures termed "shared memory" (or

"shared everything"), database sharing ("shared disk") and database partitioning

("shared nothing") are generally considered as most appropriate to meet the require-

ments discussed above [St86, Bh88, Pi90, DG92]. "Shared memory" refers to the

- 2 -

use of multiprocessors for database processing. In this case, we have a tightly cou-

pled system where all processors share a common main memory as well as peripheral

devices (terminals, disks). Typically, there is only one copy of the application pro-

grams and system software like the operating system or the DBMS which is accessi-

ble to all processors via the shared memory. The shared memory supports efficient

cooperation and synchronization between processors. Furthermore, load balancing is

comparatively easy to achieve by providing common job queues in shared memory.

On the other hand, shared memory can become a performance bottleneck thereby

limiting the scalability of the architecture [DG92]. Furthermore, there are significant

availability problems since the shared memory reduces failure isolation between pro-

cessors and there is only a single copy of system software [Tr83, Ki84].

These limitations can be overcome by database sharing and database partitioning

systems which are based on a loose coupling of processors. In loosely coupled sys-

tems, each processor is autonomous, i.e., it runs a separate copy of the operating

system, the DBMS and other software, and there is no shared memory [Ki84]. Typi-

cally, inter-processor communication takes place by means of message passing. Loose

coupling can be used for interconnecting uniprocessors or multiprocessors. We use

the term processing node (or node) to refer to either a uniprocessor or a multipro-

cessor as part of a loosely coupled system.

Database partitioning and database sharing differ in the way the external storage de-

vices (usually disks) are allocated to the processing nodes. In database partitioning
or "shared nothing" systems, external storage devices are partitioned among the nodes.

The database stored on the partitioned devices may be partitioned, too, or replicated. Each

node manages its local database partition. Transaction execution is distributed if data

from multiple partitions needs to be accessed. In this case, a distributed commit pro-

tocol is required to guarantee the all-or-nothing property of the transaction [CP84]. Fur-

thermore, the query optimizer has to support construction of distributed execution plans

if database operations should not be confined to data from a single partition.

In database sharing or "shared disk" systems (also called data sharing or DB-shar-

ing), each node can directly access all disks holding the common database. As a re-

sult, no distributed transaction execution is necessary as for database partitioning. In-

ter-node communication is necessary for concurrency control in order to synchronize the

node’s accesses to the shared database. Furthermore, coherency control is required since

each node buffers database pages in main memory. These page copies remain cached be-

yond the end of the accessing transaction making the pages susceptible to invalidation by

other nodes. Similar coherency problems exist in workstation/server DBMS, distributed

shared memory systems and network file systems.

A major advantage of database partitioning is its applicability to locally and geograph-

ically distributed systems. Conversely, database sharing typically requires close prox-

imity of processing nodes and storage devices due to the attachment of the disk

drives to all nodes. Furthermore, interconnecting a large number of nodes is more ex-

pensive for database sharing since every disk needs to be connected to every node.

- 3 -

A major problem for database partitioning is finding a "good" fragmentation and alloca-

tion of the database. The database allocation largely influences performance (commu-

nication overhead, node utilization) because it determines where database operations

have to be processed. However, database allocations tend to be static due to the high

overhead for physically redistributing large amounts of data. This reduces the poten-

tial for load balancing, in particular with respect to short-term workload fluctuations.

Variations in the number of nodes (node failure, addition of new node) require a real-

location of the database. Database sharing avoids these problems since there is no

need to physically partition the database among nodes. In particular, a higher poten-

tial for load balancing is given since each node can process any database operation

[Ra92]. Several papers provide further discussions of the relative strengths and

weaknesses of database sharing and database partitioning systems [Tr83, CDY86,

Sh86, St86, Pi90, DG92, Ra92].

There are several commercially available systems and research prototypes for both

architectures demonstrating their suitability for satisfying the performance and avail-

ability requirements. Well-known database partitioning systems include Tandem’s

Encompass and NonStop SQL products [Bo81, Ta89] and several database ma-

chines, e.g., Teradata’s DBC/1012 [Ne86] and the Bubba and Gamma prototypes

[Bo90, De90]. Existing database sharing systems and prototypes are the IMS Data

Sharing product [SUW82], the Power System 5/55 of Computer Console [We83,

Ki84], the Data Sharing Control System of NEC [Se84], the Amoeba prototype [Tr83,

Sh85], Fujitsu’s Shared Resource Control Facility [AIM86], DEC’s DBMS and Rdb/

VMS products within a VaxCluster [KLS86, JR89, RSW89, Jo91], and Unisys’s Glad-

iator system [Gu92]. Recently, Oracle has introduced a version of its database prod-

uct (called "parallel server") that supports database sharing on different hardware

platforms [Or90]. Ingres also supports database sharing in VaxCluster environments.

Furthermore, the IBM operating system TPF (transaction processing facility) supports

a "disk sharing" for transaction processing, but without providing full DBMS function-

ality [Sc87, TPF88]. The largest reservation systems are currently based on TPF.

They support thousands of transactions per second and more than 100.000 terminals

[Sc87].

In this paper we concentrate on the database sharing approach for distributed trans-

action processing. In particular, the most relevant techniques for concurrency and co-

herency control are classified and described. These functions are of prime importance

as they determine the amount of inter-node communication. Furthermore, coherency

control can have a large impact on I/O performance. We do not discuss parallel query

processing strategies since so far little work has been done on this subject with re-

spect to database sharing [Ra93b]. As a consequence, we assume that all database

operations of a transaction are completely executed at the node to which the transac-

tion request has been assigned.

Section 2 contains a more detailed description of the system model assumed in this

paper. It also discusses the functional components requiring new solutions for data-

- 4 -

base sharing. In Sections 3 and 4, we present our classification schemes and survey

the major approaches for concurrency control and coherency control, respectively. In

addition to basic policies, we outline several extensions to reduce the communication

frequency and to limit data contention. Furthermore, the main results of previous per-

formance studies for database sharing are presented. Related concurrency and co-

herency control problems in workstation/server DBMS and other areas are discussed

in Section 5. In Section 6 we provide a brief summary of this investigation. Three ap-

pendices summarize the concurrency and coherency control schemes that are used

in existing database sharing systems or have been studied in relevant papers or per-

formance studies.

- 5 -

2. System model and functional components

Figure 1 shows the general structure of a database sharing system. It consists of N

processing nodes sharing access to all database and log disks. Shared access to the

log files is needed to support crash recovery by surviving nodes (see below). Trans-

actions initiated from terminals or workstations arrive over a wide-area or local-area

network. They may be assigned to the processing nodes by workload allocation soft-

ware running in front-end processors. Each node runs an identical version of the

DBMS. We generally assume that communication takes place by means of message

passing over a high-speed interconnect. An alternative considered in [DIY89, DDY91,

Ra91, Ra93a] is the use of shared semiconductor stores for communication or stor-

age of global data structures. Such an approach is also referred to as a "close cou-

pling" and can improve performance albeit similar problems as for shared memory in

tightly coupled systems may be introduced.

There are two major alternatives to interconnect the processing nodes with all disks:

- The traditional (IBM) approach is the use of multi-ported disks and multi-ported disk controllers
that are connected with the node’s I/O processors (channels). In existing systems up to 16
nodes may be connected to all disks in this way. Conventional interconnection hardware
based on copper wires limits the maximal distance between processing nodes and disk drives
to about 400 feet; new fiber-optic connections support distances of several kilometers [Gr92].

- The alternative is a message-based I/O architecture where messages are exchanged between
disk controllers and processing nodes to perform I/O operations and transfer pages. In this
case there is no inherent limit with respect to the number of nodes. Geographic separation of
disk drives and processing nodes is feasible, but at the expense of increased access delays.
DEC’s VaxClusters offer such a message-based I/O architecture [KLS86] for currently up to
96 processing nodes and disk servers. Hypercube architectures such as Ncube [TW91] sup-
port an even higher number of nodes. Since they are based on microprocessors they also offer
high processing capacity at low hardware cost1.

P P P N

Transaction
routing

• • •

Processing
nodes

External
storage

 (database, log files)

Front-end
 system

 Terminals,
 workstations

wide-area
network

local
interconnect

(or LAN)

 1 2
• • •

DBMS1 DBMS2 DBMSN

Figure 1. Structure of a database sharing system (simplified)

- 6 -

In the remainder of this section, we discuss the major functional components requiring

new solutions for database sharing, namely concurrency control, coherency control,

load control, and logging and recovery.

Concurrency control

Since any data item of the shared database can be accessed by any node, database

sharing requires global concurrency control to correctly synchronize concurrent data-

base accesses. The widely accepted correctness criterion for database concurrency

control is serializability. Serializability requires that the actual (concurrent) execution

of several transactions be equivalent to at least one serial execution of the same set

of transactions [EGLT76, BHG87]. While concurrency control is basically a local func-

tion with database partitioning (each node synchronizes accesses against its parti-

tion), loosely coupled database sharing systems require explicit message exchange

for system-wide synchronization.

The choice of the concurrency control scheme is of critical importance for the perfor-

mance of a database sharing system since it largely determines the amount of inter-

node communication for transaction processing. To support high performance, the

number of concurrency control messages has to be as low as possible. Especially crit-

ical are so-called synchronous messages which entail transaction deactivation until

a response message is received (e.g., global lock requests). These messages not

only increase overhead due to process switches, but they also increase a transac-

tion’s response time and thus data contention (more lock conflicts or transaction

aborts). Data contention can be a limiting factor for throughput particularly in distrib-

uted environments, where generally higher multiprogramming levels than in central-

ized DBMS, have to be dealt with. To keep data contention sufficiently low, it is also

important to support fine-granularity (e.g., record-level) concurrency control and pos-

sibly tailored protocols for so-called "hot spot" objects that are frequently modified

[Re82, Ga85, ON86]. Existing DBMS often sacrifize serializabilty to reduce lock con-

tention by only supporting a reduced consistency level [GLPT76].

In order to limit the communication frequency it is also essential, as we will see, to

treat concurrency and coherency control by an integrated protocol. A further require-

ment for a practical concurrency control protocol is robustness against failures in the

system, in particular against node crashes.

Concurrency control algorithms for database sharing are described in Section 3.

Coherency control

DBMS maintain buffers in main memory to cache database pages [EH84]. With large

database buffers, caching can substantially reduce the amount of expensive and slow

disk accesses by utilizing locality of reference. Unfortunately, there is a buffer inval-

1. In 1991, Oracle’s database sharing system on a Ncube system achieved the highest transaction rate
at the lowest cost per TPS (transaction per second) for the TPC-B benchmark [Gr91]. On a system
with 64 nodes, more than 1000 TPS at about 2500 $/TPS were achieved [Or91].

- 7 -

idation problem in database sharing systems since a particular page (block) may si-

multaneously reside in the database buffers of different nodes (dynamic replication of

database pages in main memory). Thus, modification of the page in any buffer inval-

idates copies of that page in other nodes as well as the page copy stored on disk. The

basic task of coherency control is to ensure that transactions always see the most re-

cent version of database objects despite buffer invalidations.

A disadvantage of buffer invalidations is that obsolete page copies cannot be reused

thus reducing buffer hit ratios. The total number of buffer invalidations generally in-

creases with both the buffer size and the number of nodes [Yu87]. In addition, perfor-

mance is degraded by extra messages that may be required for coherency control.

Even without buffer invalidations, the replicated storage of pages in multiple buffers

reduces hit ratios compared to centralized DBMS or database partitioning systems

with the same aggregate buffer size. On the other hand, data replication in main

memory permits multiple nodes to concurrently read the same data thus improving the

potential for load balancing. Furthermore, a buffer miss does not necessarily imply

that the page must be read from disk. Rather, a page may be obtained much faster

from another node holding a copy of the page in its buffer.

The buffer invalidation problem of database sharing systems is analogous (although

at a different level of the storage hierarchy) to the cache coherency problem in tightly

coupled multiprocessors [YYF85, St90] and to the replication control problem in dis-

tributed databases [BHG87, GA87]. Recently, coherence problems for pages cached

in main memory buffers have also been studied in the context of network file systems

[Ho88, NWO88], in so-called distributed shared memory systems [LH89, BHT90,

SZ90, NL91], and in workstation/server DBMS architectures [WN90, CFLS91, WR91,

FCL92]. The latter proposals often have a flavor that is similar to approaches that

were already developed for database sharing. It is unfortunate that the database shar-

ing proposals were not considered in the related areas, but that some basic schemes

were "reinvented" with minor variations.

In Section 4 we survey coherency control schemes for database sharing systems. In

Section 5 we briefly discuss concurrency and coherency control for the related areas.

Load control

The main task of load control is transaction routing, that is the assignment of incoming

transaction requests to the nodes of the database sharing complex. This workload al-

location should not statically be determined by a fixed allocation of terminals and/or

application programs to nodes, but should be automatic and adaptive with respect to

changing conditions in the system (e.g., overload situations, changed load profile,

node crashes, etc.). Effective routing schemes not only aim at achieving load balanc-

ing (to limit resource (CPU) contention), but also at supporting an efficient transaction

processing so that given response time and throughput requirements can be met. A

general approach to achieve this goal is affinity-based transaction routing which

uses information about the reference behavior of transaction types to assign transac-

- 8 -

tions with an affinity to the same database portions to the same node [Tr83, Re86,

YCDI87, Ra92]. Such an approach is feasible for typical OLTP workloads since the

reference characteristics of the major transaction types can be determined by DBMS-

internal monitors and are expected to be relatively stable [Re86].

Affinity-based routing strives to achieve what we call node-specific locality of ref-
erence which requires that transactions running on different nodes should mainly ac-

cess disjoint portions of the shared database. This is a promising approach since im-

proved locality of reference supports better hit ratios and thus fewer disk I/Os. Simi-

larly, node-specific locality helps to reduce the number of buffer invalidations and

page transfers between nodes. Furthermore, locality of reference can be utilized by

some concurrency control schemes to limit the number of synchronization messages

(see Section 3).

The achievable degree of node-specific locality of reference is not only determined by

the routing strategy, but also depends heavily on the workload characteristics and the

number of nodes. Node-specific locality is hard to obtain if the references of a trans-

action type are spread over the entire database, if there are database portions that

are referenced by most transactions, or in the case of dominant transaction types

which cannot be processed on a single node without overloading it. Additionally, the

more nodes are to be utilized, the less node-specific locality can generally be

achieved unless new transaction types and/or database partitions are also added to

the system.

A more detailed discussion of transaction routing and a framework for classifying dif-

ferent approaches can be found in [Ra92].

Logging and recovery

Each node of the database sharing system maintains a local log file where the modi-

fications of locally executed transactions are logged. This information is used for

transaction abort and crash recovery. For media recovery, a global log may be con-

structed by merging the local log data [Sh85]. Existing database sharing systems ei-

ther use mirrored disks to handle disk failures, or provide a tool for merging the local

log files off-line. The latter approach, however, does not allow for fast recovery from

disk failures thus limiting availability. An on-line construction of the global log can sup-

port faster media recovery, although such an approach is difficult to implement. Fast

disaster recovery can be achieved by maintaining a copy of the database at a remote

data center. The copy can be kept up-to-date by spooling the merged log data to the

remote system [BT90, KHGP91].

Apart from media and disaster recovery, crash recovery is the major recovery issue

that requires new solutions for database sharing. Crash recovery has to be performed

by the surviving nodes (that use the local log of the failed node) in order to provide

high availability. The realization of this recovery form depends on many factors - in-

cluding the underlying protocol for concurrency and coherency control - that are dis-

cussed in more detail in [Ra89]. In general, lost effects of transactions committed at

- 9 -

the failed node have to be redone while modifications of in-progress, hence failed,

transactions may have to be undone. Even for crash recovery a global log may be re-

quired if redo recovery is necessary for pages that were modified at multiple nodes

without updating the permanent database on disk [Ra89, MN91]. Special recovery ac-

tions may be necessary to properly continue concurrency and coherency control, e.g.,

reconstruction of lost control information.

A more detailed treatment of recovery in database sharing systems is beyond the

scope of this paper, but can be found in [Ra89, Lo90, MN91, MN92b].

- 10 -

3. Concurrency Control in Database Sharing systems

Although there are close dependencies between concurrency control and coherency

control, it is helpful to separate the description of the major design alternatives from

each other as far as possible. This is done to improve the clarity of the presentation

as well as the understandability of the basic building blocks within the algorithms. Fur-

thermore, the entire solution spectrum becomes clearer by looking at which alterna-

tives for concurrency and coherency control can be combined with each other (see

Section 4).

For concurrency control in database sharing systems, many proposals for distributed

database systems could be adapted [BHG87, CP84, ÖV91]. However, differences in

the transaction execution model and dependencies on coherency control make most

proposals less attractive as they would result in a high amount of inter-node commu-

nication. We therefore concentrate on those approaches that were specifically pro-

posed for database sharing or which are used in current database sharing implemen-

tations. The relevant schemes are based on either locking or optimistic concurrency

control and operate either under central or distributed control (Figure 2). The locking

schemes are described in Subsection 3.1, while the optimistic approaches are cov-

ered in 3.2. Since all existing database sharing systems use locking, these approach-

es will be treated in greater detail than the optimistic schemes. In addition, even for

centralized systems there are several implementation problems of optimistic concur-

rency control for which efficient solutions still need to be developed [Hä84, Mo92].

In Subsection 3.3 we briefly summarize performance studies on database sharing

concurrency control.

central distributed central distributed

fixed GLA dynamic GLA token ring
schemesassignment assignment

primary copy

DEC IMS pass-the-buckNEC
TPF AIM/SRCF

Amoeba
Computer Console

Oracle

Figure 2. Concurrency control strategies for database sharing (with example implementations)

optimistic concurrency controllocking protocols

Concurrency control

Ingres

- 11 -

3.1 Locking protocols

In Subsection 3.1.1, we first describe several basic locking schemes for database

sharing. Three of the protocols have in common that for every database object there

is one lock manager in the system that is responsible for global concurrency control.

There may be a single global lock manager for all database objects (central locking

protocol) or the lock responsibility can be distributed among multiple lock managers

on different nodes. In the distributed case, there may be a fixed or a dynamic assign-

ment of the global lock authority (GLA)2. A fourth approach is based on a logical

token ring topology and requires a lock to be granted by multiple lock managers. In

Subsection 3.1.2, three general enhancements are presented that may be able to re-

duce the communication overhead of the basic locking schemes.

