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Abstract. Links build the backbone of the Linked Data Cloud. With the steady growth in size of datasets comes an increased
need for end users to know which frameworks to use for deriving links between datasets. In this survey, we comparatively
evaluate current Link Discovery tools and frameworks. For this purpose, we outline general requirements and derive a generic
architecture of Link Discovery frameworks. Based on this generic architecture, we study and compare the features of state-of-
the-art linking frameworks. We also analyze reported performance evaluations for the different frameworks. Finally, we derive
insights pertaining to possible future developments in the domain of Link Discovery.

1. Introduction

Over the last years, the Linked Open Data (LOD)
Cloud has been the most well-known incarnation of
the Linked Data Principles. The intention behind this
set of interlinked datasets is to create the initial seed
for the machine-readable extension of the current Web
dubbed the Data Web. While partly very large datasets
are being added to the LOD Cloud on a regular ba-
sis (e.g., Linked TCGA [53]), they are only sparsely
linked with other datasets. Recent studies show that
44% of the LOD datasets are not connected to other
datasets at all [55]. This problem is of major impor-
tance as links are central for manifold applications
including federated queries [52] and answering com-
plex questions [56,60]. The main reason for this bla-
tant lack of links in the LOD Cloud lies in the cre-
ation of links being a very tedious process when car-
ried out manually. This is especially true when dealing
with large knowledge bases which contain a very large
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number of resources. For example, creating links be-
tween DBpedia1 (4.5 million resources) and Linked-
GeoData2 (1+ million resources) would last several
decades if checking whether two resources should be
linked lasted 1 ms.

Several software tools and frameworks have already
been developed to address the link discovery prob-
lem especially to identify semantically equivalent ob-
jects in different data sources. The basic intuition be-
hind most of these approaches is to reduce the link
discovery problem to a similarity computation prob-
lem: Given two sets of resources S and T , the goal
is to automatically find pairs of resources in S × T

that should be linked with each other, e.g., according
to a owl:sameAs relationship. Two main problems
arise when dealing with link discovery in this man-
ner: achieving both a high effectiveness and a high
efficiency of the linking process. A high effective-
ness requires finding (almost) all links between two
given sources without deriving incorrect links. Achiev-

1http://dbpedia.org.
2http://linkedgeodata.org.
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ing this goal requires finding a suitable link configu-
ration or specification [23,35] specifying the similar-
ity condition(s) two resources s ∈ S and t ∈ T have
to comply with in order to count as a being in the in-
put relation. Even when given a suitable link specifica-
tion, we have to address the efficiency problem since a
naïve implementation which compares all elements of
S with all elements of T would have a complexity of
O(|S| · |T |).

Link discovery and the related problems of entity
resolution or object matching are being studied exten-
sively. A large number of techniques have already been
described in several surveys and books, e.g., [7,15,63].
In contrast to these works, we focus on surveying
and comparing the currently available link discovery
tools and frameworks. The goal is thus to survey the
state-of-the-art in existing solutions which could be
applied to solve specific linking tasks. Our compari-
son is based on numerous criteria derived from ma-
jor requirements as well as from the steps of a generic
link discovery workflow that we will present in the fol-
lowing sections. The workflow takes into account the
newest developments in this research area including
support for learning-based configurations and human
interaction. We will first present a functional compar-
ison of eleven current frameworks. We will consider
published performance evaluations for the considered
tools including the outcome of instance-level bench-
marks of the Ontology Evaluation Alignment Initia-
tive (OAEI). We will try to assess the used evalu-
ation criteria and comparability of the achieved re-
sults.

We expect the presented criteria and methodology
to be useful to comparatively evaluate additional tools.
We plan to continuously extend and update the tool
comparison under http://aksw.org/projects/linkinglod.

2. Problem statement and requirements

2.1. Link Discovery problem

The Link Discovery (LD) problem can be described
as follows: Given two sets of resources S and T

(for example about movies) and a relation R (e.g.,
owl:sameAs or dbo:producer), find all pairs
(s, t) ∈ S × T such that R(s, t) holds. The result is
represented as a set of links called a mapping: MS,T =
{(ai,R, bj )|ai ∈ A, bj ∈ B}. Optionally a similarity
score (sim ∈ [0, 1]) computed by an LD tool can be
added to the entries of mappings to express the con-

fidence of a computed link. In this case, links can be
represented as quadruples (ai,R, bj , sim(ai, bj )).

Solving the LD problem is challenging due to the
typically large volume and semantic heterogeneity of
datasets making it difficult to meet major requirements
such as high effectiveness and high efficiency. These
and further requirements are part of the LD problem
and will be discussed in the next subsection. LD has
many similarities with the problem of entity resolution
(also called deduplication, reference reconciliation or
object matching) that has already been extensively ad-
dressed [7,11,28]. In particular, similar techniques for
evaluating the similarity between objects and for im-
proving the efficiency can be applied. Still there are
significant differences between LD and entity resolu-
tion that have lead to the development of specific tools
for LD. Most entity resolution approaches focus on ho-
mogeneous datasets of relatively simple, structured ob-
jects, described by a set of single-valued attributes (see
for example the benchmark datasets in [29]). By con-
trast, the resources for LD can be heterogeneous and
highly interrelated within the datasets. In particular, re-
sources such as DBpedia or LinkedGeoData usually
abide by an ontology, which describes the properties
that resources of a certain type can have as well as the
relations between the classes that the resources instan-
tiate. Thus, the LD process usually involves an ontol-
ogy and an instance matching part (see general work-
flow in Fig. 1). Furthermore, entity resolution tech-
niques focus on finding semantically equivalent ob-
jects while LD aims at identifying diverse relations (in-
cluding owl:sameAs as well as domain-specific re-
lations).

2.2. Requirements

As mentioned before, supporting a high effective-
ness and efficiency are two main requirements for a
LD framework. In the following we pose further re-
quirements and desiderata such as low manual effort
for configuration and tuning, support for online LD as
well as the provision of a powerful infrastructure.

Effectiveness: A LD tool should generate mappings
of high-quality w.r.t. common measures such as pre-
cision, recall and F-measure. Hence, results should be
precise, i.e., the links generated by a given framework
should be correct (precision). A LD tool should also
generate as many as possible links to ensure complete-
ness. In summary, only links between resources that
really belong together should be produced. This aim
is usually achieved by a combination of different LD

http://aksw.org/projects/linkinglod
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methods. Systems may support rather simple matching
techniques such as string similarity comparisons for la-
bels (e.g., [46]) but also complex ones, e.g., by consid-
ering the semantic neighborhood of a resource or by
reusing already available links [24,42]. Furthermore, a
LD tool should support different link types [61]. In our
comparison we will evaluate which LD methods are
supported by an LD tool and which effectiveness could
be demonstrated in benchmark evaluations.