The description assumes the use of read (shared) and write locks by transactions and

that these locks are held until the end of a transaction (strict two-phase locking)

[EGLT76]. We do not present approaches for global deadlock resolution because the

same techniques as for distributed database systems can be used [BHG87, Kn87].

Due to close dependencies on coherency control, discussion of multi-version locking

and record-level locking for database sharing will be deferred until Section 4.4.

3.1.1 Basic locking schemes

Central locking approach

In the central locking protocol, global concurrency control is performed by a single

global lock manager (GLM) running on a designated node. The GLM maintains a

global lock table to process lock requests and releases from all nodes. In the basic

version of this approach, every lock request and release is forwarded to the GLM

node. This requires 2 messages per lock request resulting in a very high communica-

tion overhead and response time increase. A single message at the end of a transac-

tion is sufficient to release all locks of the respective transaction. Since the GLM

knows the complete lock state of the system, central deadlock detection techniques

can be used to resolve all local and global deadlocks.

It is comparatively easy to reduce the communication overhead by bundling multiple

lock requests in one message. In this case, however, response times are not im-

proved but likely to be higher than without such a message batching due to the de-

layed transmission of the synchronous lock requests. The enhancements discussed

in 3.1.2 aim at reducing the number of global lock requests thereby improving both

communication overhead and response times.

A general problem of central locking schemes is that the global lock manager is a sin-

gle point of failure thus requiring special recovery provisions. Furthermore, the GLM

may easily become a performance bottleneck thereby limiting the maximal achievable

2. In [LH89], a similar distinction between centralized, fixed distributed and dynamic distributed
managers has been made for page ownership strategies in distributed shared memory systems.

- 12 -

transaction rates. To avoid that this throughput limit is very low and to keep queuing

delays for lock processing small, it is generally advisable to reserve an entire process-

ing node for global lock management.

Due to the simplicity of the central locking protocol, it could be implemented in hard-

ware or microcode on a special-purpose processor. This promises a great reduction

in communication overhead and delay provided special machine instructions are

available to the processing nodes for requesting and releasing locks at the dedicated

processor. The design of such a "lock engine" for database sharing is further dis-

cussed in [RS84, Ro85, IYD87]. In [Ra91, Ra93a], we examine the use of a fast

shared intermediate memory for database sharing that could hold a global lock table

accessible to all nodes. In such an architecture, a global lock request can be pro-

cessed within a few microseconds so that a negligible delay would be introduced. Re-

lated papers on hardware support for (page-level) locking include [St84, CM988].

A central locking scheme is employed by several existing database sharing systems

including the Amoeba prototype [Sh85], and the systems by Computer Console

[WIH83] and Ingres. In Amoeba and Computer Console’s system it is assumed that a

standby process on a separate node can take over global concurrency control after a

failure of the primary GLM. The new GLM can reconstruct the global lock table by col-

lecting and merging lock information that is also maintained in the processing nodes.

During the transition to the new GLM, no global concurrency control is performed, i.e.,

all database processing is "frozen" [WIH83].

Distributed locking with fixed lock authorities

A straight-forward extension of the central locking scheme is to distribute the lock re-

sponsibility to multiple global lock managers by partitioning the lock space, e.g., by

using a hash function. This results in a distributed scheme with fixed lock authority.

Assuming that each node knows the allocation of the lock authority (e.g., the hash

function), lock request and release messages can be directed to the respective GLM

with the same overhead as in the case of a single GLM. However, higher transaction

rates should be possible since the lock/communication overhead is distributed among

multiple nodes. On the other hand, message batching is probably less effective since

there are now multiple destination nodes for global lock requests. Furthermore, mul-

tiple lock release messages are needed if a transaction has acquired its locks from

different GLMs. In addition, information on waiting lock requests is dispersed across

different nodes so that global deadlock detection becomes more complex.

Such an extension of the central locking approach is used in Oracle’s and NEC’s da-

tabase sharing system and in TPF. The two latter systems rely on hardware support

for global concurrency control. NEC uses a special-purpose node for global locking

and deadlock detection. This lock engine internally consists of up to 8 processors that

use a hash function to partition the lock space [Se84]. Each partition of the global lock

table is kept in two copies so that after a processor failure one of the surviving lock

processors can continue concurrency control on the respective database partition.

- 13 -

The TPF (transaction processing facility) operating system kernel supports disk shar-

ing for up to eight processing nodes [Sc87, TPF88]. A rudimentary form of locking is

performed by the shared disk controllers that maintain a lock table in their memory.

The partitioning of the lock space is implicitly given by the data allocation to disks and

the assignment of the disks to disk controllers. This approach provides "free" locking

for objects that have to be read from disk since the lock request can then be combined

with the disk I/O. For already cached data, however, a separate lock request (I/O com-

mand) must be sent to the disk controller3. The disk controllers only support exclusive

locks on a per node basis rather than for individual transactions. Their lock table is of

fixed size (512 entries) so that a lock request may be denied if the table is already full

[BDS79].

Primary copy locking (PCL) is another distributed protocol with fixed lock authorities.

The original primary copy scheme was devised for distributed databases with replication

[St79]; its extension to database sharing is proposed in [RS84, Ra86]. As in the case

of the extended centralized locking scheme, the primary copy protocol for database

sharing requires that the lock space be divided into multiple partitions to distribute the

lock responsibility among multiple nodes. However, PCL does not use dedicated

nodes for global concurrency control but assumes that there is a GLM on each pro-

cessing node (as part of the respective DBMS). Consequently, the number of lock

partitions should correspond to the number of processing nodes. An advantage of this

approach is that the system architecture is homogeneous since no special-purpose

nodes are needed. Furthermore, lock requests against the local partition can be han-

dled without communication overhead and delay. The GLA (global lock authority) al-

location is known to all nodes4.

A hash function could also be used for PCL to determine the GLA allocation such that

each node controls about the same number of hash classes. If all hash classes are

referenced with equal probability, we yield an average of (2 - 2/N) messages per lock

request for N nodes. This is only slightly better than the central locking approach re-

quiring 2 messages per lock request. The number of remote lock requests can be re-

duced for PCL by coordinating GLA and workload allocations such that transaction

types are generally allocated to the node where most data references can be locally

synchronized. If this is possible without overloading some of the nodes, many remote lock

requests may be saved thus greatly improving performance. Furthermore, we yield a high

degree of node-specific locality of reference where each node’s partition is mainly refer-

enced by local transactions. On the other hand, determination of suitable workload and

GLA allocations is similarly difficult as finding an appropriate database allocation in data-

base partitioning systems.

3. This is no problem for TPF since main memory caching of data beyond transaction commit is not
supported. This also eliminates the need for coherency control. The disk controllers maintain a shared
cache for all nodes, however.
4. In [RS84, Ra86], the term "primary copy authority" (PCA) has been used as a synonym for GLA.

- 14 -

Although we assumed so far that lock responsibilities are fixed, it is actually neces-

sary to adapt the GLA in certain situations. This is particularly the case when the num-

ber of nodes participating in global locking changes, for instance, after a node failure.

For PCL, it is also desirable to adapt the GLA allocation when significant changes in

the load profile are observed in order to support (in coordination with workload allo-

cation) a high share of local lock requests. Adaptation of lock authority allocations

should be automatic to avoid the need of manual interactions by the database admin-

istrator. Such GLA adaptations are expected to occur comparatively seldom, since

the number of nodes should vary infrequently and the load profile is typically stable

for periods of several hours [Re86]. Consequently we have "almost" fixed allocations.

In contrast to the data allocation in database partitioning systems, the GLA allocation

for PCL is only a logical data assignment represented by internal control structures.

Hence, it can more easily be adapted than the physical data allocation for database

partitioning. Furthermore, there is still a high potential for load balancing since the

GLA allocation only determines the distribution of lock overhead, while the largest

part of a transaction can be processed on any node. In database partitioning systems,

on the other hand, the data allocation determines where the database operations, typ-

ically accounting for the largest part of a transaction’s path length, have to be pro-

cessed.

Distributed locking with dynamic lock authorities

In the dynamic distributed locking schemes, the global lock authority for an object is

not pre-allocated but dynamically assigned. Typically, the node where the first lock

request for an object is requested obtains the GLA, i.e., its lock manager becomes

the GLM for the respective object. The global lock responsibility may migrate between

nodes depending on the migration policy that is implemented. Since each node

knows for which objects it holds the GLA, no messages are required for requesting or

releasing locks on these objects. However, for all other objects a locating method is

needed to find out whether a GLM for an object already exists and on which node it

is located. Therefore, in addition to the messages for requesting a lock from the GLM

extra messages may be necessary to locate the object’s current GLM at first. These

messages are avoided in the case of fixed lock authorities where all nodes know the

responsible GLM for an object, e.g., by using of a common hash function or replicated

data structure. It is also difficult to allocate the workload such that a high degree of

local lock processing can be achieved since the assignment of global lock authorities

is dynamic and therefore unstable (in contrast to the GLA allocations for PCL).

Migration and locating policies have already been investigated for the related problem

of managing page ownerships in distributed shared memory systems [LH89, SZ90].

Here we concentrate on some variations that seem appropriate for database sharing.

The GLA for an object should not migrate during the time an object is in use, i.e., be-

tween acquisition of the first and release of the last lock. This restriction guarantees

that the node where a lock has been acquired is also responsible for releasing the

- 15 -

lock or processing a lock conversion (e.g., upgrade from a shared to an exclusive

lock). Hence, no communication is needed for locating the GLM for lock conversions

or unlock processing.

After the release of the last lock for an object, the GLA may also be released or it can

be retained by the current GLM. Retention of the GLA seems preferable since it per-

mits a local lock processing of object accesses that occur later in the GLM node.

When a remote transaction issues the first lock request after a period of inactivity on

an object, the GLA should migrate to the requesting node in order to permit a local

lock processing there. When an object is not referenced for longer periods of time, the

GLA can be released to limit the size of the lock tables.

For locating the current GLM for an object the use of a directory seems most appro-

priate. Since a central directory may introduce a performance bottleneck, the locating

directory should be distributed among all nodes, e.g., by using a hash function to par-

tition the lock space. Note that then up to 4 messages are necessary to acquire a lock:

2 to determine the GLM from the directory and 2 to request the lock itself from the

responsible lock manager. In contrast, for the central locking schemes and PCL at

most 2 messages per lock request are needed.

The messages for the directory lookup could be avoided by fully replicating the locat-

ing directory in all nodes. In contrast to the fixed allocation this approach seems not

practicable here due to the larger size of the table and its high update frequency. So

each time the GLA is assigned or released for an object, a broadcast message would

be necessary to update all copies of the directory.

Dynamic GLA assignment is employed in the VMS operating system’s Distributed

Lock Manager (DLM) of DEC [KLS86, ST87]. The lock services of DLM are used by

DEC’s DBMS Rdb/VMS and VAX DBMS for database sharing in a VaxCluster envi-

ronment [Jo91]. The locating method of DLM is based on a distributed directory that

is partitioned among all nodes according to a hash function. To increase the duration

of a GLA assignment, a hierarchical name space is supported where the global lock

authorities are assigned for root-level objects (e.g., entire disks or record types). The

GLM for a root-level object is responsible for lock processing on all sub-ordinate ob-

jects (pages, records, etc.) of the corresponding resource tree. As a result, the GLA

is not released as long as there is a lock held on any object of the resource tree. What

is more, a directory lookup is only required for lock requests on root-level objects

while locks for subordinate objects can be requested directly from the GLM responsi-

ble for the corresponding resource tree. This can significantly reduce the probability

of the worst case where 4 messages per lock request are needed. On the other hand,

the use of coarse GLA allocation units can make it difficult to spread the lock and com-

munication overhead equally across all nodes.

Token ring protocols

An alternative to the use of a single GLM per object is that all or at least a majority of

the processing nodes grant a global lock request. A possible strategy for such an ap-

- 16 -

proach is based on a logical token ring topology where global lock requests are

batched together with the token circulating through all nodes. Upon reception of the

token, a node processes all global lock requests by checking whether or not there is

a conflict with locally running transactions. The result of these checks is appended to

the token so that a transaction knows about the outcome of a lock request after a com-

plete ring circulation. The communication overhead of this approach is comparatively

low since multiple lock request and lock response messages can be batched together

with the token. Furthermore, the effectiveness of message bundling can be increased

by holding the token in each node for a specific amount of time before forwarding it

to the next node. On the other hand, the time until a global lock request is granted is

very long and grows proportionally with the number of nodes. Hence, such a protocol

may be useful for a small number of nodes only.

IMS Data Sharing uses such a token ring protocol called "pass-the-buck" for lock

processing [SUW82, Yu87]. The protocol is restricted to two nodes. To reduce the

number of remote lock requests a special hash table is used that is replicated in both

nodes. For each hash class and node there is an "interest bit" in the hash table indi-

cating whether or not transactions of a node have requested locks for objects belong-

ing to a particular hash class. If the hash table indicates that only the local node has

interest in a hash class, all lock requests for objects associated with the hash class

can locally be synchronized. Modifications in the interest information are also propa-

gated together with the token.

Fujitsu’s database sharing facility for its DBMS AIM uses a majority voting protocol

where a lock must be granted by a majority of the nodes [AIM86]. A major disadvan-

tage of such an approach is that no lock request can be granted locally.

3.1.2 Techniques to reduce the number of global lock requests

In the basic locking protocols described above, a global lock request could be avoided

if the local node holds the GLA for the respective object. This idea is utilized in the

PCL protocol as well as in the case of dynamic GLA assignments. Workload and GLA

allocation should be coordinated to maximize the degree of local lock processing.

In this subsection, we present additional techniques to reduce the number of global

lock requests. These approaches assume that there is a local lock manager (LLM) in

each node (DBMS) that cooperates with the GLM for global concurrency control. An

important extension of the basic locking schemes use special locks called read and

write authorizations to authorize the LLMs to process certain lock requests and re-

leases locally, i.e., without communicating with the GLM. A further extension is the

use of a hierarchical locking scheme that aims at reducing the number of lock re-

quests and messages by acquiring locks at a coarse object granularity if possible.

- 17 -

Write and read authorizations

Write and read authorizations are assigned by the GLM to LLMs and authorize them

to grant and release locks locally:

- A write authorization is granted to a LLM when it requests a lock (on behalf of a local trans-
action) at the GLM and no other LLM (node) has issued a lock request for the respective object
at this time ("sole interest" [RS84]). A write authorization for an object authorizes the LLM to
locally process all read and write lock requests and releases by transactions running on the
LLM’s node. This is possible since the write authorization indicates that no other node has in-
terest in the object so that no lock conflicts are possible with external transactions. Of course,
a write authorization can be assigned to only one LLM at a time. It must be revoked by the
GLM when a transaction of another node requests a lock for the respective object. These rev-
ocations are expensive since they introduce extra messages and delays for lock request from
other nodes.

- A read authorization permits a local synchronization of read lock requests and releases and
can be held by multiple LLMs at the same time. The GLM assigns a read authorization when
a read lock is requested and no write lock has been requested at this point in time. A read au-
thorization must be returned as soon as a write lock is requested for the respective object.

It is important to understand the conceptual difference between these authorizations

and regular locks. While locks are requested and released by individual transactions,

write and read authorizations are assigned to and revoked from entire nodes (LLMs).

As a consequence, the authorizations are retained by a LLM beyond the end of the

transaction whose lock request resulted in the assignment of the read or write autho-

rization. This is done to permit a local synchronization for further lock requests that

may be issued by local transactions in the future. The authorizations must be released

by the LLM when the GLM revokes them because of a conflicting lock request. How-

ever in order to reduce the frequency of these expensive revocations, the LLMs

should voluntarily release write or read authorizations when the respective objects

have not locally been referenced for a longer period of time. This is also necessary to

keep the lock tables sufficiently small to be kept in main memory.

The use of write and read authorizations is illustrated by the example in Figure 3. In

the shown scenario, LLM2 on processing node P2 holds a write authorization on ob-

ject O1 which is recorded in LLM2’s local lock table as well as in the GLM’s global

LLM = Local Lock Manager
GLM = Global Lock Manager

WA = Write Authorization

Figure 3. Lock request scenario with write and read authorizations

RA = Read Authorization

LLM2

O2: RA

LLM1
P1 P2

GLM
O1: WA for LLM2

P3

O2: RA

LLM3

O1: WA

O2: RA for LLM1
and LLM3

- 18 -

lock table. LLM1 and LLM3 are holding a read authorization for object O2. Therefore,

all lock requests/releases for O1 by transactions in P2 and all read lock requests/re-

leases for O2 in P1 and P3 can be handled by the local lock managers without com-

munication. However, a lock request for O1 in node P1 requires 4 messages before

the requesting transaction can continue processing. In addition to the two messages

for the interaction with the GLM, two more messages are needed to revoke the write

authorization from P2 thereby increasing the delay before the lock can be granted. A

write lock request for O2 in P2 must be delayed until the read authorizations in P1 and

P3 are released causing four extra messages.

The usefulness of write and read authorization depends on the degree of locality of refer-

ence between transactions (inter-transaction locality) of the same node. The authorizations

pay off only if they allow more lock requests be locally satisfied than revocations occur.

Write authorizations save global lock requests for objects that are accessed by mul-

tiple transactions of the same node that are not interfered by external transactions.

Their effectiveness therefore requires node-specific locality of reference which is to

be supported by an affinity-based transaction routing (Section 2). The effectiveness

of read authorizations is independent of node-specific locality since they can be con-

currently held in different nodes. However, their effective use depends on the amount

of locality of read accesses which is determined by the workload. It is therefore ad-

visable to use write and read authorizations selectively for certain object types. Read

authorizations should be limited to objects with low update frequency. Write authori-

zations, on the other hand, are not appropriate for frequently referenced "hot spot"

objects. For such objects it is unlikely that only one node has interest over longer pe-

riods of time so that frequent revocations would occur.