Efficiency: A LD tool should be fast and scalable
to large datasets, e.g., with hundreds of thousands or
millions of resources. A naive, non-scalable approach
evaluates all possible pairs of resources (Cartesian
product) resulting in a quadratic complexity. Hence,
a main efficiency goal is to reduce the search space
so that the evaluation of irrelevant pairs of resources
is largely avoided. Another general optimization ap-
proach is parallel LD on multiple cores or multiple
nodes in a cluster. This includes the utilization of mod-
ern hardware and infrastructures such as graphical pro-
cessing units (GPU) or Hadoop-based clusters [35].

Low Configuration and Tuning Effort: Achieving
a high effectiveness generally demands complex link
specifications with the combined use of multiple sim-
ilarity measures and adequate settings for configura-
tion parameters such as similarity thresholds. Man-
ually specifying such configurations is very difficult
and time-consuming so that this effort should largely
be reduced by automated approaches. This can be
achieved by learning-based methods, e.g., by super-
vised approaches using training data of matching or
non-matching pairs of resources. Alternatively, the LD
framework can analyze the datasets, e.g., to select suit-
able similarity measures or properties to evaluate. In
order to really reduce the manual configuration effort,
the automated approaches should not introduce a sig-
nificant extra configuration, e.g., for providing training
data or specifying new tuning parameters.

Online and Offline LD: In addition to a classical of-
fline execution of LD, applications such as mashups
or on-demand query systems demand an online LD
to integrate data from several data sources at runtime.
Hence, a LD tool should support such a runtime or ad-
hoc LD, e.g., by providing an appropriate API. Typi-
cally, the number of resources to be linked in this way
is small thereby facilitating a sufficiently fast execu-
tion.

Powerful infrastructure: The support for LD dis-
cussed in the previous desiderata requires a set of pow-
erful and easy-to-use tools. In particular, a LD tool
should come with flexible libraries with different sim-

ilarity functions, support different performance opti-
mizations and provide different possibilities to access
data sources for LD and a graphical user interface to
display and configure the workflow. Furthermore, the
specified LD workflow should be executable on dif-
ferent platforms, preferably with parallel processing.
Besides, mechanisms for collaborative work in groups
or crowd-sourcing should be provided to more easily
overcome problems like labeling of training data or the
generation of gold standards. Overall, a tool should be
designed domain-independent but it should be possi-
ble to flexibly customize it for specific LD tasks, e.g.,
linking geographical resources or knowledge from the
life sciences.

3. LD workflow

Current LD frameworks mostly apply workflows
consisting of several steps to perform LD. In most
cases, these workflows are instantiations of the generic
workflow shown in Fig. 1. This workflow is a general-
ization of the architecture given by analysing the latter
on compared LD frameworks (starting in Section 4).
The input of the workflow includes the two datasets
(source, target) to be linked, configuration parameters
and optional background knowledge resources. The in-
put data may be provided in the form of RDF/OWL
dumps or in the form of a SPARQL endpoint for query-
based data access. Linking may be restricted to a sub-
set of a data source, e.g., instances of a particular class,
as for example a geographic data source contains set-
tlements and there is no need to compare these with ac-
tors from a more generic data source such as DBpedia.
The configuration input may either be a complete link-
ing specification (e.g., rules for comparing resources)
or selected parameters such as similarity thresholds.
Training data required for learning-based linking is an-
other kind of configuration input. Optionally, tools can
make use of further knowledge resources such as dic-
tionaries or previously determined mappings for reuse.
The output of the workflow is the set of found links or
correspondences representing a mapping between the
source and target datasets.

The generic workflow itself has three main phases:
preprocessing, matching (similarity computation) and
postprocessing. Preprocessing in turn deals with two
important tasks: finalizing the linking specification
(configuration) and improving runtime efficiency, e.g.,
by reducing the search space for similarity computa-
tions in the main match phase. Preprocessing may also
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Fig. 1. General workflow LD Frameworks (steps with dashed borders are optional).

include preparatory steps to transform and clean the in-
put data, e.g., to remove stop words or resolve abbrevi-
ations. While matching is completely automatic there
may be user interaction for preprocessing, e.g., to la-
bel training data for learning-based linking, and post-
processing, e.g., to verify computed links with a lower
confidence.

In the following we describe the two preprocessing
steps about configuration and runtime optimization as
well as the match and postprocessing phases and their
implementation alternatives in more detail. In the tool
evaluation we will study which of the different options
are applied.

3.1. Configuration

LD is typically based on evaluating the similarity
of resources according to one or several criteria. Each
criterion is based on a specific similarity measure or
similarity function and compares either properties or
the semantic context of resources. For example two
movies may be linked by a owl:sameAs property
based on the similarity of their titles, their release years
and the set of actors who starred in them. Specifying
a linking configuration thus entails the specification of
the elements (properties, context) to evaluate as well as
the similarity measures to apply (e.g., a 3-gram string
similarity, Jaccard similarity for sets or numerical dif-
ference) and a way to derive a combined linking deci-
sion from the individual similarity values, e.g., based
on similarity thresholds to meet.

According to [28], different similarity values may
be combined either numerically or using rule-based
or workflow-based approaches. Numerical approaches

aggregate different similarity values, e.g., by taking a
weighted average, and apply a single similarity thresh-
old to the aggregated value. Rule-based approaches
use so-called match rules to derive a match or link de-
cision. Such rules define logical combinations of con-
ditions, e.g., 3-gram similarity for title > 0.9 and equal
release year. Workflow-based approaches are less com-
mon and assume the iterative calculation of different
similarity values during the match phase to determine
a link decision. For example, one could first calculate
the string similarity for a selected property and then
apply a more expensive context-based similarity mea-
sure (e.g., for the set of movie actors) only for pairs
of resources with a high similarity for the first crite-
rion [34,59].

A manual definition of effective linking specifica-
tions such as match rules is difficult to achieve in many
cases even for domain experts. Hence, it is desirable to
automate at least some of the decisions such as select-
ing the properties or the similarity measures to evalu-
ate. This is achieved by adaptive LD approaches that
analyze characteristics of the input data to achieve a
partially automated specification of the linking config-
uration [3,18,37,40,64].

Alternatively, learning-based approaches can be
applied to semi-automatically or automatically de-
rive a linking specification. The proposed learning
approaches for this purpose are mostly supervised,
i.e., they depend an suitable training data consisting
of pairs of resources which are labeled as match-
ing (linking) or non-matching. The learned classifica-
tion model may be based on different learning tech-
niques such as decision trees, SVM or genetic algo-
rithms. Labeling training data is often a manual step
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requiring the interaction of humans. The manual la-
beling effort may be kept feasible by crowdsourcing.
Alternatively, the amount of training can be limited
by active learning where user feedback is only re-
quested for a smaller amount of controversial pairs
where a similarity function cannot find a clear link-
ing decision. Learning-based approaches may also
be unsupervised, thereby avoiding the need for train-
ing data. However, these approaches may still require
the specification of critical parameters such as suit-
able similarity or distance measures and threshold val-
ues [37,43].

3.2. Runtime optimization

The main approach to optimize the runtime for LD
during preprocessing is a reduction of the search space
to avoid that the Cartesian Product of the input datasets
S × T needs to be evaluated. This is mainly supported
by two complementary approaches called blocking and
filtering. Blocking partitions the datasets into multiple
partitions or blocks such that links are only determined
between resources of the same partition. There are sev-
eral approaches with disjoint or overlapping partitions
for this, e.g., standard blocking (based on a predefined
blocking key) or canopy clustering [4,7]. Furthermore,
multiple blocking keys may be applied to partition the
input according to several criteria so that the likeli-
hood of finding all links is improved. The blocking
key is commonly based on attribute or property val-
ues, e.g., one could partition movies according to the
first three letters of the movie title or according to last
name of the movie director. Resources can also be par-
titioned based on their associated ontology concepts
if both data sources have comparable concepts, e.g.,
the genre of movies. We will call such an approach
concept-based blocking.

Filtering utilizes details of the linking configuration,
such as the similarity measure or similarity threshold,
to filter pairs of records that cannot meet the similar-
ity condition. For example, token-based string simi-
larity measures such as the Jaccard or Dice similarity
can only exceed a certain threshold if the input strings
are of similar length and share a certain number of to-
kens [5]. Preprocessing can support the efficient exe-
cution of such filters in the match phase, e.g., by creat-
ing a token index.

Blocking and filtering can jointly be applied, e.g., to
reduce the number of comparisons for partition-wise
linking. Furthermore, both approaches can be utilized
in combination with parallel LD [27,35].

3.3. Match approaches

The main phase of the LD workflow applies the
linking specification and evaluates the specified sim-
ilarity measures on the pairs of resources that still
need to be considered according to the used block-
ing or filter methods. An LD tool typically has a li-
brary of different match techniques (or matchers) that
apply a similarity measure on the resources to link
with each other. These matchers have been categorized
as either element- or structure-based [14,51] depend-
ing on whether they evaluate simple resource elements
such as atomic property values (literals) or whether
they consider the context of resources (e.g., related
instances or the ontological context), Element-level
matchers are most common and can be based on sim-
ilarity measures for strings (n-gram, TF/IDF, edit dis-
tance, etc.) [6], numbers or domain-specific data types
such as geographical coordinates. They are typically
applied on matching of comparable properties of re-
sources that have been specified as part of the link-
ing specification (either manually or automatically).
Similarity computation may also utilize different kinds
of background knowledge such as general-purpose or
domain-specific dictionaries and thesauri.

Structure- or context-based matchers are more so-
phisticated and aim at deriving the similarity of re-
sources from the similarity of their context. There is
a large spectrum of possible approaches depending on
what context and which similarity computation is ap-
plied. For example, some approaches use so-called an-
chor links between highly similar resources as a seed
to iteratively find matching entities in the sets of their
related entities [20,24]. The search for matches can
also be confined to instances of equivalent or related
classes thereby utilizing the ontological context.

A promising LD approach is to utilize already ex-
isting links and mappings to find new links. Based
on the transitivity of the equality relation one can
compose several owl:sameAs links to derive new
owl:sameAs links. Effective strategies for such a
composition of mappings and links have been pro-
posed and evaluated in [17]. Public mapping reposito-
ries such as BioPortal [49] or LinkLion [31] support
the publication of links and thus their reuse for deter-
mining new links.

3.4. Postprocessing

In the final phase the results of the matchers need
to be combined and the links need to be selected from
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Table 1

Considered LD tools

System/initial publication Year Institution Learning-based OAEI IM participation Support for pure
ontology matching

RiMOM [58] 2004 Univ. of Tsinghua, China � �
KnoFuss [44] 2007 Open Univ. Milton Keynes, UK �
AgreementMaker [8] 2009 Univ. of Illinois at Chicago, USA � �
Silk [61] 2009 FU Berlin, Germany �
CODI [42] 2010 Univ. of Mannheim, Germany � �
LIMES [32] 2011 Univ. of Leipzig, Germany �
LogMap [24] 2011 Univ. of Oxford, UK � �
SERIMI [3] 2011 Delft Univ. of Techn., Netherlands �
Zhishi.links [46] 2011 Shanghai Jiao Tong Univ., China �
SLINT+ [41] 2012 Nat. Inst. of Informatics, Japan �
RuleMiner [45] 2012 Shanghai Jiao Tong Univ., China �
Notes: Sorted by year of initial publication

the set of candidate links according to the linking spec-
ification, e.g., by applying a match rule or a learned
classification model. The resulting links may be fur-
ther refined or repaired to avoid inconsistencies, such
as the violation of ontological or application-specific
constraints. For example, one could request a 1:1 map-
ping so that each instance is linked with at most one
instance of the other input dataset. Hence, postpro-
cessing could enforce this restriction by selecting the
best link per instance, e.g., with the highest computed
confidence value. Human feedback is generally help-
ful during postprocessing to verify the correctness of
computed links.

4. Functional comparison

In this section, we provide a functional comparison
of eleven state-of-the-art frameworks for LD based on
the requirements and the general LD workflow dis-
cussed in the previous sections. The selection of tools
was further based on the following criteria:

– participation in the OAEI instance matching
benchmark track with relatively good perfor-
mance; or

– learning-based approach for LD and published
evaluation results.