If both types of authorizations are to be supported, conversions between write and

read authorizations can occur. For instance, if a write authorization is revoked be-

cause of a read request, it can be downgraded to a read authorization. For complete-

ness, we summarize the major cases in Table 1. The upper table indicated the actions

of the local lock manager upon a read or write lock request. The LLM’s decisions de-

pend on the local lock state for the object which may be NL (no lock requested so far),

RA, WA or other (no local read or write authorization). The entry "GLM" indicates that

a lock request message has to be sent to the global lock manager to acquire the lock.

The GLM part of the protocol is summarized in the lower table. Here, lock state NL

shows that the lock request is the first in the entire system for the respective object,

and WA (RA) indicates that (at least) one node is holding a write (read) authorization.

Lock state "other" means that no read or write authorization is granted indicating a

situation where lock requests from different nodes are waiting for the lock. If a write

(read) lock is granted to a transaction and there are already incompatible lock re-

quests from other nodes known at the GLM at this time, no write (read) authorization

is granted so that the lock is released at the GLM when the respective transaction

commits.

- 19 -

The use of write authorizations was first proposed in [RS84] (for a central lock proto-

col) under the name "sole interest". Read authorizations are due to [HR85, Ra86]

where they have been proposed as an own concept which is independent of the use

of write authorizations (sole interest concept). In [Ra86], the mechanism was called

read optimization and described in detail for the primary copy locking scheme. In

[HR85], it was shown that even a pass-the-buck protocol can utilize read and write

authorizations to limit the number of global lock requests. Its interest bits mentioned

above actually correspond already to write authorizations at the level of hash classes.

In [Ha90], a distributed locking protocol for the Camelot transaction facility was out-

lined that supports data sharing between several "data servers". The scheme uses

write and read authorizations and is based on a fixed GLA allocation (The authoriza-

tions are referred to as "cached locks" in write- or read-mode in [Ha90]. Revocation

of an authorization is referred to as a "call-back".). Recently, Mohan and Narang have

also described a central locking scheme for database sharing that uses read and write

authorizations (termed LP locks) [MN92a].

Hierarchical locks and authorizations

A well-known trade-off in centralized DBMS is the choice of the object granularity for

concurrency control: a coarse granularity (e.g., files or record types) permits an effi-

cient lock processing with little overhead but may cause high data contention (many

lock conflicts and deadlocks) while fine-granularity locking (e.g., on pages or records)

has the opposite properties. To support a compromise between the two contradicting

goals, existing DBMS use hierarchical or multi-granularity locking schemes [GLPT76,

BHG87, GR93] that support two or more object granularities.

local lock state (at LLM)
NL

read lock
request

write lock
request

RA WA other

GLM

GLM

grant

GLM

local (1)

local (1)

GLM

GLM

global lock state (at GLM)

NL

read lock
request

write lock
request

RA WA other

grant RA

grant WA

grant RA

revoke RA

revoke WA

revoke WA

global conflict
(wait)

global conflict
(wait)

(2)

 (3) (4)

NL = no lock
WA = write authorization
RA = read authorization

(1) local lock conflicts possible
(2) assign RA (downgrade WA to RA), if possible
(3) assign WA (upgrade RA to WA), if possible
(4) assign WA, if possible

Table 1. Summary of global lock protocol with read and write authorizations

- 20 -

For database sharing, choosing a coarser object granularity to decrease the number

of lock requests (while permitting a sufficiently high concurrency) is even more impor-

tant since it can also reduce the number of global lock requests to a large extent. Fur-

ther message savings are feasible by using write and read authorizations at multiple

levels of the object hierarchy. For instance if a node holds a write (read) authorization

for an entire file, an implicit write (read) authorization is given for all pages of this file

supporting a local synchronization on them. Since write and read authorizations can

be used for all transactions of a node, they allow more message savings than a hier-

archical locking protocol alone where a coarse-granularity lock only reduces the over-

head for the owning transaction.

In [Jo91], a concurrency control scheme has been presented that dynamically adjusts

the object granularity for lock requests according to the contention between running

transactions. Assuming a hierarchical ordering of object granularities, the idea is to

obtain a transaction lock at the coarsest granularity where it can be granted without

lock conflict. If a transaction can acquire a lock at a coarse granularity (say a record

type), all descendents in the object hierarchy (pages or records of the record type)

are implicitly locked so that no global lock requests are required for them. If a lock

conflict for a coarse-granularity lock occurs subsequently, the lock granularity for the

lock holder is automatically reduced until there is no more lock conflict or until the leaf-

level granularity (e.g., record) is reached. This process is referred to as lock de-es-
calation [Jo91]. Prerequisite for lock de-escalation is that after a transaction has ob-

tained a coarse-granularity lock its locks at the finer object granularities are still re-

corded by the local lock manager to support a later refinement of the lock granularity.

Hence, there is no improvement in terms of local lock maintenance overhead com-

pared to a locking at the finest granularity, but global lock requests can be saved.

The main idea is illustrated by the example in Figure 4. In the first scenario, transac-

tion T1 holds a "strong lock" (explicit read or write lock) on the record type thereby

implicitly locking all pages and records of the record type. The local lock manager

r1 r2 r3 r4 r5

Level 1
(record type)

Level 2
(pages)

Level 3
(records)

a) Entire record type locked by
transaction T1

r1 r2 r3 r4 r5

T1
T1, T2

T1, T2 T1

T1T2

b) Situation after de-escalation for T1 due
 to conflicting lock request on r1 by T2

explicitly locked object (strong lock)

implicitly locked and accessed

intention lock (weak lock)

implicitly locked, not accessed

Figure 4. Hierarchical locking with lock de-escalation (example)

- 21 -

records that T1 has accessed records r2 and r3, although no explicit (global) lock re-

quest was necessary. When another transaction T2 wants to access record r1 in a

conflicting mode, it begins requesting locks at the root level where a lock conflict with

T1 occurs. This conflict starts the de-escalation process for T1 resulting in the situa-

tion shown in Figure 4b. The record lock for r1 has been granted to T2 since T1 has

de-escalated the conflicting locks at the record type level and page level to "weak

locks" or intention locks (these locks indicate that explicit locks are held at a lower

level). The example illustrates that concurrency is not impaired compared to the case

when all locks are requested at the finest granularity, although many global lock re-

quests may be saved in the no-contention case.

The de-escalation technique can also be used for hierarchical write and read autho-

rizations. For example in the scenario of Figure 3, if the conflict for the write authori-

zation on object O1 is not at the finest granularity, the GLM would request a de-esca-

lation for O1. In this case, LLM2 gives up the write authorization for O1 but retains

write authorizations at the finer level for objects that have been accessed by transac-

tions in P2 and that have not been requested by the conflicting transaction. Note that

only global conflicts cause a de-escalation for authorizations. A strong coarse-gran-

ularity lock of a transaction, on the other hand, is already de-escalated after a local

lock conflict so that this lock cannot be used any more to save global lock requests.

DEC’s database sharing systems employ the hierarchical locking approach based on

lock de-escalation. However, only a limited form of read and write authorizations is

supported by a feature referred to as "carry-over optimization" in [Jo91]. This tech-

nique is limited by the fact that the VMS Distributed Lock Manager keeps lock infor-

mation for processes rather than for transactions and that there is a DBMS instance

per process that does not share a global lock table with other DBMS instances of the

same node. The DBMS does not release the read and write authorizations at the end

of the transaction for which they were obtained but carries over these authorizations

to subsequent transactions that are executed in the same process. Since there may

be many processes in a node to execute transactions, the usefulness of read and

write authorizations is significantly reduced compared to a node-wide maintenance of

these authorizations. In particular, a local lock conflict can already cause a revocation

(de-escalation) of a process-specific read or write authorization.

3.1.3 Combining the concepts

Table 2 shows which of the techniques to reduce the number of global lock requests

can be employed in the basic locking schemes. A hierarchical locking scheme is gen-

erally applicable and recommended, and therefore not considered in Table 2.

The use of a local GLA is restricted to the primary copy locking protocol and the dis-

tributed locking schemes with a dynamic GLA allocation. Read and write authoriza-

tions can be employed by all locking protocols. The use of read authorizations is gen-

erally recommended since this optimization does not depend on node-specific locality

so that it may improve scalability. In the distributed protocols based on a fixed or dy-

- 22 -

namic GLA allocation, read authorizations permit a local read synchronization of ob-

jects being controlled by another node.

Write authorizations, on the other hand, appear not appropriate for the schemes that

use a local GLA for reducing the number of global lock requests. This is because both

concepts aim at utilizing node-specific locality of reference which should be supported

by an appropriate transaction routing. However, GLA assignments are more stable

than write authorization assignments since they do not change when multiple nodes

need to access the same data. In order to support a local lock processing, it is there-

fore easier to allocate the workload according to the current GLA allocation than with

respect to the assignment of write authorizations. In addition, the utilization of a local

GLA for saving remote lock requests has no analogous disadvantage to the expensive

revocations of write authorizations. Furthermore, assigning write authorizations

would reduce the value of a local GLA since even at the GLM’s node a lock request

could not be granted until the write authorization is revoked.

Table 2 does not compare the different locking schemes with each other. The pass-

the-buck scheme of IMS was one of the first protocols invented for database sharing,

but it does not scale well. A central locking scheme introduces a potential bottleneck,

which can easily be avoided by distributing the GLA among multiple nodes. Thus, the

most promising locking schemes are based on either a fixed or dynamic GLA assign-

ment combined with the optimizations discussed above. Dynamic GLA assignments

are difficult to consider for affinity-based routing and may introduce extra messages

to locate the GLM for an object. A fixed distributed GLA assignment can be used in

combination with dedicated lock nodes or with locking perfomed on transaction pro-

cessing nodes (PCL). The PCL scheme promises the greatest reduction of global lock

request messages, but requires determination of suitable GLA assignments coordi-

nated with affinity-based transaction routing.

central
locking

dynamic GLA
allocation

fixed GLA
allocation (PCL)

token ring
(Pass the Buck)

local GLA

write authorizations

read authorizations

-

+

+

O O

-+ +

+ + +

+

- not applicable + applicable / recommendedO applicable / not recommended

use of ...

locking protocol

Table 2. Applicability of techniques to reduce the number of global lock requests

- 23 -

3.2 Optimistic concurrency control

Optimistic concurrency control (OCC) methods have been proposed as an alternative

to locking schemes, in particular for applications with low or moderate conflict poten-

tial [KR81]. In contrast to locking schemes, under OCC synchronization takes place

at the end of a transaction where it is checked during a so-called validation phase

whether there have been concurrency control conflicts with other transactions. Con-

flicts are generally resolved by aborting transactions. After successful validation, the

modifications of a transaction (which are prepared on private object copies during

transaction execution) are made visible for all transactions. There exist numerous

variations of OCC in particular with respect to the validation schemes [Hä84, RT87].

For database sharing, the appeal of OCC is that only one global concurrency control

request per transaction is needed, namely for system-wide validation. This promises

a much lower communication overhead and delay than for locking schemes where

multiple global lock requests per transaction may be required. Hence, the message

frequency of the OCC schemes depends to a lesser degree on the workload profile,

routing scheme and number of nodes. Furthermore, OCC schemes are deadlock-free

avoiding the need for resolving global deadlocks. On the other hand, OCC schemes

may suffer from a high number of transaction aborts considerably lowering perfor-

mance (Throughput is reduced due to the waste of resources for executing transac-

tions that fail during validation; response time is increased since a transaction may

have to be executed several times before it can successfully be validated).

To limit the number of failed transaction executions it may be necessary to use a hy-

brid optimistic-locking scheme for concurrency control. For instance, if a transaction

fails during validation it could use locking during the second execution to avoid re-

peated restarts. A different hyprid approach employs locking only for concurrency

control within a node, while OCC is used to resolve global conflicts [RS84, Yu87].

Such a method promises a reduced communication frequency compared to a pure

locking scheme and a lower number of transaction aborts compared to a purely opti-

mistic approach. Affinity-based routing can reduce the number of conflicts between

nodes and thus the frequency of validation failures [Yu87].

In the following we sketch different approaches for OCC in database sharing systems

that are based on either a central or distributed validation approach.

3.2.1 Central validation

A straight-forward scheme uses a global validation manager (GVM) running on a des-

ignated node to perform all validations in the system. At the end of each transaction,

a validation request is sent to the GVM which performs the validation and returns the

validation result in a response message. Validation basically has to check whether the

object versions that a transaction has accessed during its execution are still the most

recent ones. If an object was accessed that has later been modified by a successfully

validated transaction, validation fails and the transaction is aborted. The use of ver-

- 24 -

sion numbers associated with database objects permits a very efficient implementa-

tion of such a validation [Ra87b].

To avoid repeated restarts of failed transactions, this scheme can nicely be combined

with a locking approach [RS84]. The main idea is to request locks on all objects ac-

cessed during the first execution before restarting a transaction after a validation fail-

ure. These locks are requested at the GVM right after the failed validation so that no

extra communication is needed. Furthermore, deadlocks can be avoided by request-

ing all locks in a pre-specified order. A lock set at the GVM prevents that an object

can be modified by any other transaction. As a result, the re-execution of a transac-

tion is guaranteed to be successful if no additional objects are accessed compared to

the first execution. The second execution of a transaction is likely to be much faster

than the first one since most database objects may still reside in main memory (re-

duced I/O frequency).

The idea of such a "lock preclaiming" for failed transactions can also be utilized for

OCC in centralized DBMS [FRT90] and in database partitioning systems [TR90].

3.2.2 Distributed validation

A central validation component introduces availability problems and may become a

performance bottleneck. Distributed OCC schemes try to avoid these problems by

spreading the validation overhead among all systems. In [Ra87a, b], we discuss var-

ious alternatives for distributed validation that preserve global serializability. A simple

approach uses a broadcast message to initiate validation of a transaction on all nodes

in parallel. This scheme, however, creates a high communication and validation over-

head that increases with the number of nodes. An improvement is possible when us-

ing an assignment of concurrency control responsibilities similar to the use of a GLA

assignment for the primary copy locking scheme. In this case, a transaction needs

only to validate at those nodes holding the responsibility for at least one of the objects

referenced by the transaction. As outlined in [Ra87b], this scheme can also be com-

bined with the primary copy locking protocol so that a transaction may be synchro-

nized either pessimistically (using locking) or optimistically.

3.3 Performance studies

In this section, we provide a brief survey of the major performance studies that have

already been conducted for database sharing. Although most studies considered both

concurrency and coherency control, we concentrate here on concurrency control.

Performance results with respect to coherency control will be surveyed in Section 4.5.

Unfortunately, the results of different studies cannot directly be compared in most

cases since there have been significant differences in the under-lying methodology,

system models and workload characteristics. Appendix C provides an overview of 16

performance studies on database sharing. These studies are based on analytical

modelling or simulations with synthetic or trace-driven workload models.

- 25 -

The performance of pass-the-buck protocols has been analysed in [HR85, YCDI87,

Yu87]. These studies found that communication overhead and delay per global lock

request are largely determined by the token holding time. Short token holding times

result in high communication overhead and CPU contention, while longer token de-

lays increase the waiting times for global lock requests and thus response times and

lock contention. A "good" value of the token delay is therefore difficult to determine

and should dynamically be adjusted according to the current workload situation (IMS

uses a static value to be set by the database administrator). In [HR85] an extended

pass-the-buck scheme has been investigated that uses hierarchical read and write

authorizations at the level of files, hash classes and pages. In trace-driven simula-

tions, these optimizations helped that generally more than 85% of all lock requests

could be locally granted for two nodes if an affinity-based routing is employed. In

[YCDI87], only a sole-interest concept for hash classes was considered (referred to

as hash class retentiveness) as in IMS. Affinity-based routing was also found to allow

for a considerably reduced number of global lock requests and fewer global lock con-

flicts. In [Yu87] the use of a central lock engine for concurrency control was addition-

ally studied. Since the lock engine was assumed to provide very fast lock service at

negligible overhead, this approach was found to support a higher number of nodes to

be effectively coupled than with pass-the-buck.

The simulation study in [B88] compared the performance of four locking protocols for

database sharing: a central locking scheme, two variations of primary copy locking

and a disk controller locking as in TPF (see 3.1.1). The use of a sole interest concept

or read optimization has not been considered, but message batching was assumed to

be the main method to reduce the communication overhead. For primary copy locking,

the fraction of remote lock requests was provided as a parameter. Disk controller lock-

ing was found to provide the best performance since every lock request could be com-

bined with the disk read without extra overhead (this was due to an oversimplified

buffer model without buffer hits). Similar throughput results were predicted for a cen-

tral lock manager scheme if high batching degrees are applied. To keep response

times sufficiently short despite the delayed propagation of lock requests, the use of

intra-transaction parallelism was considered essential for the central locking scheme.

The performance of database sharing with central locking was also compared with the

performance of "shared memory" and "shared nothing" systems with the same num-

ber of processors. Despite the use of the simple concurrency control method, better

throughput results were generally predicted for database sharing compared to data-

base partitioning.

A simple analytic model was used in [IK88] to estimate the number of messages per

lock request for two distributed locking schemes based on a fixed or dynamic GLA

assignment (3.1.1). In the case of the fixed GLA assignment, a uniform distribution of

lock requests among all nodes was assumed. The model ignored lock contention and

assumed a random routing of the transaction workload. It was found that a dynamic

GLA assignment can support a lower number of remote lock requests if there is local-

- 26 -

ity of reference within transactions and if GLA assignments are based on a sufficiently

small granularity.

In [Ra88a,b], a trace-driven performance evaluation of four concurrency/coherency

control protocols was presented for six different workloads (the summary paper

[Ra88b] discusses simulation results for two workloads). The best performance was

generally observed for a primary copy locking protocol using read authorizations.

Typically, this protocol required less than half the number of global lock requests than

a central locking scheme using write and read authorizations at the page level. While

the sole interest concept (write authorizations) helped to reduce the number of global

lock requests, this technique was far less effective than the use of a local GLA in the

primary copy scheme. Supporting node-specific locality by an affinity-based routing

was found to support a much lower number of global lock requests than for random

routing. Read authorizations proved to be very effective for the considered workloads

and could limit the dependencies on the achievable amount of node-specific locality.

The best optimistic protocol was a central validation approach combined with a pre-

claiming of locks for failed transactions (see 3.2). While the lock preclaiming ensured

that a transaction is aborted at most once, the number of transaction rollbacks was

still unacceptably high for workloads with a higher degree of update activity. The com-

munication overhead for validation was generally lower than for the concurrency con-

trol messages in the pure locking protocols, in particular for a higher number of nodes.

All protocols had severe performance problems with hot spot pages, e.g., for free

space administration, if access to them was synchronized at the page level (in some

cases, throughput even degraded when increasing the number of nodes). This shows

the necessity to support record-level concurrency control or/and tailored protocols on

such data objects.

The simulation study [Ra93a] has compared the primary copy protocol with the use of

a global lock table that is maintained in the global memory of a closely coupled data-

base sharing system. Since the latter approach allowed acquisition of a global lock

within a few microseconds, substantially better performance could be obtained than

with PCL. This was particularly the case for real-life workloads (represented by data-

base traces) for which a high degree of node-specific locality was difficult to achieve

for a higher number of nodes. For the debit-credit workload used in the TPC-A and

TPC-B benchmarks [Gr91], the primary copy approach achieved comparable perfor-

mance. For this workload the database and load can easily be partitioned so that al-

most all locks could locally be acquired for PCL.

- 27 -

4. Coherency Control

Coherency control techniques for database sharing basically have to solve two prob-

lems. First, invalidated pages in the database buffers must either be detected or

avoided. Second, an update propagation strategy must be supplied that provides

transactions with the most recent versions of database objects (pages). For both sub-

problems, we provide a classification and overview of the major solutions. The com-

plete spectrum of coherency control schemes is obtained by combining the various

alternatives for both subproblems with each other. In Subsection 4.1, we first describe

the approaches for detection or avoidance of buffer invalidations. Update propagation

strategies are outlined in Subsection 4.2. The major combinations are then summa-

rized in Subsection 4.3.

There are close dependencies between coherency control and concurrency control

for database sharing. In particular, there are different coherency control requirements

and solutions for locking and optimistic concurrency control. For locking protocols it

should be ensured that only current database objects are accessed. This can be

achieved by suitable extensions of the locking protocol because an appropriate lock

must be acquired before every object access. As we will see, with these integrated

concurrency/coherency control schemes extra messages for coherency control can

be avoided to a large extent. In OCC schemes, on the other hand, object accesses

occur unsynchronized so that access to obsolete data generally cannot be detected

before validation at the end of a transaction. To limit the number of validation failures

and transaction aborts for OCC, it is essential that updates of committed transactions

become quickly visible in all processing nodes.

Coherency control also depends on the data granularity for concurrency control.

Page-level concurrency control simplifies coherency control since pages are the allo-

cation units in the database buffers and transfer units between main memory and

disk. Record-level concurrency control, on the other hand, would permit the same

page simultaneously be modified in different nodes. To simplify the presentation, we

assume page-level concurrency control in the first three subsections. In Subsection

4.4, we discuss the extensions required for record-level locking as well as for support-

ing multi-version concurrency control.

Performance studies on coherency control are summarized in 4.5.

4.1 Buffer invalidation detection and avoidance strategies

There are four major alternatives for detection or avoidance of buffer invalidations in

database sharing systems: broadcast invalidation, on-request invalidation, buffer

purge and retention locks. Broadcast invalidation is applicable for any concurrency

control method, but introduces the greatest overhead. The other approaches can only

be used in combination with locking protocols. The next two subsections describe the

broadcast and on-request invalidation approaches to detect buffer invalidations, re-

spectively. Avoidance strategies (buffer purge, retention locks) are covered in Sub-

section 4.1.3.

- 28 -

4.1.1 Broadcast invalidation

In this approach, a broadcast message is sent at the end of an update transaction in-

dicating the pages that have been modified by the respective transaction. The broad-

cast message is used to detect the invalidated page copies in other nodes and to im-

mediately remove them from the database buffers thereby preventing access to them.

To reduce the communication overhead, multiple broadcast messages of different up-

date transactions of a node may be bundled together at the expense of a delayed

message transmission and invalidation. Such an optimization is similar to the group

commit technique to reduce the number of log I/Os [Ga85].

For locking schemes it is required that the obsolete page versions are discarded from

all buffers before the update transaction releases its write locks (otherwise, access to

obsolete data would be possible). Therefore, the lock release must be delayed until

all nodes have acknowledged that they have processed the broadcast message and

discarded the invalidated page copies. Since update transactions must synchronous-

ly wait for all acknowledgment messages, we call this approach synchronous broad-
cast invalidation. A major disadvantage is that response time and lock holding time

are significantly increased. Furthermore, a substantial communication overhead is in-

troduced that grows with the number of systems. Despite these problems, some ex-

isting database sharing systems use synchronous broadcast invalidation (e.g., IMS).

A variation of synchronous broadcast invalidation called selective notification has

been proposed in [DY91]. It assumes a GLM-based locking scheme where the GLM

keeps track of every node’s buffer contents. This information can be used to restrict

invalidation messages to those nodes that actually hold copies of the pages modified

by a transaction. A list of these nodes can be obtained from the GLM together with

the write lock thereby avoiding extra messages. Changes in the local buffer state can

also be communicated to the GLM without extra messages, in general, by piggy-back-

ing this information with lock request and release messages. Still, the maintenance

overhead at the GLM may be substantial since the global lock table has to be updated

for every page that is newly cached or replaced in any node.

For OCC, access to invalidated data is detected during validation. However, to reduce

the number of validation failures broadcast invalidation can be used to remove obso-

lete pages from the buffers. In this case, an asynchronous broadcast strategy is

sufficient where the invalidation message is sent after the end of an update transac-

tion. As a result, no acknowledgment messages are required and response times are

not increased by the broadcast invalidation. As pointed out in [Ra87b], the broadcast

messages can also be used to immediately restart the transactions that have already

accessed the invalidated objects and are thus doomed to fail during validation. The

early abort of these transactions saves unnecessary work for their completion and

validation.

- 29 -

4.1.2 On-request invalidation

This approach, also referred to as "check-on-access", is applicable for the locking

protocols using a GLM (central locking or distributed locking with fixed or dynamic

GLA assignment). The idea is to use extended information in the global lock table

which allow the GLM to decide upon the validity of a buffer (cached) page together

with the processing of lock requests. Since a lock has to be acquired before a

(cached) page can be accessed, obsolete page copies can be detected without any

additional communication and response time increase, a main advantage compared

to broadcast invalidation schemes. The information needed to detect buffer invalida-

tions is also updated without extra communication together with the release of the

write lock. A disadvantage compared to a broadcast invalidation is that obsolete pag-

es are detected and removed later from the buffer so that hit ratios may be worse.

In [Ra86], two methods for on-request invalidation are described. One approach to

detect buffer invalidations is the use of page sequence numbers that are stored in

the page header and incremented for every modification. When the write lock required

for a modification is released at the GLM, the current value of this sequence number

is stored in the global lock table. When a lock is requested at the GLM, it is first

checked whether the corresponding page is cached in the local buffer and, if so, what

the sequence number of the cached copy is. The GLM can then easily determine

whether the cached page is obsolete so that access to invalidated data can be avoid-

ed. Such an on-request invalidation scheme based on page sequence numbers is

used in DEC’s database sharing systems for VaxClusters [KLS86] and in [MN91].

In [Ra86], we have described an alternative using so-called invalidation vectors for

detecting buffer invalidations. For every modified page, an invalid bit is used per node

to indicate whether the respective node may hold an obsolete version of the page.

When a write lock is released, the GLM sets this bit for all nodes except for the node

where the modification was performed. When a lock is requested and a copy of the

respective page is cached, the bit indicates whether the copy is up-to-date. The inval-

idation vector technique has the advantage that it does not depend on sequence num-

bers stored with the object so that it could be used to detect invalidations for objects

of arbitrary size (e.g., records). Such an approach would be especially valuable for

object-oriented DBMS that support object caching rather than page caching. In 4.2.2,

we discuss an example that is based on the use of invalidation vectors (Figure 6 and

Figure 8).

The on-request invalidation scheme in [DIRY89] requires maintenance of the com-

plete buffer state at the GLM. It therefore introduces a substantially higher processing

and space overhead than a sequence number or invalidation vector approach.

On-request invalidation also works when read or/and write authorizations are used to

save global lock requests. This is because as long as these authorizations are held

no other node can modify and therefore invalidate the respective page(s).

Coherency control information for on-request invalidation must be kept even when

there are no current lock requests for the respective pages. To limit the size of the

- 30 -

global lock table, it becomes necessary to periodically delete global lock table entries

for pages that have not been referenced for longer periods of time. However, since

this can result in the loss of relevant coherency control informations special precau-

tions are necessary to ensure that no invalidated page copies will be accessed later

on. There are two alternatives for this purpose:

- Before an entry with coherency control information is discarded a broadcast message is sent
to all nodes so that they can remove invalidated copies of the respective page. Such broad-
cast messages can be bundled together and sent asynchronously. If invalidation vectors are
used to detect buffer invalidations, only those nodes need to be informed for which the invalid
bit indicates a possible invalidation.

- The broadcast messages are avoided if a cached page is only used when there is an entry for
the page in the global lock table. With this approach it must only be ensured (by the update
propagation strategy, see 4.2) that the page copy on disk is up-to-date before an entry is de-
leted from the global lock table.

4.1.3 Avoidance of buffer invalidations

Buffer invalidations are only possible for cached pages that are modified at another

node. While a cached page is locked by an active transaction, it is protected against

remote modifications and thus cannot get invalidated. Consequently, buffer invalida-

tions are avoided altogether if pages are purged from the database buffer before the

lock release at EOT. Such a buffer purge approach, however, is of little relevance

since it implies a FORCE strategy for modified pages and poor hit ratios since inter-

transaction locality cannot be utilized any more to save disk reads.

A better approach is to retain the pages in main memory but to protect them from in-

validation by special retention locks [HR85, Ra88a]. Consequently, for every cached

page either a retention lock or a regular transaction lock must exist. Before a page

can be modified at another node, a write lock must be requested which will conflict

with either the regular or the retention lock. Before the transaction lock or retention

lock is released and the write lock is granted to the other node, the corresponding

page is purged from the buffer so that its invalidation is avoided.

Such an approach is particularly attractive for the locking protocols using read and

write authorizations. This is because retention locks can be implemented by read and

write authorizations at the page level resulting in two types of retention locks (WA and

RA). For modified pages not currently locked by an active transaction, a WA retention

lock must be held guaranteeing that no other system holds a lock or retention lock

(copy) for that page. This exclusive retention lock permits a local synchronization of

read and write locks (write authorization). Unmodified cached pages are protected by

a RA retention lock which can be held by multiple nodes concurrently. In addition, RA

guarantees that no node holds a write lock or WA retention lock thus permitting a local

synchronization of read accesses (read authorization). In 4.2.2, we further describe

this approach when discussing update propagation schemes.

In [MN92a], a similar scheme as the one sketched above is described. They differen-

tiate between "physical locks" requested by the buffer manager to avoid buffer inval-

- 31 -

idations and "logical locks" requested by the lock manager on behalf of transactions.

Physical locks are used in the same way as retention locks. In particular for every

cached page a physical lock is required in shared or exclusive mode which is also

used by the lock manager to locally process logical lock requests.

4.2 Update propagation

Basically two forms of update propagation for pages need to be considered in data-

base sharing systems. Vertical update propagation refers to the propagation of

modified pages between main memory buffers and disk. In addition, a horizontal up-
date propagation is required to exchange pages (modified database objects) be-

tween nodes.

For vertical update propagation, we have the same alternatives as in centralized

DBMS, namely the FORCE or the NOFORCE approach5 [HR83]. A FORCE strategy for

update propagation requires that all pages modified by a transaction are forced (written) to

the permanent database on disk before commit. This approach is usually unacceptable for

high performance transaction processing since a high I/O overhead and significant re-

sponse time delays for update transactions are introduced. On the other hand, there is no

need for redo recovery after a node failure. Furthermore, FORCE simplifies coherency con-

trol for database sharing since it ensures that the most recent version of a page can always

be obtained from disk. Hence, no extra support for horizontal update propagation is

needed since all modifications are implicitly exchanged across the shared disks. Co-

herency control merely consists of one of the approaches discussed in 4.1 to detect

and discard or to avoid invalidated pages cached in main memory. The rest of this

subsection will therefore concentrate on the NOFORCE alternative.

NOFORCE permits a drastically reduced I/O overhead compared to FORCE and avoids the

response time increase due to synchronous disk writes at EOT (end of transaction). Only

redo log data is written to a log file at EOT, and multiple modifications can be accumulated

per page before it is eventually written to disk. Since the permanent database on disk is not

up-to-date, in general, coherency control has to keep track of as to where the most recent

version of a modified page can be obtained. Instead of reading a page from disk, page re-
quests may have to be sent to the node holding the current page copy in its buffer.

One approach for horizontal update propagation would be to broadcast a modified

page to all nodes at EOT (or multicast the page to the nodes where the old version is

cached) [Yu87]. In this case invalidated pages could not only immediately be removed

from the buffers (as in the broadcast invalidation scheme) but the new page version

could directly be installed thereby improving hit ratios. The enormous communication

overhead and bandwidth required by such a strategy seems not practical, however.

Even in this case, pages may have to be requested from other nodes since not all

5. This distinction is analogous to the "write-through" (FORCE) vs. "write-back" (NOFORCE) di-
chotomy for update propagation between processor caches and main memory [Sm82].

- 32 -

modified pages can be cached in all buffers (unless we have a completely replicated

main memory database).

More practicable approaches for horizontal update propagation (NOFORCE) assume

that one of the nodes is the owner for a modified page (i.e., a page for which the disk

version is obsolete). The page owner has two major responsibilities. First, it provides

other nodes on request with the current page version. Furthermore, only the owner is

generally allowed to write out the page to disk. The latter regulation avoids an extra

synchronization to ensure that no two nodes try to concurrently write out the same

page or to avoid that the current version of a page on disk is overwritten by an obso-

lete copy. Note that no page owner is necessary for pages whose current version re-

sides in the permanent database on disk (in this case, the disk could be viewed as

the page owner). In the case of FORCE, no extra synchronization for disk writes is

required if transactions acquire exclusive page-level locks on modified pages since

these locks are held until all force-writes are completed.

Assuming an owner-based approach for horizontal update propagation, update strat-

egies for NOFORCE can be classified according to two aspects. The first criteria is

concerned about how pages are physically exchanged between nodes (e.g., across

the communication system or over the shared disks); these alternatives will briefly be

discussed in 4.2.1. The second classification criteria distinguishes between different

page ownership strategies (Subsection 4.2.2). Here, similar approaches as for the al-

location of global lock authorities (Section 3.1) are applicable (central, distributed

fixed or distributed dynamic page ownerships). The resulting alternatives for update

propagation are summarized in Figure 5.

4.2.1 Page transfer schemes

A page can be transferred from the owner to a requesting node either directly across the

communication system ("memory-to-memory" transfer), across the shared disk or across a

shared intermediate memory. A page exchange across disks incurs the longest delay since

it requires two synchronous disk I/Os (30-50 ms) and two messages (the page is requested

from the owner by a page request message; after the owner has written out the page it

FORCE NOFORCE

update propagation

central

vertical update

page owner
("disk")

distributed, distributed,

direct direct direct across

propagation

allocation

page transfer
scheme

not applicable

across disk
disk

fixed dynamic

Figure 5. Update propagation strategies

- 33 -

sends back a response message indicating that the page can be read from disk). If the

disks are equipped with a non-volatile disk cache, the delay can be substantially improved

to about 3-8 ms for two I/Os. A direct page exchange, on the other hand, avoids the I/Os

altogether and sends back the page within the response message for a page request. With

a fast interconnect, the transmission delay should be in the order of 1 ms plus the CPU time

for sending and receiving the two messages. A shared intermediate semiconductor mem-

ory with access times of 10-50 microseconds per page could support even faster transfer

times [Ra91].

In centralized DBMS and database sharing systems using FORCE, a buffer miss results in

an I/O to read the respective page from disk. For database sharing and NOFORCE, a page

request with an exchange of the page across disks more than doubles the delay and over-

head. A direct exchange of pages over the network, on the other hand, permits a shorter

delay than to read the page from disk, but the overhead for the page request and response

messages is typically substantially higher (2 send and 2 receive operations) than for a sin-

gle I/O.

The method used for exchanging modified pages also has a significant impact on

crash recovery [Ra89, MN91]. If modified pages are always exchanged across the

shared disks (and a page is not permitted to be concurrently modified in different

nodes), crash recovery is simplified since it can be done with the local log file of the

crashed node. This is because all modifications of other nodes are already reflected

in the permanent database so that at most updates of the crashed node may have to

be redone (or undone). On the other hand, with a direct exchange of modifications a

page can be modified at multiple nodes before it is written to disk. Hence, redoing modifi-

cations of a crashed node may require the use of redo information from remote nodes. To

apply the redo information in correct order, the local log information may have to be merged

in a global log6. A page exchange across a shared intermediate semiconductor memory

may have the same recovery implications as a page transfer over the network or across

disks, depending on whether or not the memory is volatile.

Depending on the page ownership strategy, a page may be modified at a node differ-

ent from the node holding the page ownership. As we will see, this is possible for the

central and distributed fixed page ownership schemes (for distributed dynamic own-

erships the node performing the modification becomes the new page owner). In these

cases, page transfers are not limited to pages requested from the owner, but pages

may also have to be transferred to the owner. For these page transfers, only a direct

page transfer over the communication network (or intermediate memory) is meaning-

ful. Therefore, a page transfer across disk is limited to schemes with a dynamic page

ownership allocation (Figure 5).

6. As a compromise between a page exchange across disks and a direct page transfer, [MN91] also
considered a "medium scheme" that still supports the simpler crash recovery. In this approach the
owner writes a page synchronously to disk upon a page request but concurrently sends the page to the
requesting node. If the message transfer is successful (the normal case), the I/O delay for reading the
page from disk is saved at the expense of an additional page transfer message compared to the page
exchange across disks.

- 34 -

4.2.2 Page ownership strategies

We distinguish between a central approach where one node is the owner for all pages

and distributed schemes. In the latter case we differentiate between a fixed and dy-

namic assignment of page ownerships. In general, we assume a direct exchange of

pages over the network; in the case of dynamic page ownerships the alternative of

exchanging modified pages across disk will also be considered.