Table 1 lists the considered frameworks with their
originating organization, their first LD-related publi-
cation and further criteria that allows a rough group-
ing of the tools. Seven of the tools have participated
in the instance matching contest of the OAEI. The re-
maining four frameworks (Silk, LIMES, KnoFuss and
RuleMiner) support among others learning-based ap-

proaches for determining linking specifications. A fur-
ther criterion indicates that four of the seven tools of
the first group have support for pure ontology match-
ing in addition to instance matching. In fact, these
frameworks (RiMOM, AgreementMaker, LogMap and
CODI) mostly started with ontology matching and
supported instance matching later. Due to the general-
ity of the LD workflow and the given requirements the
followed approach for tool evaluation and comparison
can be easily applied to further LD frameworks.

For the more detailed comparison of the tools we
summarize their main features in Tables 2 and 3 for the
mentioned two groups of 7 + 4 systems. The consid-
ered criteria belong to the following categories largely
following the steps of the introduced LD workflow:

– Supported input formats.
– Configuration approach.
– Runtime optimizations.
– Match approaches.
– Postprocessing.
– Support for parallel processing.
– User interface (GUI support) and interaction.
– General availability.

In the following subsections we will discuss these as-
pects for the different frameworks. Finally we will
summarize our observations from the functional com-
parison and relate these to the posed requirements.

4.1. Data input

Nine of the eleven tools accept the input datasets in
RDF file format while two frameworks (Agreement-
Maker, SERIMI) need to retrieve the data exclusively
from SPARQL endpoints. While SPARQL endpoints
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Table 2

Characteristics of proposed LD frameworks

RiMOM AgreementMaker CODI LogMap SERIMI Zhishi.links SLINT+

Data Input RDF, OWL SPARQL RDF, OWL RDF, OWL SPARQL RDF RDF

Supported linktypes owl:sameAs owl:sameAs owl:sameAs owl:sameAs owl:sameAs owl:sameAs owl:sameAs

Configuration adaptive manual manual manual adaptive manual adaptive

- matcher combination weighted
average

weighted
combination

weighted
average

weighted
average

- weighted
combination

weighted
average

Runtime optimization

- Blocking - - - - - - -

- Filtering indexing indexing - indexing - indexing indexing

String similarity
measures

� � � � � � �

Further similarity
measures

- - - - - geographical
coordinates

inverted
disparity

Structure matcher - semantic
similarity

iterative anchor-
based mapping
generation

iterative anchor-
based mapping
generation

- semantic
similarity

-

Use of

- external dictionaries ?* ?* - ?* - - -

- existing mappings - - - - - - -

Post-processing - - Coherence
checks

Inconsistency
repair

- - -

Parallel processing - - - - - MapReduce -

GUI/web
interface/API

- / - / - �/ ? / - - / - / - �/ �/ - - / - / - - / - / - - / - / -

Download Tool/Source �/ - -1 / - �/ � �/ � �/ � �/ - �/ -

Open Source project - - � � � - -

Notes: “-” means not existing, “?” unclear from publication, “*” supported in respective ontology matching framework, 1 no answer on form
submission

support a flexible and dynamic data access they can
cause availability and performance problems. In addi-
tion to RDF, CODI, LogMap and RiMOM addition-
ally support OWL input files. Access to SPARQL end-
points is also supported by the learning-based tools
Silk, LIMES and KnoFuss. Dynamic data access with
SPARQL typically uses a restriction to certain classes
(e.g., books, settlements) thereby limiting the data vol-
ume and search space for finding links. While all
frameworks are generic and can thus deal with data
from different domains and for different applications
some tools have also specifically been used for gen-
eral web data, e.g., to evaluate a real e-commerce
dataset [36] or to support question answering tasks
combining Linked Data and web data [30].

Surprisingly, a large number of the considered
frameworks does not seem to rely on external back-
ground knowledge such as dictionaries or already
known links and mappings (except for the use of se-
lected links for training supervised approaches to learn
link specifications). This is in strong contrast to ontol-

ogy matching where virtually all current tools utilize
dictionaries such as WordNet as background knowl-
edge [50]. The tools RiMOM, AgreementMaker and
LogMap also utilize such dictionaries for their ontol-
ogy matching but apparently not for linking instance
data. A possible reason for this situation is the lack of
suitable knowledge resources supporting linking at the
instance level. Only the LD tool Zhishi.links did use
a manually created synonym list, mainly for resolving
abbreviations such as (Corp. – Corporation), (NY –
New York) [46].

4.2. Configuration

Most frameworks can only determine owl:sameAs
links or equivalent instances. LIMES and Silk also
support additional link types which need to be manu-
ally specified by the tool user.

Four frameworks rely on a purely manually spec-
ified linking configuration (CODI, LogMap, Agree-
mentMaker, Zhishi.links). For several matchers the re-
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Table 3

Characteristics of learning-based LD frameworks

KnoFuss Silk LIMES RuleMiner

Data Input RDF, SPARQL RDF, SPARQL, CSV RDF, SPARQL, CSV RDF

Supported linktypes owl:sameAs owl:sameAs,
user-specified others

owl:sameAs,
user-specified others

owl:sameAs

Configuration manual (match rules),
unsupervised learning
(genetic programming)

manual (match rules),
supervised learning
(genetic programming,
active learning)

manual (match rules),
supervised learning (genetic
programming, active
learning), unsupervised
(genetic programming)

adaptive (match
rules), supervised
learning
(expectation
maximization)

Runtime optimization

- Blocking - multi-dimensional - -

- Filtering indexing - space tiling indexing

String similarity measures � � � �
Further similarity
measures

- numeric, date equality geographical coordinates,
numeric, date equality

-

Structure matcher - - - semantic similarity

Use of

- external dictionaries - - - -

- existing mappings - - - -

Post-processing one-to-one mapping - Stable marriage,
hospital-resident

-

Parallel Processing - MapReduce (MapReduce)* MapReduce

GUI/web interface/API - / - / - � / � / � � / � / � - / - / -

Download Tool/Source � / � � / � � / - - / -

Open Source project � � - -

Notes: “-” means not existing, “*” investigated in [19], but not available in current release

sulting similarity values are combined according to
a weighted average approach or a match rule. The
learning-based tools KnoFuss, Silk and LIMES also
support manually specified match rules. Four tools (Ri-
MOM, SERIMI, SLINT+, RuleMiner) already follow
a semi-automatic, adaptive linking specification by an-
alyzing the datasets and identifying the most discrim-
inating properties. For example, if publications have
to be matched, the title will be more discriminating
than the venue of the publication. SERIMI is limited
to only a single property to be selected for matching.
Further parameters such as similarity thresholds have
to be manually specified.

Silk, LIMES and RuleMiner support supervised
learning of a linking specification. Silk and LIMES
employ genetic programming with batch or active
learning [21,36]. RuleMiner uses an iterative cluster-
ing approach maximizing a likelihood function assum-
ing a close to 1:1 mapping of instances from source to
target dataset [45]. Genetic programming starts from
a set of random link specifications and uses the evolu-
tionary principles of selection and variation to evolve
these specifications until a linking condition meets a

predefined optimization criterion (fitness function) or
a maximal number of iterations is reached. For super-
vised learning, manually labeled link candidates are
used within the genetic algorithm to find link specifi-
cations that come close to the match decisions for the
training data. Active learning aims at reducing the la-
beling effort for training data and applies an interactive
labeling of automatically chosen link candidates [21].
Link candidates for active learning are selected to op-
timize criteria such as entropy or the similarity corre-
lation to unlabeled instances [38].

KnoFuss and LIMES also implement an unsuper-
vised learning of the linking specification [37,43].
The approaches also utilize genetic programming but
try to iteratively optimize measures that evaluate in-
direct quality criteria such as high similarity values
and closeness to a 1:1 mapping (assuming duplicate-
free data sources) [37,39,43]. In KnoFuss, the candi-
date linking specifications aggregate the weighted sim-
ilarity values for several string matchers and require
the aggregated similarity value to exceed a certain
threshold. The approach thus has to select the match-
ers, determine their weights, the aggregation func-
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tion (e.g., average or max) and the similarity thresh-
old.

4.3. Runtime optimization

Silk is one of the few frameworks implementing an
explicit blocking to reduce the search space. They sup-
port the (manual) specification of multiple blocking
keys, i.e., only instances sharing one of the blocking
keys must be compared with each other. A multidimen-
sional index is applied to implement this strategy [23].
An implicit blocking is achieved by preselecting in the
input specification the classes to be processed but this
does not allow to a-priori reduce the search space for
the instances of a class which may be numerous.

The main approach to improve runtime in the con-
sidered tools is filtering, especially by utilizing in-
verted index structures. This optimization focuses
mostly on a specific property and similarity measure
(matcher). For example token-based string similarity
measures such as Jaccard require matching values to
share several tokens. Hence all pairs without a com-
mon token can be excluded from the comparison. An
inverted index allows one to quickly determine the in-
stances that still must be considered. LIMES applies
this filtering idea for metric spaces by exploiting the
triangular inequality to exclude instances from match
comparisons [32]. Newer algorithms implemented in
LIMES use space tiling to improve the runtime of mea-
sures with Minkowski or orthodromic distances [33].
The idea behind space tiling is to portion the spaces
implied by the measures so as to compare the elements
of the each tile with a small number of other tiles while
ensuring that all links can be found.

4.4. Matching strategies

All tools support element-level matchers on selected
properties based on string similarity measures such as
edit distance, n-gram, or Jaccard [6]. Only few tools
(Zhishi.links, Silk, LIMES) also support built-in nu-
merical similarity measures (e.g., Euclidean distance)
or domain-specific measures such as for geographi-
cal coordinates. Except SERIMI, all frameworks can
match on more than one property [2]. The similarity
values of different matchers are combined according to
the linking specification (match rule, weighted average
or according to a learned linking specification).

In addition to simple matching on property values
five frameworks (CODI, LogMap, AgreementMaker,
Zhishi.links, RuleMiner) already apply a structural

matching based on the ontology structure to find links.
LogMap and CODI apply an iterative anchor-based
matching approach. Within the instances of compara-
ble concepts so-called anchor links are determined first
between almost identical instances. Both LogMap and
CODI then use information from the ontology to iter-
atively extend the existing mapping by evaluating the
similarity of related instances, either utilizing object-
property-assertions [20] or logical reasoning [26]. In
LogMap the similarity computation is performed by an
algorithm called ISUB [57] that combines three differ-
ent metrics. CODI simply employs a threshold-based
edit distance [47].

The structural matching in AgreementMaker is
based on its approach used for ontology matching.
Zhishi.links applies a two-step matching approach. Ini-
tially it determines property-based similarities. The re-
sults are filtered via a threshold and the similarities are
then semantically refined based on the similarity of re-
lated resources in the ontological context [46]. RuleM-
iner tries to derive the equivalence decision between
instances not only from the similarity of property val-
ues but also from references to shared instances [45].

4.5. Postprocessing

The main task of postprocessing is to select the links
according to the linking specification, e.g., by apply-
ing a match rule taking into account the computed
similarity values. Additional verification steps are ap-
plied by LogMap and CODI to avoid that inconsis-
tent mappings are determined. These tools also sup-
port pure ontology matching where such postprocess-
ing steps are quite common. Specifically, LogMap ap-
plies logical reasoning [25] and CODI utilizes logi-
cal coherence checks to identify links contradicting
ontological restrictions [48]. Furthermore, KnoFuss,
LIMES and RuleMiner employ postprocessing strate-
gies to ensure that every instance in the source can only
have at most one corresponding instance in the target
dataset [36,43].

4.6. Support for parallel LD

For high efficiency and scalability, support for par-
allel LD is beneficial. In addition to utilizing multi-
ple processors of a single node parallel LD may also
use several nodes in a distributed cluster, e.g., running
Apache Hadoop with MapReduce. Four of the eleven
frameworks already support a MapReduce implemen-
tation: LIMES [19], Zhishi.links [46], RuleMiner [45]
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and Silk.3 For Zhishi.links and RuleMiner, MapRe-
duce is mandatory. Unfortunately, the use of MapRe-
duce typically incurs a substantial overhead, e.g., for
the disk-based exchange of data between machines,
which cannot be compensated by parallel processing
for smaller datasets. Hence, the use of MapReduce is
mainly viable for very large LD tasks (according to
[35] for more than 109 comparisons). Another promis-
ing option is using parallel processing on massively
parallel graphic processors (GPUs) as already explored
in [35]. A restriction for GPU computations is the lim-
ited memory of the GPU. Hence, it is mainly promis-
ing for smaller problem sizes, e.g., of up to 106 com-
parisons [35]. While these optimizations have already
been studied in the context of the mentioned tools they
are not always an integral part of the available tool ver-
sions as they require a specific infrastructure (Hadoop
cluster or GPU).