Central page ownership

In this case a single node holds the ownership for all modified pages. As a result, cop-

ies of all pages modified by a transaction must be sent to the central page owner node

at EOT. The scheme is similar to FORCE with the difference that pages are sent over

the network to a single node rather than written to disk. While these page transfers

may be faster than the disk I/Os, the overhead for sending the pages is probably high-

er than for the disk writes. What is more, the central node is an obvious performance

bottleneck since it has to receive a high number of pages and to perform all disk

writes.

On the positive side, page requests and transfers can be combined with concurrency

control messages if the central node is additionally used for global locking (central-

ized locking approach). Page requests can then be forwarded to the central server

together with lock requests. The page itself is returned to the requesting node togeth-

er with the lock grant message, provided the page is still cached at the central node

(otherwise it can be read from disk by the respective node). Finally, the page transfers

to the central server can be combined with the messages for releasing the write locks

at EOT.

The total number of page transfers to the central page owner node may significantly

be reduced when a central locking protocol with write authorization is used. This is

because a write authorization permits a node to modify a page multiple times without

requesting or releasing a write lock at the global lock manager. Hence, the page is

not transferred to the central node until the write authorization is explicitly revoked

(due to a lock conflict with other nodes) or voluntarily been given up. Even with such

an optimization, however, the central page owner (global lock manager) node remains

a likely bottleneck when high transaction rates are to be supported.

Distributed fixed page ownerships

The danger of a central performance bottleneck can easily be reduced by distributing

the page ownerships to multiple nodes. In the case of a fixed ownership allocation,

this assignment is known to all nodes so that no extra messages are needed to locate

the page owner. For determining the page ownership allocation, the same methods

as for a GLA (global lock authority) allocation can be used, e.g., by using a hash func-

tion or a logical partitioning of the database (3.1). The use of a logical partitioning as

in the primary copy protocol seems most attractive since it supports an affinity-based

routing which helps to reduce the number of page transfers. In this case every node

- 35 -

holds the page ownership for one logical database partition. For all page accesses on

the local partition a page request message is saved; similarly, modifications of pages

of the local partition save the page transfer message to the owner.

Such a page ownership strategy could be used in combination with virtually all con-

currency control strategies7. However, the most efficient solutions result if such an

ownership approach is used in combination with a distributed locking scheme with

fixed GLA assignment like primary copy locking, where the GLA and page ownership

allocations are identical. This is because extra messages for coherency control may

be completely avoided, similar as sketched for the central ownership approach. In

particular, page requests can always be combined with lock requests to the autho-

rized node acting as both the global lock manager and the page owner. Furthermore,

page transfers to the page owner can be combined with the lock release (unlock) mes-

sage and pages may be returned to the requesting node together with the lock grant

message (alternatively, the response message indicates to read the page from disk if

the page owner has not cached the respective page). Finally, extra messages for de-

tecting buffer invalidations can be avoided by employing an on-request invalidation

scheme at the global lock manager. As a result, no extra messages for coherency

control are necessary. An added benefit is that buffer invalidations are limited to pag-

es from non-local partitions.

7. For instance, in [BHT90] a "partitioned optimistic" concurrency control scheme is discussed which
is based on a central validation strategy and distributed fixed page ownerships according to a logical
partitioning.

P2 holds GLA for block B = unmodified page = modified page

database
buffer

A transaction in P3 has modified page B in P3’s buffer. At EOT, the current version of B is sent

P1 P2 P3

B: 100

B B

unlock

to the responsible node P2 together with the release message for the write lock. In P2’s global

B

P1 P2 P3

B B

A transaction in P1 requests a lock on B from P2. P2 detects the buffer invalidation and returns the

B

 current copy of B within the lock grant message. The invalidation bit is reset for P1 since it obtains

lock
request

lock table the invalidation vector is set to ’100’ indicating that a buffer invalidation may only be
possible in node P1.

lock table entry

B: 000

 the new page version.

Figure 6. Example for primary copy locking with fixed page ownerships, on-request invalida-
tion based on invalidation vectors and direct exchange of modified pages

- 36 -

Figure 6 illustrates such an approach for primary copy locking with a combined allo-

cation of the GLA and page ownerships. Buffer invalidations are detected by an on-

request invalidation scheme using invalidation vectors (4.1). The example shows a

"worst-case" scenario with respect to message traffic since both accesses to page B

occur outside the owning processing node P2. Coherency control is performed with-

out additional messages; in particular, the page transfers are combined with the lock

release and grant messages. Note that the invalid bit is set to "0" (false) not only for

the node where the modification has been performed (P3) but also for the page owner

(P2) since it obtains the current page version before the write lock is released.

In terms of number of messages, the sketched coherency control approach based on

a combined fixed assignment of GLA and page ownerships is optimal. In particular,

separate messages and deactivations for page requests are avoided. On the negative

side, many pages may have to be sent to the page owner (together with the lock re-

lease) without experiencing a re-reference before being written to disk. Although these

transfers do not require an extra message, the communication overhead and bandwidth re-

quirements for these long messages are of course higher than for short lock release mes-

sages. An affinity-based transaction routing aiming at a workload allocation such that

most database accesses occur at the owner node can significantly reduce the number

of page transfers.

Distributed dynamic page ownerships

In this approach, the node performing the last modification of a page becomes its

owner. As a result, the page ownership dynamically migrates between nodes accord-

ing to the distribution of update requests. An advantage of this approach is that no

messages are needed to send modified pages to a predetermined page owner at

EOT. On the other hand, a locating method is required to determine the current page

owner in order to obtain the most recent page version.

To locate the current page owner, similar methods as discussed for distributed locking

protocols with a dynamic GLA assignment can be used (3.1.1). In particular, a direc-

tory could be used that is replicated in all nodes or partitioned according to a hash

function. Here, the distributed hash table approach is less desirable since it would in-

troduce extra messages to locate the page owner in addition to the messages for the

page requests. The use of a replicated locating directory, on the other hand, is quite

appropriate for coherency control schemes based on a broadcast invalidation (e.g.,

for optimistic concurrency control). In this case, the replicated directory can be main-

tained with little extra overhead since the broadcast messages used to detect invali-

dated pages already indicate the page owner (i.e., the node where the modification

has been performed) [Ra87a,b].

For locking protocols supporting the notion of a global lock manager, an even more effi-

cient locating strategy is feasible by recording page ownerships in the global lock ta-

ble. This approach incurs no replication overhead and also avoids extra messages to

locate the current page owner since it can be determined during lock processing. The

- 37 -

adaptation of the page ownership information also occurs without extra messages

during the processing of write locks. While extra messages for locating the owner can

be avoided, the page requests themselves may cause messages and deactivations in

addition to those for the lock requests (since the owner is not known until the lock re-

quest has been processed). After the owner has written the page to disk, it informs

the GLM (by an asynchronous message) to reset the page ownership field in the glo-

bal lock table indicating that the current page version can be read from disk. This

helps to largely avoid page requests that can no longer be satisfied by the former

page owner.

The dynamic page ownership approach can be used in combination with all concur-

rency control methods from Section 3 and with all three techniques to detect or avoid

buffer invalidations (4.1). Since it is impossible to discuss all possible combinations

in more detail, we concentrate on three cases that appear most relevant.

(1) Central lock manager + retention locks + dynamic page ownerships

As discussed in Subsection 4.1.3, two types of retention locks corresponding to a

read authorization (RA) and write authorization (WA) can be used to avoid buffer in-

validations and to support a local processing of lock requests. Buffer invalidations are

avoided since 1) for every cached page a transaction lock or a retention lock must be

locally held which conflict with external write lock requests and 2) a page is purged

from the buffer before a node’s RA or WA retention lock (or the last transaction lock)

is released. For the assignment of page ownerships we distinguish between two sub-

cases depending on whether modified pages are exchanged across the disks or di-

rectly over the network.

a) Page exchange over disks

In this case, the page owner corresponds to the node where a write transaction

lock or a WA retention lock is held. Since the GLM records the mode of granted

locks in the global lock table, the page owner is known without having to maintain

additional information. When a modified page exists in the system, it is ensured

that the page is only cached at the page owner’s node due to the compatibility of

lock modes. In the scenario shown in Figure 7a, node P1 is the owner for page B

since it holds the write authorization. When another node P2 wants to access the

page, the lock conflict is detected at the GLM which results in a combined revoca-

tion request and page request to the current page owner (lock holder). Before the

WA retention lock is released, the page owner P1 writes the modified page to disk

(step 3). After the GLM has granted the lock to P2, P2 can read the page from disk

(exchange of modified pages across disk). If P2 has requested a write lock, P1

completely gives up its retention lock and purges the page from the buffer; P2 be-

comes the new page owner. If a read lock was requested by P2, P1 can keep the

page in its buffer and retain a RA retention lock. In this situation, there is no page

owner in the system any more since the current page version can be read from the

permanent database due to the page exchange across disk.

- 38 -

Note that with this approach extra messages for page requests are avoided since

they can be combined with the revocation of write authorizations. Furthermore, no

page transfer messages occur since pages are exchanged across disk. A RA re-

tention lock always ensures that the most recent page version resides in the local

buffer or can be found on disk. On the other hand, if a page is replaced from the

database buffer due to normal replacement decisions, this indicates that it has not

been referenced for some time. Therefore, it is advisable to release the associated

retention lock voluntarily in order to limit the number of revocations and lock table

entries.

Oracle uses such a coherency control scheme [Or90]. In [MN92a], a variation is

proposed where the page owner sends a modified page to the requesting node

concurrently with the disk write (step 3); the write lock (WA retention lock), howev-

er, is still held until the disk write is completed. This has the advantage that by the

time the requesting node obtains its lock (step 5) it has already received the page

in most cases so that the I/O delay to read in the page (step 6) is avoided.

LLM1

LLM2
B: WA

lock request for B

P1 P2

GLM

B: WA, PO by P1 1
2

4

LLM = Local Lock Manager
GLM = Global Lock Manager

messages:
1 = lock request by LLM2
2 = WA revocation by GLM
4 = WA release by LLM1
5 = lock grantWA = Write Authorization

5
B

LLM1

LLM2
B: WA

lock request for B

P1 P2

GLM

B: WA by P1 1
2

3

4
5B

6

4b

a) exchange of modified pages over disk

b) direct exchange of modified pages

4b = page transfer (in parallel with 4)PO = Page Ownership

Figure 7. Update propagation with retention locks

- 39 -

b) Direct page exchange over network

The main difference compared to the previous case is that when a WA retention

lock is revoked, the page is not written out by the page owner before the lock is

released. Rather, the page is directly sent to the requesting node concurrently with

the release message sent to the GLM (Figure 7b). Thus lock acquisition and page

exchange are significantly faster than before since two disk I/Os (steps 3 and 6)

are avoided.

Due to the direct exchange of modified pages it is necessary to keep the page own-

ership even in the case when no write lock or WA retention lock is granted. For in-

stance, if a read request caused the WA revocation, the WA retention lock is down-

graded to a RA retention lock. However, the page owner now has to keep its page

ownership since the page has not yet been written to disk. Furthermore, other

nodes that may wish to access the page have to know from where they can get the

current page version. Therefore, the page owner has to be recorded in an addition-

al field in the global lock table. Note that in the case of a RA retention lock and a

local buffer miss, a page request to the page owner is necessary to obtain the cur-

rent page version. Again, it is therefore recommended to release a read authoriza-

tion when the corresponding page is being replaced.

The ownership for a page migrates as soon as there is a write request by another

node. When the new owner node already holds a current version of the page, e.g.,

due to a preceding read request, the ownership is transferred without page trans-

fer.

(2) Primary copy locking + on-request invalidation + dynamic page ownerships

In contrast to the fixed page ownership allocation discussed above, now the modified

page needs not be sent to the GLM node together with the release of the write lock.

During unlock processing for a write lock, the responsible GLM merely records in the

global lock table where the page ownership currently resides (i.e., where the last mod-

ification of the page was performed). When a lock is granted to a transaction, the GLM

indicates in the grant message which node is the current page owner. The page is

then requested from the owner by a separate message. Alternatively, the GLM could

directly forward the page request to the page owner on behalf of the requesting node

to speed up the page transfer. Of course, if the page is already cached at the request-

ing node and still valid this copy can be used. Furthermore, the page can be read from

disk if the GLM indicates that there is no current page owner.

Figure 8 illustrates the use of dynamic page ownerships for primary copy locking for

the example already used in Figure 6. The release of the write lock for page B by P3

is now a short message to node P2. Before releasing the write lock, the GLM in P2

records P3 as the current page owner in its global lock table8. Furthermore, the inval-

idation vector is now set to "110" rather than "100" since there may be a buffer inval-

idation in node P2. In the lock grant message for the transaction in P1, it is indicated

that the local copy is invalid and that the page is to be requested from P3. The page

8. Alternatively, the page ownership could already be assigned when the write lock is granted.

- 40 -

request is directly performed by the GLA node which also requests P3 to give up its

page ownership since an X lock has been requested at P1. After P3 has released the

page ownership, P1 is kept as the new page owner in P2’s lock table. If P1 had re-

quested a read lock, the page transfer would have been performed in the same way

but without page ownership migration. If the last modification had occurred at the

GLM node P2, the page could have been returned to P1 within the lock grant message

thereby avoiding the separate page request.

(3) Dynamic GLA assignment + dynamic page ownerships

Such a combination results in a similar approach as in the previous two cases de-

pending on whether an on-request invalidation scheme or retention locks are used to

detect or avoid buffer invalidations. Compared to case 1, the main difference is that

not only the page owner but also the global lock manager for a page may dynamically

migrate. We assume that coherency control information, including the page owner, is

stored in the global lock table9. This implies that the GLA cannot be released after the

last lock for the page has been released, but that it must be retained as long as a page

9. The page owner could also be recorded in the locating table (e.g., distributed hash table) used to
determine the global lock manager for a page.

P2 holds GLA for block B = unmodified page = modified page

database
buffer

A transaction in P3 has modified page B in P3’s buffer. During unlock processing for the write lock

P1 P2 P3

B: 110

B B

unlock

at P2, P3 is recorded as the current page owner and the invalidation vector is set to ’110’

P1 P3

B B

A transaction in P1 requests an X lock on B from P2. P2 detects the buffer invalidation. Concurrently

X-lock
request

indicating that a buffer invalidation may be possible at P1 and P2..

lock table entry

PO: P3

P1 P3

B B

P2

B: 010
PO: P3

P2
B: 010
PO: P1

PO = page owner

grant page request

PO release

with granting the lock, P2 requests the page from the page owner P3 on behalf of the requesting
transaction in P1. P3 transfers the page to P1 and releases its page ownership; P1 becomes the new
page owner since an X-lock was requested.

Figure 8. Example for primary copy locking with dynamic page ownerships, on-request in-
validation based on invalidation vectors and direct exchange of modified pages

- 41 -

owner exists (i.e., the page is modified and not yet written out) and other coherency

control information to detect invalidated pages has to be maintained.

Note that now six messages may be needed to acquire a lock and the corresponding

page when GLM and page owner reside in different nodes (two for determining the

GLM node, two for acquiring the lock, and two for obtaining the page from the page

owner). To avoid this worst case, one could try to allocate GLM and page owner to

the same node by changing the GLA assignment together with the page ownership.

That is, whenever the ownership of a page migrates to another node (due to a write

request) the GLA for the respective page also migrates to that node. In this case, the

worst case can be limited to four messages for acquiring a lock and the page. On the

other hand, migration becomes more expensive since the locating information for

finding the global lock manager has to be adapted potentially requiring extra messag-

es.

4.3 Combining the concepts

During the previous subsections, it was already necessary to consider various com-

binations of the techniques to detect or avoid buffer invalidations and for update prop-

agation. In Table 3 the main combinations are summarized together with a qualitative

assessment of their relative performance. Not shown are the alternatives for exchang-

ing modified pages between nodes in the case of NOFORCE. From the performance

point of view, a direct exchange over the network (or a fast intermediate memory) is

clearly the preferred method. An exchange of modified pages across disks (which

simplifies recovery) could be fast enough for high-performance requirements when

disks with non-volatile disk caches are used. Also not shown in Table 3 are the many

possible combinations with different concurrency control protocols. Since these com-

binations cannot easily be presented in a table or diagram, we discuss the major de-

pendencies and recommendations in the text.

The weakest ratings in Table 3 are given for schemes based on a FORCE strategy

(high I/O overhead and delays), for a central page ownership approach (high commu-

nication overhead for page transfers, central bottleneck) and for broadcast invalida-

tion (high communication overhead, response time increase in the case of synchro-

nous broadcast invalidation). FORCE as well as a broadcast invalidation can be com-

bined with any concurrency control scheme; the central page ownership scheme

broadcast
invalidation

on-request retention locks

disk (FORCE) --

--

-

-

+ +

- /-- not recommended / poor performance
+ recommended / good performance

O not recommended / medium performance

detection / avoidance scheme
invalidation

central (NOFORCE)

page ownership

fixed distributed (NOFORCE)

dynamic distributed (NOFORCE)

- + o

-

- -/o

Table 3. Combination of coherency control strategies

- 42 -

could be used in combination with a central locking or central validation protocol.

For NOFORCE with a fixed assignment of page ownerships, the most efficient solu-

tions are based on distributed locking schemes with a corresponding fixed GLA allo-

cation (e.g., primary copy locking). In this case, an on-request invalidation scheme is

most appropriate for detecting buffer invalidations since it supports coherency control

without any extra messages. A dynamic page ownership approach can be used in

combination with all concurrency control schemes. Here, the use of retention locks to

avoid buffer invalidations is particularly appropriate for a central locking scheme, but

can also be used for protocols like pass-the-buck [HR85]. For distributed locking pro-

tocols with a global lock manager, on-request invalidation seems most attractive. Op-

timistic concurrency control protocols can also employ a dynamic page ownership ap-

proach, but they are limited to an (asynchronous) broadcast invalidation.

The description in 4.1 and 4.2 has shown that extra messages for coherency control

can be avoided to a large extent, in particular for concurrency control algorithms

based on locking. Even in the case of NOFORCE, page requests and page transfers

can frequently be combined with regular concurrency control messages. Separate

page request messages are primarily needed for dynamic page ownership schemes.