4.7. User interface and interaction

User interfaces for the eleven frameworks range
from simple command line interfaces (with diverging
sets of options) over stand-alone installations to web
applications. Only four tools (LogMap, Agreement-
Maker, LIMES, Silk) support a GUI for convenient in-
teractive use (Tables 2 and 3). Furthermore, Silk [22]
and LIMES4 mention the availability of an API to call
the LD functionality from other programs.

4.8. Availability for other researchers

As seen in Tables 2 and 3 all tools (except Agree-
mentMaker and RuleMiner) are publicly available; five
tools even follow an Open Source strategy.

4.9. Summarizing observations

The considered tools provide a very good general
availability providing a rich choice for interested users
and researchers. In the following, we will discuss how
the described features relate to the requirements for LD
frameworks introduced in Section 2.2. We also men-
tion missing features and thus opportunities for future
improvement. The discussion may help selecting a tool
for use although we cannot make a recommendation
for a specific framework. This is also because the main
requirements of high effectiveness and high efficiency

3https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce.
4http://aksw.org/Projects/LIMES.html.

would require comparable and meaningful benchmark
results. However, this is still an open issue as we will
discuss in Section 5.

Effectiveness: Effectiveness is mainly influenced by
the matchers applied and their configuration and com-
bination. Most of the considered tools only support
rather simple property-based matchers; the more ad-
vanced structural match techniques are available in five
tools. The potential of utilizing already existing links
and mappings as well as other background knowledge
such as dictionaries is not yet exploited, with the ex-
ception of the use of a handcrafted synonym list in
Zhishi.links. Support for finding link types other than
owl:sameAs is only provided by Silk and LIMES.
Except for SERIMI, all frameworks support the com-
bined use of several matchers. Given the difficulty
to manually select and configure multiple matchers,
adaptive and learning-based configuration approaches
may be more effective than manually configured ones
although they introduce new difficulties such as the
provision of suitable training data.

Efficiency: This is mainly addressed by filtering
techniques for specific matchers rather than more gen-
eral blocking approaches to reduce the search space.
Parallel processing based on MapReduce is supported
by four tools but it is a rather heavy-weight ap-
proach requiring a suitable Hadoop cluster environ-
ment. Other options such as the use of GPUs or newer
Hadoop (in-memory) processing frameworks such as
Apache Spark are not yet supported.

Configuration and tuning effort: Most tools already
support advanced methods for semi-automatic config-
uration of linking specifications, in four cases based
on learning approaches such as genetic programming.
The learning-based approaches also allow a manual
specification of match rules, thereby providing maxi-
mal flexibility.

Online and Offline LD: While offline LD is possi-
ble with all tools, support for online LD is still lim-
ited. Five frameworks can retrieve data at runtime
from SPARQL endpoints. Four tools provide a web
or graphical user interface to interactively start a LD
workflow. From these, only Silk and LIMES allow an
interactive configuration via a web interface. An API
for external access as desirable to implement online
LD in applications such as mashups is only available
for Silk and LIMES.

Powerful infrastructure: Most frameworks are rather
powerful providing many configuration possibilities
based on different similarity functions and matchers.
As already mentioned four LD frameworks support

https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce
http://aksw.org/Projects/LIMES.html
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Table 4

OAEI instance matching tasks over the years

Name Input Format Type of problem Domains LOD Sources Link Type Max. # Resources Tasks

2010 DI RDF real life sciences diseasome equality 5,000 4

drugbank

dailymed

sider

IIMB OWL artificial cross-domain Freebase equality 1,416 80

PR RDF, OWL artificial people - equality 864 3

geography

2011 DI-NYT RDF real people NYTimes equality 9,958 7

geography DBpedia

organizations Freebase

Geonames

IIMB OWL artificial cross-domain Freebase equality 1,500 80

2012 SB OWL artificial cross-domain Freebase equality 375 10

IIMB OWL artificial cross-domain Freebase equality 375 80

2013 RDFT RDF artificial people DBpedia equality 430 5

2014 id-rec OWL artificial publications ? equality 2,649 1

sim-rec OWL artificial publications ? similarity 173 1

Notes: “-” means not existing, “?” unclear from publication

parallel matching using MapReduce. LogMap, Agree-
mentMaker, Silk and LIMES provide GUI support for
easy user interaction. The learning-based tools Kno-
Fuss, Silk and LIMES provide the most options for
linking configuration and runtime optimization.

5. Comparison of evaluation results

In this section, we analyze the published evaluation
results for the considered frameworks. Special em-
phasis is given to results for the Ontology Evaluation
Alignment Initiative (OAEI)5 in the instance matching
track aiming on an evaluation of different systems un-
der the same conditions.

Similarly to previous evaluation studies on entity
resolution [7,28] we consider the following criteria:

– Format of input data (RDF, OWL, etc.).
– Determined link types.
– Real vs. artificial (synthetic) datasets: artificial

datasets are typically created by systematically
changing real instances to create similar (match-
ing) instances to identify by the evaluated ap-
proaches. This supports the generation of large
datasets for scalability experiments.

– Considered data sources and domains.

5http://www.ontologymatching.org.

– Effectiveness: achieved linking quality in terms
of precision, recall and F-measure w.r.t. a perfect
linking result (gold standard).

– Efficiency: runtime results and scalability to large
data volumes.

In the following we first describe the results for
OAEI instance matching benchmarks which provide
the best possible comparability for the different tools
so far. Afterwards we briefly discuss observations from
additional evaluations and summarize the main find-
ings.

5.1. OAEI benchmark tests

The Ontology Evaluation Alignment Initiative
(OAEI) performs yearly contests since 2005 to com-
paratively evaluate current tools for ontology and in-
stance matching. The original focus has been on on-
tology matching but since 2009 instance matching has
also been a regular evaluation track. As already dis-
cussed in the previous section, seven of the eleven tools
have already participated in this track. Even three of
the four learning-based frameworks used some of the
OAEI test cases for their evaluations. Despite this sit-
uation, the analysis of the results for the OAEI bench-
mark is made complicated because the tasks and the
participating systems change every year.