If retention locks are used to avoid buffer invalidations, however, page requests can

often be combined with the revocation of write authorizations. In all coherency control

schemes, the number of buffer invalidations, page requests and page transfers

strongly dependens on the locality of database access to be supported by an affinity-

based transaction routing.

Appendices A and B summarize which concurrency and coherency control protocols

are used in some existing database sharing systems or have been described in the

literature.

4.4 Support for reduced data contention

The coherency control protocols described so far assumed a concurrency control at

the page level. Although many existing DBMS only support page locking, additional

provisions are generally necessary to keep data contention sufficiently low. To reduce

data contention, commercial DBMS often offer the choice of a reduced consistency

level ("cursor stability") instead of serializability ("repeatable read") [CLSW84, Ta89].

With cursor stability, data contention is improved by keeping only write locks until

commit while read locks are merely held during the actual access by the transaction.

This approach impairs consistency since a transaction may see different versions of

an object due to concurrent modifications (unrepeatable read [GLPT76]). The cursor

stability option can be used for database sharing without additional problems. How-

ever, since a transaction generally has to request more locks than with "long" read

locks, more global lock requests may be needed. The read optimization can help to

avoid extra messages since when a read authorization is assigned for the first read

access of a transaction, subsequent read lock requests for the same object are likely

to be locally processed.

- 43 -

In the following, we discuss two other approaches to reduce data contention namely

support for multi-version and for record-level concurrency control. To limit the scope

of our discussion, we only consider locking protocols in this section. Optimistic

schemes have difficulties with record-level concurrency control even in the central-

ized case due to the fact that modifications have to be performed on private object

copies [Hä84, Mo92].

4.4.1 Multi-version concurrency control

Multi-version concurrency control is a general approach to reduce data contention

[Ch82, CM86, BHG87]. The basic idea is to provide read-only transactions with the

database state that was valid at their BOT (begin of transaction); modifications that

occur during their execution remain invisible to read-only transactions. Update trans-

actions, on the other hand, always access the most recent database state and their

modifications generate new object versions. The advantage of this approach is that

concurrency control is only needed between update transactions thereby consider-

ably improving data contention. Read-only transactions are never roll-backed or

blocked due to data contention. This desirable property has been shown to substan-

tially improve performance in centralized DBMS [CM86, HP87]. On the other hand,

read-only transactions may see a slightly out-dated (but consistent) database state

and multiple versions of database objects have to be maintained. Fortunately, older

object versions have to be kept only for a limited time; they can be discarded as soon

as the respective read-only transactions for which they are held have been commit-

ted.

Two major difficulties need to be addressed to support multi-version locking for data-

base sharing: 1) determination of the appropriate object version for read-only trans-

actions and 2) provision of the respective version. These problems are similar to the

coherency control problem where we had to determine the validity of a page and to

provide the most recent version of a page. To make the coherency control solutions

applicable to multi-version concurrency control we assume that versions are main-

tained at the page level.

A simple method to select the correct version of a modified page is to assign a globally

unique and monotonically increasing timestamp to committed update transactions

and to the pages modified by them10. Furthermore, every read-only transaction ob-

tains such a global timestamp at its BOT. A read-only transaction must then see the

youngest object versions with a page timestamp that is smaller than its BOT time-

stamp. The information which page versions are available can be kept in the global

lock table or in a replicated locating directory that is updated by broadcast messages

sent during the commit of update transactions. To provide the correct page version,

the same ownership strategies as discussed in Subsection 4.2.2 can be employed. In

the case of a fixed page ownership allocation according to a primary copy scheme,

10. This may be achieved by a global hardware clock or perfectly synchronized local clocks.
Other methods to determine object versions in a distributed environment (requiring extra mes-
sages) have been discussed in [CG85; We87].

- 44 -

every node maintains all versions for pages of its partition. With a dynamic ownership

strategy, on the other hand, different versions of the same page may reside in differ-

ent nodes; the respective page owners may also be recorded in the global lock table

or in a replicated directory. Keeping the version information in the global lock table

has the advantage that it can be maintained without extra messages during the lock

processing for update transactions. Read-only transactions, however, now have to

access the global lock table for every object access to obtain the correct page version

although they do not have to request locks any more. More details on multi-version

concurrency control for database sharing can be found in [Ra88a].

4.4.2 Record-level locking

Record-level locking permits different records of the same page be concurrently mod-

ified at different nodes. As a result, each node’s page copy is only partially up-to-date

and the page copy on disk at first contains none of the modifications (Figure 9). Since

writing out partially up-to-date pages could lead to lost updates, all modifications must

be merged before the page can be written to disk. This merging of record modifica-

tions is cumbersome, in general, and may cause a substantial amount of extra mes-

sages. Furthermore, even with record-level locking short page locks/latches may be

needed in order to serialize modifications to page control information (e.g., free space

information in the page header). For database sharing, this would require additional

messages and seems impractical.

We discuss two restricted forms of record-level locking that avoid an explicit merging

of modified page portions. At the end, we discuss a third possibility for a "full record-

level locking" that is restricted to record updates that leave the page structure un-

changed (e.g., no insertions or delete operations).

1. Local record-level locking only
The simplest approach is to use record-level locking only within a node, but to resolve
global lock conflicts at the page level. In this case, the global locking protocol and co-
herency control could remain unchanged; only the local lock manager needs to be ex-
tended compared to the pure page-level schemes. Such an approach is particularly at-

P1 P2

page copy
 on disk

= unmodified record

= modified record

Figure 9. Coherency control problem with record-level locking

- 45 -

tractive for the locking schemes that utilize either a local GLA and/or write authoriza-
tions to locally process lock requests. While the GLA and the write authorizations are
assigned at the page level, lock requests for which the GLA is local or for which a write
authorization exists can be requested at the record level thereby reducing the number
of local lock conflicts. Another significant benefit is that no additional messages are
needed since remote lock requests are still at the page level. With an affinity-based
routing that tries to maximize the usefulness of a local GLA and write authorizations,
such a simple form of record-level locking can already support a substantially lower
data contention without much overhead. Note that support of node-specific locality also
means that most lock conflicts should occur between transactions of the same node.

2. One updating node per page
A further improvement of concurrency is achieved if all locks can be requested at the
record level, but a page is being modified in at most one node at a time. Such a scheme
is supported by the central locking protocols described in [MN91]. They distinguish be-
tween logical record locks requested by individual transactions, and physical page
locks requested by the node’s buffer managers. While logical locks are held until trans-
action commit, physical locks are held until the corresponding page is replaced from the
buffer (similar to retention locks). To modify a page a physical update lock (U lock) is
required; this U lock can be granted to at most one node acting as the page owner. U
locks are compatible with physical read locks thereby permitting that a page that is be-
ing modified may be concurrently read in other nodes (different records must be ac-
cessed since otherwise a lock conflict for the record locks would occur). It is even sup-
ported that concurrent transactions of different nodes modify different records of the
same page, but the updates are serialized via the physical U locks for the page. The
scenario of Figure 7 can be used to illustrate the underlying idea. Assume that a trans-
action T1 in node P1 has modified a record in page B; P1 therefore holds a physical U
lock for B. A second transaction T2 in node P2 can now obtain a logical write lock for a
different record of B, but there will be a lock conflict for page B since P2’s buffer man-
ager has to request an U lock before T2’s update can be performed. This lock conflict
is resolved as shown in Figure 7 by revoking P1’s U lock and transferring the modified
page B (containing the uncommitted update of T1) to P2. P2 now is the new page owner
for B.
Although the scheme of [MN91] supports a high degree of concurrency, it suffers from
a very high number of messages for concurrency control. This is not only because the
number of record locks is generally much higher than the number of page locks but also
because in their scheme the number of messages per lock is higher as for page-level
locking. Physical page locks cannot be used here to locally grant logical locks on the
respective pages since physical update and read locks are compatible with each other.
As a result, the scheme requires separate messages to request logical record and
physical page locks from the global lock manager. This causes between 2 and 7 mes-
sages per lock! In the best case when an appropriate physical lock is already held,
"only" the record lock needs to be requested at the GLM (2 messages). An ownership
transfer as in Figure 7b causes 7 instead of 5 messages since 2 extra messages for the
record lock are needed. These high message requirements could largely destroy per-
formance gains that may be obtained because of reduced data contention.

3. Concurrent page updates in different nodes
Full record-level locking is achieved if multiple nodes can concurrently modify different
records of the same page without serializing the updates at the page level. As indicated
in Figure 9, in this case multiple copies of the same page are being modified so that the

- 46 -

modifications need to be merged. The implementation of such a form of record-level
locking for database sharing has been described in [Ra89] and [MNS91]. Both propos-
als are limited to update operations that leave the structure of the page unchanged
(e.g., modification of existing records). Page transfers are largely avoided in both ap-
proaches by only transferring the modified records between nodes. This results in re-
duced bandwidth requirements compared to page-level locking.
The proposal in [MNS91] assumes a central locking protocol, while the scheme in
[Ra89] is based on primary copy locking with a combined GLA and page ownership al-
location. The latter scheme has the advantage that the number of messages per lock
is not higher as for page-level locking. A local lock processing is still supported if the
respective record belongs to the local partition, otherwise the lock request can be sat-
isfied with two messages.

An even higher degree of concurrency than with record-level locking is supported by

special protocols that permit the same record to be concurrently modified by different

transactions. Such protocols have been proposed for centralized DBMS and utilize

the semantics of special update operations on so-called high-traffic objects like com-

mutativity of increment and decrement operations [Re82, Ga85, ON86]. In [Hä88], it

is discussed how the escrow scheme of [ON86] can be extended for database shar-

ing. In [MLS91], an implementation of the IMS Fast Path protocol for high traffic ob-

jects [Ga85] is proposed for database sharing.

4.5 Performance studies

Appendix C shows that most performance studies for database sharing either as-

sumed the simpler FORCE approach or even ignored buffer management and coher-

ency control. A NOFORCE scheme for update propagation was only considered in

[HR85, Ra88a,b, DY92, Ra93a]. Many studies also made the assumptions of uniform

access distribution and random workload allocation. Uniform distribution of database

access is an unrealistic assumption since it denies the existence of locality of refer-

ence. Random routing represents the worst case with respect to buffer invalidations.

It can result in a high degree of replication in the database buffers which reduces

overall hit ratios. For update-intensive workloads, the replication additionally leads to

many buffer invalidations further lowering hit ratios. All studies assumed page-level

concurrency control.

A trace-driven analysis in [Yu87, YCDI87] showed that buffer invalidations lead to an

increase in disk reads for FORCE. It was found that this increase grows with both the

buffer size and (linearly) with the number of nodes when the workload is distributed

at random [Yu87]. For affinity-based routing, significantly improved hit ratios and few-

er buffer invalidations were observed compared to a random routing [YCDI87,

Ra88a,b, Ra93a]. The trace-driven studies [Ra88a,b, Ra93a] showed that the nega-

tive performance impact of buffer invalidations is by far less pronounced in the case

of NOFORCE with a direct exchange of modified pages. This is because the page ex-

change across the communication system is substantially faster than a disk I/O. Fur-

- 47 -

thermore, some schemes like the primary copy approach even avoid separate delays

for page requests by providing pages together with lock grant messages.

In [DDY90a,b, DDY91], the impact of buffer invalidations for database sharing is in-

vestigated based on an analytic buffer model for LRU page replacement. Only work-

loads with a single homogeneous transaction type are supported and lock conflicts

are analytically modelled. All three papers assume random routing, a FORCE strategy

for update propagation and broadcast invalidation to detect buffer invalidations, but

consider different concurrency control schemes. In [DDY90a], a central optimistic

concurrency control scheme has been chosen for which it was found that restarted

transactions experience fewer buffer invalidations than during their first execution.

While this study assumed an uniform access distribution, the effect of "skew" in the

reference distribution has been considered in [DDY90b]. For this purpose, it was as-

sumed that the database consists of multiple partitions with different access probabil-

ities; within a partition accesses are uniformly distributed. The skewness was found

to increase data contention, hit ratios and the number of buffer invalidations. Further-

more, it was predicted that under skewed access the optimistic scheme may outper-

form a central locking approach provided sufficient CPU capacity is available (due to

the fact that roll-backed transactions could be executed with few I/O delays and buffer

invalidations).

In [DDY91, Ra93a], it was shown that even for FORCE the negative effects of buffer

invalidations can largely be eliminated if a shared non-volatile semiconductor memory

is used to write out modified pages. This is because buffer invalidations mainly occur

on frequently updated pages that can be cached in the shared memory for a fast ac-

cess after a local miss. The same effect can be achieved by permanently allocating

frequently updated database files to non-volatile semiconductor memeory [Ra93a].

Several studies compared broadcast and on-request invalidation for detecting buffer

invalidations [DIY88, Ra88a,b, DIRY89, DY91]. These studies confirmed that on-re-

quest invalidation is clearly the preferred method supporting higher throughput since

no extra communication is needed to detect buffer invalidations. The communication

overhead of broadcast invalidation grows rapidly with both the update probability and

the number of nodes. On the other hand, broadcast invalidation allows for better hit

ratios than on-request invalidation because of an immediate removal of obsolete pag-

es. However, this has only a minor impact on performance, in general. In [DIY88], it

was shown that the performance of a buffer purge approach is mostly even worse

than broadcast invalidation.

The analytical study [DY92] investigates several coherency control approaches using

either on-request invalidation or retention locks. However, a fair comparison between

the schemes is prevented because FORCE was assumed for the on-request invalida-

tion schemes and NOFORCE for the retention lock schemes. For NOFORCE, it was

found that a direct page transfer allows better response times than a page exchange

across disk. The retention lock schemes suffered from a high CPU overhead for page

- 48 -

transfers in the case of high update probability and low node-specific locality of refer-

ence.

In [YD91] a performance comparison between database partitioning systems with

"function request shipping"11 and database sharing with and without a shared inter-

mediate memory has been presented. The database sharing configurations were

based on FORCE, central locking and on-request invalidation, while NOFORCE was

assumed for database partitioning. Database sharing with a non-volatile shared inter-

mediate memory was found to provide the best throughput and response time results,

in particular if the database and workloads cannot effectively be partitioned for

"shared nothing" and in cases with workload fluctuations ("load surges") causing un-

balanced CPU utilization for database partitioning. Database sharing without such a

shared memory may also support better throughput than database partitioning, but re-

sponse times were found to be worse due to the FORCE assumption and because of

lower hit ratios (buffer invalidations, replicated caching of pages in multiple nodes).

11. Function request shipping is used in IBM’s TP monitor CICS to distribute database operations
(DL/1 calls). A main restriction is that every database operation must completely be processed in one
node and that files are the smallest units for database allocation. Since DL/1 is a record-oriented (non-
relational) database language with few database accesses per operation, the ratio between communi-
cation overhead for a remote operation and useful work is typically very unfavourable.

- 49 -

5. Related Concurrency and Coherency Control Problems

As mentioned in Section 2, workstation/server DBMS, network file systems, and dis-

tributed shared memory systems face similar coherency problems than database

sharing. They also support replicated main memory caching of pages (or other data

granules) in multiple computers so that coherency control becomes necessary. Some

systems also support concurrency control. In this section, we briefly summarize the

main differences to database sharing and the major solutions that are pursued in the

respective areas.

5.1 Workstation/server DBMS

In workstation/server DBMS, database functionality is partitioned between a server

DBMS and a workstation DBMS [DFMV90]. Such an architecture is primarily used by

object-oriented DBMS that want to exploit the graphical interface, processing power

and memory capacity of workstations for complex scientific and engineering database

applications. The server DBMS manages external storage devices and performs glo-

bal services like logging or concurrency control. While workstations may be diskless,

database pages (or objects) are cached in main memory by the workstation DBMS.

This can reduce the communication frequency with the server, but also gives rise to

coherency problems.

Despite the different architecture, many of the database sharing techniques for con-

currency and coherency control can be employed for workstation/server DBMS as

well. In fact, most of the algorithms that are used in existing workstation/server DBMS

(e.g., Orion [KGBW90], ObjectStore [LLOW91]) or have been studied in recent publi-

cations (e.g., [WN90, CFLS91, WR91, FC92, FCL92]) are variants of the schemes

that were developed for database sharing. These systems and studies typically as-

sume a single server acting as both a global lock manager and a central page owner.

Furthermore, a FORCE-like update strategy between workstation and server DBMS

is mostly assumed where all modifications of a transaction (as well as log data) are

propagated to the server at transaction commit. For such a configuration, all database

sharing techniques to reduce the number of global lock requests (Section 3.1.2) and

for detection or avoidance of buffer invalidations (Section 4.1) can directly be used.

Orion employs an on-request invalidation technique to detect buffer invalidations

[KGBW90], while ObjectStore avoids buffer invalidations by using retention locks

(named "callback locks") [LLOW91]. The use of retention locks for concurrency and

coherency control has also been studied in [WR90, FC92, FCL92]. In [CFLS91,

FC92], on-request invalidation (in combination with central locking) as well as several

optimistic concurrency control schemes were considered. In the optimistic schemes,

it was assumed that the server keeps track at which workstations pages are cached.

During the validation of a transaction, these "copy sites" are either provided with the

new page versions or their page copies get invalidated (similar to selective broadcast

invalidation). In [FCL92], a direct exchange of pages between workstations has been

- 50 -

considered to speed up update propagation. However, the scheme depends on the

server information about copy sites so that communication with the server is still nec-

essary after a local buffer miss. Only when the server has no cached version of the

requested page, the page request is forwarded to one of the copy sites rather than

reading the page from disk.

A major limitation of the workstation/server studies and existing implementations is

the restriction to a single server node. To avoid such a single point of failure and a

potential performance bottleneck, a distributed server system is highly desirable. A

distributed server may be based on either a database partitioning or database sharing

architecture. The use of the database sharing approach seems advantageous be-

cause similar concurrency and coherency control schemes could be used in the serv-

er system as between workstation and server DBMS. Another limitation is the use of

the conventional transaction concept which is not adequate for advanced database

applications like CAD or software engineering [BK91]. Workstation/server coopera-

tion to support engineering database applications is discussed in [HHMM88].

Workstation caching of database objects can also be useful for information retrieval

systems. Such an approach has been proposed in [ABG90], where so-called "quasi-

copies" may be cached at a user’s workstation in read-only mode. By supporting user-

defined consistency constraints (e.g., periodic refreshing of cached data), the over-

head for update propagation can be kept small thereby improving scalability.

5.2 Network file systems

Network file systems support shared file access for multiple clients in a collection of

loosely coupled nodes interconnected by a local area network. Similar to workstation/

server DBMS, clients typically execute in workstations while one or multiple server

provide common file services. To reduce the communication frequency with the serv-

er, caching of files is supported in the client nodes. Some systems (e.g., Andrew

[Ho88]) only allow caching of entire files, while most systems use page caching (e.g.,

Sun’s Network File System and Sprite [LS90]).

A major difference to database sharing is that network file systems typically do not

support transactions. As a result, transaction-based concurrency control and recov-

ery functions are not provided. Furthermore, coherency requirements are related to

file operations (open/close, read/write) rather than to transactions. A desirable con-

sistency approach is to guarantee that every read operation on a file sees the effects

of all previous writes. This consistency requirement is supported by Sprite [NWO88].

In their implementation, however, concurrent caching of a file in different nodes is

only supported for read access.

Despite these differences, similar coherency control schemes than for database shar-

ing can be used. An overview of coherency control in network file systems is provided

in [LS90]. To detect invalidated pages or files, two major policies are followed. In a

client-initiated approach, before accessing cached data the client checks the validity

- 51 -

of a cached file or page at the server. This scheme corresponds to on-request inval-

idation for database sharing but requires extra messages for the validity checks. In a

server-initiated approach, the file server keeps track of the clients’ cache contents.

After the server is informed of a file modification, it explicitly notifies all clients that

may hold invalidated copies of the respective file. Such an approach corresponds to

the selective broadcast invalidation scheme for database sharing. The Andrew file

system uses a server-initiated coherency scheme in combination with a callback

mechanism that is similar to the use of retention locks [Ho88].

For update propagation, network file systems either use a write-through, write-on-

close or delayed-write policy [LS90]. Write-through requires that every modification at

a client is directly sent to the server, while write-on-close sends modified data to the

server when the file is closed. These policies roughly correspond to a FORCE scheme

with respect to write operations (write-through) or file sessions (write-on-close). A de-

layed-write scheme propagates updates to the sever after a predetermined time

threshold or when the data is to be replaced from the cache. This approach corre-

sponds to NOFORCE and allows for reduced communication overhead. For write-on-

close and delayed-write, a client failure results in a loss of all modifications that were

not yet propagated to the server at crash time.

5.3 Distributed shared memory

Distributed shared memory (DSM) systems provide applications in a distributed system

with a shared memory abstraction [NL91]. The main goal is to simplify development of dis-

tributed applications compared to the conventional approach based on remote procedure

calls or explicit message passing operations for inter-process communication. The operat-

ing system implements the shared memory paradigm on top of a loosely coupled system

with physically distributed memory, so that a logical memory reference may require re-

questing the respective data (page) from a remote node. Caching is essential to reduce the

number of remote memory accesses, but also necessitates coherency control.

DSM systems typically do not support transactions resulting in different coherency require-

ments than for database sharing. Most DSM systems enforce strict memory consistency

where each read operation returns the most recently written value. To improve perfor-

mance, some DSM systems support weaker forms of memory coherency by utilizing appli-

cation semantics [NL91]. However, these approaches require the application programmer

to understand and obey the respective consistency model to obtain correct programs. In

contrast, database sharing systems provide full distribution transparency to application pro-

grams. In DSM systems, all memory pages are exchanged across the communication sys-

tem since there are no shared disks.

DSM is a very active area of research and numerous prototype systems have been built

[He90, MR91, NL91]. As in database sharing systems, (horizontal) page migration is mostly

based on an ownership approach with either a central page owner or fixed or dynamically

distributed page ownerships [LH89]. To avoid access to invalidated pages, most DSM sys-

- 52 -

tems adopt a "write-invalidate" approach where all page copies are explicitly invalidated af-

ter a modification. This approach is analogous to the broadcast invalidation or selective in-

validation scheme of database sharing systems (in the DSM implementations, the owner of

a page usually keeps track of the copy nodes).

In the Clouds distributed operating system, invalidation messages are avoided by combin-

ing coherency control with locking [RAK89]. In their implementation, the page owner is also

responsible for synchronizing memory accesses. This allows combining page transfers with

lock request and release messages similar to the database sharing schemes with corre-

sponding GLA and page ownership assignment (Section 4.2.2). However, in Clouds the

copy of a page must be eliminated from a node’s memory when the lock is released. Hence,

this scheme corresponds to a buffer purge approach for avoiding buffer invalidations signif-

icantly limiting the cache residence time of pages so that locality of reference cannot fully

be exploited. Furthermore, lock and unlock operations have to be specified by the applica-

tion programmer, while for database sharing concurrency and coherency control are auto-

matically performed by the DBMS.

In [BHT90], concurrency and coherency control schemes for transaction-based DSM sys-

tems were studied. In such an environment, all database sharing schemes (for NOFORCE)

can directly be used. They studied a distributed locking protocol and two optimistic

schemes. The locking scheme is based on dynamic page ownerships and a dynamic GLA

assignment that changes together with the page ownership. The locating directory is dis-

tributed among all nodes; read and write authorizations are supported. Both optimistic

schemes use a central node for validation, but differ with respect to update propagation

(central page owner vs. distributed fixed page ownership).

- 53 -

6. Summary

Database sharing is an attractive approach for distributed transaction and database

processing since there is no need to find a physical database partitioning as in so-

called shared nothing systems.This facilitates a migration from centralized to distrib-

uted transaction processing and provides advantages with respect to load balancing.

The performance of database sharing systems critically depends on the algorithms

used for concurrency and coherency control because these functions largely deter-

mine the amount of inter-node communication. New technical solutions for database

sharing are further required in the areas of workload management (in particular for

transaction routing), logging and recovery.

We have presented a classification and survey of concurrency control and coherency

control methods for database sharing. With respect to concurrency control we consid-

ered locking and optimistic schemes under central or distributed control. For the lock-

ing protocols, we have outlined four basic approaches as well as several extensions

that can be employed to reduce the number of global lock requests. The coherency

control problem was decomposed into two subproblems: detection or avoidance of

buffer invalidations and update propagation. The major solutions for both subprob-

lems have been described and it was illustrated how they may be combined within a

complete coherency control protocol. Furthermore, we have indicated how the various

concurrency control and coherency control schemes can be combined with each other

and which combinations promise the best performance. In addition, methods to re-

duce data contention were discussed like multi-version concurrency control and

record-level locking. We also provided an overview of the main findings of database

sharing performance studies and discussed concurrency and coherency control in re-

lated system architectures.

Results from trace-driven simulations indicate that even optimized optimistic concur-

rency control schemes appear inadequate for most real-life workloads since they of-

ten cause an excessive number of transaction rollbacks. Data contention can also be

a serious performance problem for locking protocols if only page-level locking is sup-

ported (hot spot pages); at least a limited form of record-level locking seems therefore

indispensable. The concepts to reduce the number of global lock requests (hierarchi-

cal locking, use of a local GLA, sole interest, read optimization) have been shown to

be effective to varying degrees, albeit they largely depend on workload characteristics

and the strategy used for workload allocation. In general, affinity-based transaction

routing is essential for good performance of a database sharing system not only to

reduce the number of global lock requests, but also to reduce the number of buffer

invalidations and page transfers. Several performance studies have confirmed that

efficient coherency control should be based on either on-request invalidation or the

use of retention locks rather than on broadcast invalidation or even a buffer purge

scheme. To support high performance, update propagation should use a NOFORCE

strategy for updating the permanent database on disk as well as a direct exchange of

modified objects (pages, records) over the communication system.

- 54 -

These observations primarily hold for database sharing systems using conventional

hardware for communication and data storage. Special hardware support could make

it affordable to globally decide upon all lock requests thereby reducing the dependen-

cies on workload characteristics and affinity-based routing (e.g., global locking could

be performed by a dedicated lock engine or via a global lock table in shared semicon-

ductor memory). Similarly, a FORCE scheme for update propagation may be accept-

able if a shared non-volatile semiconductor memory is available to speed up the write

I/Os. Such a store can also alleviate the negative performance impact of buffer inval-

idations since it could hold the current version of frequently modified (invalidated)

pages and provide them to all nodes. On the other hand, such special hardware de-

vices typically incur a high cost and may limit the number of nodes that can be sup-

ported. Furthermore, new availability problems arise that need to be solved.

Several important problems remain to be addressed in future research or system de-

velopments for database sharing. In particular, more work is needed on dynamic load

balancing schemes that are able to fully utilize the potential offered by the database

sharing architecture. Furthermore, parallel query processing strategies tailored to da-

tabase sharing should be investigated in order to support short response times for

complex and data-intensive database operations.

- 55 -

Appendices

Appendix A: Concurrency / coherency control in existing database sharing implementations

Appendix B: Selected papers on concurrency / coherency control for database sharing

system concurrency control coherency control references

IMS Data Sharing pass-the-buck broadcast invalidation [SUW82, Yu87]
FORCE

Amoeba prototype central lock manager broadcast invalidation [Tr83, Sh85]
FORCE

DEC dynamic lock authority on-request invalidation [KLS86, RSW89, Jo91]

FORCE+

Computer Console* central lock manager FORCE [WIH83]

Oracle* central lock manager NOFORCE [Or90]
exchange of modified
 pages over disk

*Concurrency/coherency control protocols not completely described in available documentation

+ DEC’s relational DBMS Rdb supports NOFORCE since its version 4.1.

 paper concurrency control coherency control remarks

HR85 pass-the-buck (extended) retention locks
NOFORCE
exchange of modified pages
 over disk
dynamic page ownership

Ra86 fixed lock authority on-request invalidation
(primary copy locking) NOFORCE

direct exchange of modifications
fixed or dynamic page ownership

Ra87a,b distributed OCC asynchronous broadcast invalidation
NOFORCE
direct exchange of modifications
dynamic page ownership

DIRY89 central lock engine on-request invalidation special-purpose lock
FORCE processor

MN91 central lock manager on-request invalidation record-level locking
NOFORCE (see 4.4.2)
different page transfer schemes
dynamic page ownership

MN92a central lock manager retention locks
NOFORCE
"medium" page transfer scheme (see footnote 6)
dynamic page ownership

- 56 -

Appendix C: Database sharing performance studies

The table below summarizes which concurrency / coherency control protocols have been analysed in database sharing per-
formance evaluations. Under "methodology" we indicate whether trace-driven simulations, simulations with synthetic work-
loads, or analytical modelling and which type of queuing model (open or closed) have been employed. In closed models,
typically throughput has been used as the primary performance measure, while open models mostly concentrated on response
times. Under "focus" we indicate the major aspects that have been analysed in the respective study.
Entries are ordered by year and alphabetically within a year.

 paper concurrency control coherency control methodology /
focus

HR85 pass-the-buck (extended) retention locks, NOFORCE trace-driven sim., closed model
exchange of modified pages
 over disk protocol analysis; influence of
dynamic page ownership different (6) workloads, token

delay, number of nodes (1-2)

CDY86 central lock engine broadcast inv., FORCE simulation/analytical; open model
focus on "shared nothing";
comparison with database sharing

YCDI87 pass-the-buck broadcast inv., FORCE simulation/analytical; open model
protocol analysis; affinity-based
routing; buffer invalidation study

Yu87 pass-the-buck broadcast inv., FORCE simulation/analytical; open model
protocol analysis; affinity-based

central lock engine - " - routing; buffer invalidation study

IK88 distributed fixed GLA ignored analytical; closed model
distributed dynamic GLA - " - # messages per lock

Bh88 central lock manager ignored (buffer purge) synth. simulation; closed model
protocol comparison; influence of

primary copy locking - " - message bundling and intra-trans-
action parallelism; comparison with

disk controller locking - " - "shared memory"/"shared nothing"

DIY88 distributed fixed GLA broadcast inv., FORCE analytical; open model

 - " - on-request inv., FORCE cost-effectiveness study; influence
of number of nodes (1-30),

 - " - buffer purge, FORCE MIPS per node (1-100) and
coherency control strategy

Ra88a, b primary copy locking on-request inv., NOFORCE trace-driven sim., closed model
direct exchange of modif.
fixed page ownership

central lock manager broadcast inv., NOFORCE protocol comparison; influence
direct exchange of modif. of different workloads, number of
dynamic page ownership nodes (1-4), routing strategy, hot

spot objects, comm. overhead
central optimistic - " -

distributed optimistic - " -

- 57 -

Appendix C (continued): Database sharing performance studies

Ra93a primary copy locking on-request inv., trace-driven and synt. sim.,
FORCE + NOFORCE open model
direct exchange of modif.
fixed page ownership

global lock table in on-request inv. close vs. loose coupling;
 shared global memory FORCE + NOFORCE FORCE vs. NOFORCE

direct exchange of modif. impact of workload allocation
dynamic page ownership and buffer invalidations

 paper concurrency control coherency control methodology /
focus

DY92 central lock manager on-request inv., FORCE analytical; open model
 - " - retention locks, NOFORCE

page exchange across disk
dynamic page ownership

 - " - retention locks, NOFORCE comparison of coherency control
direct exchange of modif. protocols
dynamic page ownership

DIRY89 central lock engine broadcast inv., FORCE analytical; open model

 - " - on-request inv., FORCE coherency control; use of volatile
shared intermediate memory

DDY90a central optimistic broadcast inv., FORCE analytical; open model
analysis of hit ratios and
buffer invalidations

DDY91 central lock manager broadcast inv., FORCE analytical; open model
use of non-vol. shared intermediate
memory; buffer invalidations

DDY90b central optimistic broadcast inv., FORCE synth. simulation; closed model
analysis of hit ratios and buffer

central lock manager - " - invalidations; influence of skew
and concurrency control scheme

DY91 central lock manager broadcast inv., FORCE analytical; open model

 - " - selective inv., FORCE comparison of coherency control
strategies; hit ratios

 - " - on-request inv., FORCE

YD91 central lock manager on-request inv., FORCE analytical; open model
comparison with "shared nothing";
use of non-vol. intermed. memory;
influence of database partitiona-
bility and load surges

- 58 -

References

ABG90 Alonso, R., Barbara, D., Garcia-Molina, H.: Data caching issues in an information retriev-
al system. ACM Trans. Database Systems 15, 3, 359-384, 1990

AIM86 AIM/SRCF functions and facilities. Facom OS Techn. Manual 78SP4900E, Fujitsu Limit-
ed, 1986

BDS79 Behman, S.B., Denatale, T.A., Shomler, R.W.: Limited lock facility in a DASD control unit.
Technical report TR 02.859, IBM General Products Division, San Jose, 1979

BHT90 Bellew, M., Hsu, M., Tam, V.: Update propagation in distributed memory hierarchies.
Proc. 6th Int. Conf. on Data Engineering, IEEE Computer Society Press, 521-528, 1990

BHG87 Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in da-
tabase systems. Addison Wesley, 1987.

Bh88 Bhide, A.: An analysis of three transaction processing architectures. Proc. 14th Int. Conf.
on Very Large Data Bases, Long Beach, CA, 339-350, 1988

BK91 Barghouti, N.S., Kaiser, G.E.: Concurrency control in advanced database applications.
ACM Comput. Surv. 23, 3, 269-317, 1991.

Bo81 Borr, A.: Transaction monitoring in Encompass: A non shared-memory multi-processor
approach. Proc. 7th Int. Conf. on Very Large Data Bases, 155-165, 1981

Bo90 Boral, H. et al.: Prototyping Bubba: A highly parallel database system. IEEE Trans.
Knowledge and Data Engineering 2, 1, 4-24, 1990

BT90 Burkes, D.L. Treiber, R.K.: Design approaches for real-time transaction processing re-
mote site recovery. Proc. IEEE Spring CompCon, 568-572, 1990

CDY86 Cornell, D.W., Dias, D.M., Yu, P.S.: On multisystem coupling through function request
shipping. IEEE Trans. Soft. Eng. 12, 10, 1006-1017, 1986

CFLS91 Carey, M.J., Franklin, M.J., Livny, M., Shekita, E.J.: Data caching tradeoffs in client-serv-
er DBMS architectures. Proc. ACM SIGMOD Conf., Boulder, 357-366, 1991.

CG85 Chan, A., Gray, R.: Implementing distributed read-only transactions. IEEE Trans. Soft.
Eng. 11, 2, 205-212, 1985.

Ch82 Chan, A. et al.: The implementation of an integrated concurrency control and recovery
sceme. Proc. ACM SIGMOD Conf., 184-191, 1982.

CLSW84 Cheng, J.M., Loosley, C.R., Shibamiya, A., Worthington, P.S.: IBM Database 2 perfor-
mance: design, implementation and tuning. IBM Systems Journal 23, 2, 189-210, 1984.

CM86 Carey, M.J., Muhanna, W.A.: The performance of multiversion concurrency control algo-
rithms. ACM Trans. Comp. Systems 4, 4, 338-378, 1986.

CM88 Chang, A., Mergen, M.F.: 801 storage: architecture and programming. ACM Trans.
Comp. Systems 6, 1, 28-50, 1988.

CP84 Ceri, S., Pelagatti, G.: Distributed databases. Principles and systems. Mc Graw-Hill,
1984.

DDY90a Dan, A., Dias, D.M., Yu, P.S.: Database buffer model for the data sharing environment.
Proc. 6th Int. Conf. on Data Engineering, IEEE Computer Society Press, 538-544, 1990.

DDY90b Dan, A., Dias, D.M., Yu, P.S.: The effect of skewed data access on buffer hits and data
contention in a data sharing environment. Proc. 16th Int. Conf. on Very Large Data
Bases, Brisbane, 419-431, 1990.

DDY91 Dan, A., Dias, D.M., Yu, P.S.: Analytical modelling of a hierarchical buffer for the data
sharing environment. Proc. ACM SIGMETRICS Conf., 156-167, 1991

De90 DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H., Rasmussen,
R.: The Gamma database machine project. IEEE Trans. Knowledge and Data Engineer-
ing 2 ,1, 44-62, 1990

DFMV90 DeWitt, D.J., Futtersack, P., Maier, D., Velez, F.: A study of three alternative workstation-
server architectures for object oriented database systems. Proc. 16th Int. Conf. on Very
Large Data Bases, Brisbane, 107-121, 1990.