Table 4 gives an overview over the OAEI instance
matching tasks in five contests from 2010 until 2014.

http://www.ontologymatching.org
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Table 5

Tool participation in OAEI instance matching tracks over the years

Task AgreementMaker SERIMI CODI Zhishi.links LogMap RiMOM SLINT+ LIMES Silk KnoFuss

2010 PR � � �* �* �*

2010 IIMB � �
2010 DI �
2011 IIMB �
2011 DI-NYT � � � �* �* �*

2012 SB �
2012 IIMB �
2013 RDFT � � �
2014 id-rec � �
Notes: RuleMiner did not participate in any of the given tasks. “*” did not participate in OAEI contest

Most tasks have only been used in one year while oth-
ers like IIMB have been changed in different years.
Most tests are based on artificially changed datasets
where values and the structural context of instances
have been modified in a controlled way. The tests
cover different domains (life sciences, people, geogra-
phy, etc.) and LOD data sources (DBpedia, Freebase,
GeoNames, NYTimes, etc.). Frequently the bench-
marks consist of several match (linking) tasks to cover
a certain spectrum of complexity. The number of in-
stances is rather small in all tests with a maximal
size of a data source of 9,958 or fewer instances.
The evaluation focus has been solely on the effective-
ness (e.g., F-Measure) while runtime efficiency has not
been measured. Almost all tasks focus on identifying
equivalent instances (owl:sameAs links).

We briefly characterize the different OAEI tasks as
follows.

IIMB and Sandbox (SB) The IIMB benchmark has
been part of the 2010, 2011 and 2012 contests and
consists of 80 test cases using synthetically modified
datasets derived from instances of 29 Freebase con-
cepts. The tests and number of instances vary from
year to year but the tests are generally of a very small
size (e.g., at most 375 instances in 2012). The Sandbox
(SB) benchmark from 2012 is very similar to IIMB but
limited to 10 different test cases [1].

PR (Persons/Restaurant) This benchmark is based
on real person and restaurant instance data which are
artificially modified by adding duplicates and varia-
tions of property values. The dataset is relatively small
with about 500-600 instances in the restaurant data
source and even less in the person data source. [12]

DI-NYT (Data Interlinking – NYT) This 2011 bench-
mark includes seven tasks to link about 10,000 in-

stances from the NYT data source to DBpedia, Free-
base and GeoNames instances. The perfect match re-
sult contains about 31,000 owl:sameAs links to be
identified [13].

RDFT This 2013 benchmark is also of small size
(430 instances) and uses several tests with differently
modified DBpedia data. For the first time in the OAEI
instance matching track, no reference mapping is pro-
vided for the actual evaluation task. Instead, training
data with an appropriate reference mapping is given for
each test case thereby supporting frameworks relying
on supervised learning [9].

OAEI 2014 Two benchmark tasks have to be per-
formed in 2014, the first one (id-rec) requiring the
identification of the same real-world book entities
(sameAs links). For this purpose, 1,330 book instances
have to be matched with 2,649 synthetically modifies
instances in the target dataset. Data transformations in-
clude changes like the substitution of book titles and
labels with keywords as well as language transforma-
tions. The second task (sim-rec) requires determining
the similarity of pairs of instances which do not re-
flect the same real-world entities. This addresses com-
mon preprocessing tasks, e.g., to reduce the search
space for LD. In 2014, the central evaluation plat-
form SEALS [16] is used for instance matching, too.
Still, no runtime evaluation is provided for the instance
matching task. The sim-rec task [10] is not further
evaluated in this paper.

5.2. Evaluation results of OAEI tasks

Table 5 shows the participation of the considered
tools in the different OAEI contests and benchmarks.
Overall, many tools participated only once or twice
(AgreementMaker, SERIMI, Zhishi.links, SLINT+)
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Table 6

F-Measure results of the OAEI 2010 benchmark PR (Person/Restaurant)

RiMOM CODI KnoFuss* Silk* LIMES (unsupervised)*

Person1 1.00 0.91 1.00 - 1.00

Person2 0.97 0.36 0.99 - 0.94

Restaurant (OAEI) 0.81 0.72 0.78 - -

Restaurant (fixed) - - 0.98 0.99 0.82

Notes: “*” result was achieved outside the OAEI contest

Table 7

F-Measure results for OAEI 2011 benchmark DI-NYT [13]

AgreementMaker SERIMI Zhishi.links KnoFuss* Silk* Slint+*

nyt-dbpedia-loc. 0.69 0.68 0.92 0.89 0.93 0.97

nyt-dbpedia-org. 0.74 0.88 0.91 0.92 - 0.95

nyt-dbpedia-peo. 0.88 0.94 0.97 0.97 - 0.99

nyt-freebase-loc. 0.85 0.91 0.88 0.93 - 0.95

nyt-freebase-org. 0.80 0.91 0.87 0.92 - 0.96

nyt-freebase-peo. 0.96 0.92 0.93 0.95 - 0.99

nyt-geonames 0.85 0.80 0.91 0.90 - 0.99

H-mean 0.82 0.85 0.91 0.93 - 0.97

Notes: H-mean is calculated manually from the single F-measure values of the appropriate publication, “*” result was achieved outside the
OAEI contest

and several benchmarks have only been evaluated by
one or two systems (IIMB 2010, 2011 and 2012, SB,
DI 2010, id-rec 2014). The learning-based tools have
used the PR and DI-NYT benchmarks but not within
the contest so that a direct comparability is not given.
This is because outside the contest tools could apply a
more intensive tuning and utilize additional informa-
tion such as training data. Our comparison will thus
focus on the benchmarks with most participants: PR,
DI-NYT and RDFT.

Table 6 shows the reported F-Measure results for the
PR benchmark tasks for matching people and restau-
rant records. The original reference mapping proved to
be erroneous so that it was corrected after the OAEI
contest making it difficult to compare the achieved re-
sults. Within the contest the RiMOM system could
clearly outperform the CODI system. The evaluations
outside the competition used the corrected reference
mapping and show especially good results for Kno-
Fuss. In general, the small size of the linking problems
and the achievable F-Measure of 0.98–1.0 indicate hat
the benchmark tasks are easy to solve.

The F-Measure results for the DI-NYT benchmark
in Table 7) indicate a more diverse situation. From
the three frameworks participating in the contest,
Zhishi-links achieved the best results with consistent
F-Measure values between 0.87 and 0.97 for the seven
tasks. By contrast, AgreementMaker and SERIMI per-

Table 8

F-measure results for test cases of OAEI 2013 benchmark RDFT

LogMap RiMOM2013 SLINT+

test01 0.80 1.00 0.98

test02 0.88 0.97 1.00

test03 0.84 0.98 0.92

test04 0.80 0.96 0.91

test05 0.74 0.96 0.88

formed somewhat worse due to problems for one or
two of the tasks. The results reported for the three sys-
tems that did not participate in the contest are generally
better. The achievable F-measure results for all tasks
are between 0.93 and 0.99 indicating that these tasks
are also relatively easy to solve.