DG92 DeWitt, D.J., Gray, J. : Parallel database systems: the future of high performance data-
base systems. CACM 35 , 6, 85-98, 1992.

DIRY89 Dias, D.M., Iyer, B.R., Robinson, J.T., Yu, P.S.: Integrated concurrency-coherency con-
trols for multisystem data sharing. IEEE Trans. Soft. Eng. 15, 4, 437-448, 1989.

- 59 -

DIY88 Dias, D.M., Iyer, B.R., Yu, P.S.: Tradeoffs between coupling small and large process
for transaction processing. IEEE Trans. Comp. 37, 3, 310-320, 1988.

DY91 Dan, A., Yu, P.S.: Performance comparisons of buffer coherency policies. Proc. 11th
Conf. on Distributed Computing Systems, Arlington, TX, IEEE Computer Society Pr
208-217, 1991.

DY92 Dan, A., Yu, P.S.: Performance analysis of coherency control policies through lock re
tion. Proc. ACM SIGMOD Conf., San Diego, CA, 114-123, 1992.

EGLT76 Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency and p
icate locks in a database system. CACM 19, 11, 624-633, 1976.

EH84 Effelsberg, W., Härder, T.: Principles of database buffer management. ACM Trans.
tabase Systems 9, 4, 560-595, 1984.

FC92 Franklin, M.J., Carey, M.J.: Client-server caching revisited. Proc. Int. Workshop on
tributed Object Management, Edmonton,1992.

FCL92 Franklin, M.J., Carey, M.J., Livny, M.: Global memory management in client-server DB
architectures. Proc. 18th Int. Conf. on Very Large Data Bases, Vancouver,596-609, 19

FRT90 Franaszek, P.A., Robinson, J.T., Thomasian, A.: Access invariance and its use in h
contention environments. Proc. 6th Data Engineering Conf., IEEE Computer Soc
Press, 47-55, 1990.

Ga85 Gawlick, D.: Processing ’hot spots’ in high performance systems. Proc. IEEE Sp
CompCon, 249-251, 1985.

GA87 Garcia-Molina, H., Abbott, R.K.: Reliable distributed database management. Proceed
of the IEEE 75, 5, 601-620, 1987

GGHS85 Gray, J., Good, B., Gawlick, D., Homan, P., Sammer, H.: One thousand transactions
second. Proc. IEEE Spring CompCon, 96-101, 1985

GLPT76 Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.: Granularity of locks and degrees of c
sistency in a shared data base. Proc. IFIP Working Conf. on Modelling in Data Base M
agement Systems, North-Holland, 365-394, 1976

Gr78 Gray, J. N.: Notes on data base operating systems. In: ’Operating Systems - An
vanced Course’, Lecture Notes in Computer Science 60, Springer-Verlag, 393-481, 19

Gr81 Gray, J. N.: The transaction concept: virtues and limitations. Proc. 7th Int. Conf. on V
Large Data Bases, Cannes, France, 144-154, 1981.

Gr91 Gray, J. (ed.): The benchmark handbook for database and transaction processing
tems. Morgan Kaufmann Publishers, 1991.

Gr92 Grossman, C.P.: Role of the DASD storage control in an enterprise systems connection
vironment. IBM Systems Journal 31, 1, 123-146, 1992

GR93 Gray, J., Reuter, A.: Transaction processing - concepts and techniques. Morgan Kaufm
1993

GS91 Gray, J., Siewiorek, D.P.: High-availability computer systems. IEEE Computer, 39
Sept. 1991

Gu92 Guterl, F.V.: Twin mainframes power Lufthansa’s reservations. Datamation, 95-96,
1, 1992.

Ha90 Hastings, A.B.: Distributed lock management in a transaction processing environm
Proc. 9th Symposium on Reliable Distributed Systems, Huntsville, IEEE Computer S
ety Press, 22-31, 1990.

Hä84 Härder, T.: Observations on optimistic concurrency control. Information Systems 9
111-120, 1984.

Hä88 Härder, T.: Handling hot spot data in DB-sharing systems. Information Systems 13
155-166, 1988.

He90 Hellwagner, H.: A survey of virtually shared memory schemes. Research report T
I9056, Technical Univ. of Munich, 1990.

HG89 Herman, G., Gopal, G.: The case for orderly sharing. Proc. 2nd Int. Workshop on H
Performance Transaction Systems, Asilomar, CA. Lecture Notes in Computer Scien
Vol. 359, Springer-Verlag, Berlin, 148-174, 1989.

HHMM88 Härder, T., Hübel, C., Meyer-Wegener, K., Mitschang, K.: Processing and transac
concepts for cooperation of engineering workstations and a database server. Dat
Knowledge Engineering 3, 87-107, 1988.

- 60 -

Ho88 Howard, J.H. et al.: Scale and performance in a distributed file system. ACM Trans.
Comp. Systems 6, 1, 51-81, 1988.

HP87 Härder, T., Petry, E.: Evaluation of a multiple version scheme for concurrency control.
Information Systems 12, 1, 83-98, 1987.

HR83 Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Com-
put. Surv. 15, 4, 287-317, 1983.

HR85 Härder, T., Rahm, E.: Quantitative analysis of a synchronization protocol for DB-sharing.
Proc. 3. GI/NTG Conf. on Measurement, Modelling and Evaluation of Computer Systems,
Informatik-Fachberichte 110, Springer-Verlag , 186-201, 1985 (in German).

IK88 Iyer, B.R. Krishna, C.M.: Tradeoffs between static and dynamic lock name space parti-
tioning. IBM Research Report RJ 6566, San Jose, CA, 1988

IYD87 Iyer, B.R., Yu, P.S. , Donatiello, L.: Analysis of fault-tolerant multiprocessor architectures
for lock engine design. Computer Systems Science and Engineering 2, 2, 59-75, 1987.

Jo91 Joshi, A.M.: Adaptive locking strategies in a multi-node data sharing environment. Proc.
17th Int. Conf. on Very Large Data Bases, Barcelona, 181-191, 1991

JR89 Joshi, A. M. Rodwell, K.E.: A relational database management system for production ap-
plications. Digital Technical Journal, No. 8, 99-109, Feb. 1989.

KGBW90 Kim, W., Garza, J.F., Ballou, N. Woelk, D.: Architecture of the Orion next-generation da-
tabase system. IEEE Trans. Knowledge and Data Engineering 2 ,1, 109-124, 1990.

KHGP91 King, R.P., Halim, N., Garcia-Molina, H., Polyzois, C.A.: Management of a remote backup
copy for disaster recovery. ACM Trans. Database Systems 16, 2, 338-368, 1991.

Ki84 Kim, W.: Highly available systems for database applications. ACM Comput. Surv. 16, 1,
71-98, 1984.

KLS86 Kronenberg, N.P., Levy, H.M., Strecker, W.D.: VAX clusters: a closely coupled distributed
system. ACM Trans. Comp. Systems 4, 2, 130-146, 1986.

Kn87 Knapp, E.: Deadlock detection in distributed databases. ACM Comput. Surv. 19, 4, 303-
328, 1987.

KR81 Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans.
Database Systems 6, 2, 213-226, 1981.

LH89 Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM Trans.
Comp. Systems 7, 4, 321-359, 1989.

LLOW91 Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The ObjectStore database system.
CACM 34, 10, 50-63, 1991.

Lo90 Lomet, D.: Recovery for shared disk systems using multiple redo logs. Technical Report
CRL 90/4, DEC Cambridge Research Lab., Cambridge, MA, 1990.

LS90 Levy, E., Silberschatz, A.: Distributed file systems: concepts and examples. ACM Com-
put. Surv. 22, 4, 321-374, 1990.

MN91 Mohan, C., Narang, I.: Recovery and coherency-control protocols for fast intersystem
page transfer and fine-granularity locking in a shared disks transaction environment.
Proc. 17th Int. Conf. on Very Large Data Bases, Barcelona, 193-207, 1991.

MN92a Mohan, C., Narang, I.: Efficient locking and caching of data in the multisystem shared
disks transaction environment. Proc. 3rd Int. Conf. on Extending Database Technology,
Vienna, Lecture Notes in Computer Science 580, Springer-Verlag, 453-468, 1992.

MN92b Mohan, C., Narang, I.: Data base recovery in shared disks and client-server architec-
tures. Proc. 12th Int. Conf. on Distributed Computing Systems, Yokohama, IEEE Com-
puter Society Press, 1992.

MNS91 Mohan, C., Narang, I., Silen, S.: Solutions to hot spot problems in a shared disks trans-
action environment. Proc. 4th Int. Workshop on High Performance Transaction Systems,,
Asilomar, CA, 1991.

Mo92 Mohan, C.: Less optimism about optimistic concurrency control. Proc. 2nd Workshop on
Research Issues on Data Engineering (RIDE-2), Tempe, AZ, IEEE Computer Society
Press, 199-204, 1992.

MR91 Mohindra, A., Ramachran, U.: A survey of distributed shared memory in loosely-coupled
systems. Technical report GIT-CC-91/01, Georgia Institute of Technology, Atlanta, 1991.

Ne86 Neches, P.M.: The anatomy of a database computer - revisited. Proc. Spring CompCon
Conf., IEEE Computer Society Press, 374-377, 1986.

- 61 -

NL90 Nitzberg, B., Lo, V.: Distributed shared memory: a survey of issues and algorithms. IE
Computer , August1990.

NWO88 Nelson, M.N., Welch, B.B., Ousterhout, J.K.: Caching in the Sprite network file syst
ACM Trans. Comp. Systems 6, 1,134-154, 1988.

ON86 O’Neil, P.E.: The Escrow transactional method. ACM Trans. Database Systems 11
405-430, 1986.

Or90 Oracle for massively parallel systems - technology overview. Oracle Corporation,
number 50577-0490, 1990.

Or91 TPC Benchmark B - Full disclosure report for the nCUBE 2 scalar supercomputer mo
nCDB-1000 using Oracle V6.2. Oracle Corporation, part number 3000097-0391, 199

ÖV91 Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Prentice-Hall, 1
Pi90 Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S., Selinger, P.: Parallelism in relational d

base systems: architectural issues and design approaches. Proc. 2nd Int. Symposium
Databases in Parallel and Distributed Systems, Dublin, IEEE Computer Society Pr
1990.

Ra86 Rahm, E.: Primary copy synchronization for DB-sharing. Information Systems 11, 4, 2
286, 1986.

Ra87a Rahm, E.: Integrated solutions to concurrency control and buffer invalidation in datab
sharing systems. Proc. 2nd Int. Conf. on Computers and Applications, Peking, IEEE C
puter Society Press, 410-417, 1987

Ra87b Rahm, E.: Design of optimistic methods for concurrency control in database sharing
tems. Proc. 7th Int. Conf. on Distributed Computing Systems, West Berlin, IEEE Com
er Society Press, 154-161, 1987.

Ra88a Rahm, E.: Concurrency control in multi-computer database systems (in German). In
matik-Fachberichte 186, Springer-Verlag, 1988.

Ra88b Rahm, E.: Empirical performance evaluation of concurrency and coherency control
tocols for database sharing. IBM Research Report RC 14325, IBM T.J. Watson Resea
Center, Yorktown Heights, NY, 1988. An extended version of this paper will appea
ACM Trans. Database Systems 18, 2, 1993.

Ra89 Rahm, E.: Recovery concepts for data sharing systems. Technical report 14/89, Com
er Science Dept., Univ. Kaiserslautern. A shorter version of this paper appeared in P
of the 21st Int. Symposium on Fault-Tolerant Computing, Montreal, IEEE Computer
ciety Press, 368-375.

Ra91 Rahm, E.: Use of global extended memory for distributed transaction processing. P
4th Int. Workshop on High Performance Transaction Systems, Asilomar, CA,1991

Ra92 Rahm, E.: A framework for workload allocation in distributed transaction processing
tems. Journal of Systems and Software 18, 3, 171-190, 1992.

Ra93a Rahm, E.: Evaluation of closely coupled systems for high performance database
cessing. Proc. 13th Int. Conf. on Distributed Computing Systems, Pittsburgh, IEEE C
puter Society Press,1993.

Ra93b Rahm, E.: Parallel query processing in shared disk database systems. Techn. Rep
Univ. of Kaiserslautern, 1993

RAK89 Ramachran, U., Ahamad, M., Khalidi, M.Y.A.: Coherence of distributed shared mem
unifying synchronization and data transfer. Proc. Int. Conf. on Parallel Processing,
II, 160-169, 1989.

Re82 Reuter, A.: Concurrency on high-traffic data elements. Proc. ACM SIGACT-SIGM
Symp. on Principles of Database Systems, 83-92, 1982.

Re86 Reuter, A.: Load control and load balancing in a shared database management syst
Proc. 2nd Int. Conf. on Data Engineering, Los Angeles, IEEE Computer Society Pr
188-197, 1986.

Ro85 Robinson, J.T.: A fast general-purpose hardware synchronization mechanism. Proc. A
SIGMOD Conf., 122-130, 1985

RS84 Reuter, A., Shoens, K.: Synchronization in a data sharing environment. Technical Rep
IBM San Jose Research Lab., 1984

RSW89 Rengarajan, T.K., Spiro, P.M., Wright, W.A.: High availability mechanisms of VAX DB
software. Digital Technical Journal, No. 8, 88-98, Feb. 1989.

- 62 -

RT87 Ryu, I.K., Thomasian, A.: Performance analysis of centralized databases with optimistic
concurrency control. Performance Evaluation 7, 3, 195-211, 1987

Sc87 Scrutchin Jr., T.W.: TPF: performance, capacity, availabilty. Proc. Spring CompCon,
IEEE Computer Society Press,158-160, 1987.

Se84 Sekino, A. , Moritani, K., Masai, T., Tasaki, T., Goto, K.: The DCS - a new approach to
multisystem data sharing. Proc. National Computer Conf., Las Vegas, 59-68, 1984.

Sh86 Shoens, K.: Data sharing vs. partitioning for capacity and availability. IEEE Database En-
gineering 9, 1, 10-16, 1986.

Sh85 Shoens, K., Narang, I., Obermarck, R., Palmer, J., Silen, S., Traiger, I., Treiber, K.: The
Amoeba project. Proc. Spring CompCon, IEEE Computer Society Press, 102-105, 1985.

Sm82 Smith, A.J.: Cache memories. ACM Comput. Surv. 14, 3, 473-530, 1982.
ST87 Snaman Jr., W.E., Thiel, D.W.: The VAX/VMS distributed lock manager. Digital Technical

Journal, No. 5, 29-44, Sep. 1987
St79 Stonebraker, M.: Concurrency control and consistency of multiple copies in distributed

Ingres. IEEE Trans. Soft. Eng. 5, 3, 188-194, 1979
St84 Stonebraker, M.: Virtual memory transaction management. ACM Operating Systems Re-

view 18, 2, 8-16, 1984.
St86 Stonebraker, M.: The case for shared nothing. IEEE Database Engineering 9,1, 4-9, 1986
St90 Stenström, P.: A survey of cache coherence schemes for multiprocessors. IEEE Comput-

er, 12-24, June 1990
SUW82 Strickland, J., Uhrowczik, P., Watts, V.: IMS/VS: an evolving system. IBM Systems Jour-

nal 21, 4, 490-510, 1982
SZ90 Stumm, M., Zhou, S.: Algorithms implementing distributed shared memory. IEEE Com-

puter, 54-64, May 1990
Ta89 The Tandem Database Group: NonStop SQL, a distributed, high-performance, high-avail-

ability implementation of SQL. Lecture Notes in Computer Science 359, Springer-Verlag,
60-104, 1989 (Proc. 2nd Int. Workshop on High Performance Transaction Systems,
1987).

TPF88 Transaction Processing Facility, Version 2 (TPF2). General Information Manual, Release
4.0, IBM Order No. GH20-7450, 1988

TR90 Thomasian, A., Rahm, E.: A new distributed optimistic concurrency control method and a
comparison of its performance with two-phase locking. Proc. 10th Int. Conf. on Distribut-
ed Computing Systems, Paris, IEEE Computer Society Press, 294-301, 1990.

Tr83 Traiger, I.: Trends in systems aspects of database management.Proc. British Computer
Society 2nd Int. Conf. on Databases, Cambridge, England, 1-20, 1983.

TW91 Trew, A., Wilson, G. (eds.): Past, present, parallel. Springer-Verlag, 1991.
We87 Weihl, W.E.: Distributed version management for read-only actions. IEEE Trans. Soft.

Eng. 13, 1, 55-64, 1987.
WIH83 West, J.C., Isman, M.A., Hannaford, S.G.: PERPOS fault-tolerant transaction processing.

Proc. 3rd Symposium on Reliability in Distributed Software and Database Systems, IEEE
Computer Society Press,189-194, 1983.

WN90 Wilkinson, K., Neimat, M.: Maintaining consistency of client-cached data. Proc. 16th Int.
Conf. on Very Large Data Bases, Brisbane,122-133, 1990.

WR91 Wang, Y., Rowe, L.A.: Cache consistency and concurrency control in a client/server
DBMS architecture. Proc. ACM SIGMOD Conf., Boulder, 367-376, 1991.

YCDI87 Yu, P.S., Cornell, D.W., Dias, D.M., Iyer, B.R.: Analysis of affinity based routing in multi-
system data sharing. Performance Evaluation 7, 2, 87-109, 1987.

YD91 Yu, P.S., Dan, A.: Comparison on the impact of coupling architectures to the performance
of transaction processing systems. Proc. 4th Int. Workshop on High Performance Trans-
action Systems, Asilomar, CA, 1991.

Yu87 Yu , P.S., Dias, D.M., Robinson, J.T., Iyer, B.R., Cornell, D.W.: On coupling multi-sys-
tems through data sharing. Proceedings of the IEEE 75, 5, 573-587, 1987

YYF85 Yen, W.C., Yen, D.W.L., Fu, K.: Data coherence problem in a multicache system. IEEE
Trans. Computers 34,1, 56-65, 1985.