F-Measure results for RDFT benchmark from the
OAEI 2013 contest are summarized in Table 8. Again,
the different tasks could be solved to a large de-
gree with maximal F-Measure values between 0.96
and 1.0. The overall best results are achieved by Ri-
MOM followed by SLINT+ and LogMap. The 2014
id-rec task turned out to be much more challeng-
ing. From the two participants, RiMOM again outper-
formed LogMap with a F-Measure result of only 0.56
vs. 0.10.

In summary, most of the OAEI instance benchmarks
so far have been of small size and relatively easy to
solve or attracted only few frameworks participating in
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the contest. RiMOM could outperform competing sys-
tems in three different benchmarks. The frameworks
using OAEI benchmarks outside the contest achieved
generally very good results that unfortunately are not
directly comparable with the results for the frame-
works participating in the OAEI contests. Runtime val-
ues and thus scalability have not yet been evaluated for
OAEI instance matching.

5.3. Other evaluations

The learning-based frameworks KnoFuss, LIMES,
Silk and RuleMiner did not yet participate in the OAEI
contest but evaluated their effectiveness and runtime
efficiency with their own evaluations. SLINT+ also
has been evaluated beyond the OAEI test cases [40].
The used evaluation datasets are either very broad such
as DBpedia or Freebase or come from different do-
mains, e.g., life sciences (e.g., DrugBank, LinkedCT,
DailyMed), geography (e.g., GeoNames, GeoNames,
LinkedGeoData), and publications (e.g., DBLP, BNB).
Unfortunately the evaluation studies typically used dif-
ferent test cases with specific configurations so that
the results can hardly be compared with each other.
For example, Silk [21] and LIMES [36] both evaluate
a LinkedMDB-DBpedia dataset but use varying num-
bers of entities. Similarly, reported execution times
strongly depend on the used hardware configuration so
that they mainly serve to show the relative performance
of the respective system w.r.t. different data sizes and
other configuration parameters.

Several of the non-OAEI evaluation tests focus on
scalability by analyzing LD for large datasets [32,40,
43,45,62]. One example is the evaluation of RuleM-
iner in [45] with the largest dataset (GeoNames) of
over 8 million instances and a mapping size of 317,433
links. The correctness of computed links was manu-
ally checked only for a sample of 1000 links to keep
the manual effort manageable. However, a compara-
tive evaluation of the scalability for different tools is
still missing.

For genetic programming algorithms, efficiency
largely depends on the number of needed iterations.
As an example, Silk needed 2,558 s for 25 iterations
to link DrugBank with DBpedia but already 21,387 s
(factor 8) for 50 iterations [21]. The selection phase of
the genetic algorithm also faces a quadratic complex-
ity w.r.t. the data volume. Hence, random sampling is
applied to reduce the number of possible candidates
for the generation of the next population. Again, run-
time and quality of the results compete with each other

as shown in [43] where bigger sampling sizes help to
achieve a good F-measure at the expense of increased
execution times.

Instance-based linking is similar to entity resolu-
tion and the comparative evaluation of entity resolution
frameworks faces similar challenges than the evalua-
tion of LD frameworks. The study [29] evaluated sev-
eral entity resolution tools on several real datasets on
publications and product offers of e-commerce web-
sites. While the publication-related match tasks were
relatively easy to solve, the two e-commerce match
tasks turned out to be especially challenging with a
maximal F-Measure of only 60 and 71% for the con-
sidered tools. These match tasks have also been used to
evaluate further tools including LD frameworks such
as LIMES, e.g., in [36,38]). Results in [38] confirm
the difficulty of the e-commerce match tasks with
achieved F-Measure values ranging below 35%.

5.4. Observations and outlook

Despite the laudable effort of the OAEI instance
matching tracks the comparable evaluation of existing
tools for LD is still a largely open challenge. This is
mainly because the participation in the OAEI contest
has been limited so far and using the OAEI tasks out-
side the competition limits the comparability of the
achieved results as they are typically based on different
prerequisites, e.g., the use of training data. Evaluation
results on a single system or approach aim at showing
their effectiveness and efficiency rather than provid-
ing a neutral comparative evaluation between systems.
Given the general availability of LD tools it would be a
worthwhile investigation to apply them under the same
prerequisites on a set of LD tasks similar than in the
entity resolution study [29]. Such a study can be facili-
tated by using the recently proposed Semantic Publish-
ing Instance Benchmark (SPIMBench) [54] which was
initiated by the Linked Database Benchmark Coun-
cil (LDBC).6 This benchmark synthetically generates
RDF datasets of arbitrary size so that it can be used to
evaluate the scalability of LD tools. It also determines
the perfect mappings to evaluate match effectiveness.

6. Conclusion

We investigated eleven LD frameworks and com-
pared their functionality based on a common set of
criteria. The criteria cover the main steps such as the

6http://www.ldbc.eu/.

http://www.ldbc.eu/
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configuration of linking specifications and methods for
matching and runtime optimization. We also covered
general aspects such as the supported input formats
and link types, support for a GUI and software avail-
ability as open source. We observed that the consid-
ered tools already provide a rich functionality with
support for semi-automatic configuration including ad-
vanced learning-based approaches such as unsuper-
vised genetic programming or active learning. On the
other side, we found that most tools still focus on sim-
ple property-based match techniques rather than using
the ontological context within structural matchers. Fur-
thermore, existing links and background knowledge
are not yet exploited in the considered frameworks.
More comprehensive support of efficiency techniques
is also necessary such as the combined use of blocking,
filtering and parallel processing.

We also analyzed comparative evaluations of the LD
frameworks to assess their relative effectiveness and
efficiency. In this respect the OAEI instance matching
track is the most relevant effort and we thus analyzed
its match tasks and the tool participation and results for
the last years. Unfortunately, the participation has been
rather low thereby preventing the comparative evalua-
tion between most of the tools. Moreover, the focus of
the contest has been on effectiveness so far while run-
time efficiency has not yet been evaluated. To better
assess the relative effectiveness and efficiency of LD
tools it would be valuable to test them on a common set
of benchmark tasks on the same hardware. Given the
general availability of the tools and the existence of a
considerable set of match task definitions and datasets
this should be feasible with reasonable effort.
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