
AutoShard – Declaratively Managing
Hot Spot Data Objects in NoSQL Document Stores

Stefanie Scherzinger
Technical University

of Applied Sciences Regensburg
Regensburg, Germany

stefanie.scherzinger@oth-regensburg.de

Andreas Thor
Deutsche Telekom

University of Applied Sciences
Leipzig, Germany

thor@hft-leipzig.de

ABSTRACT
NoSQL document stores are becoming increasingly popu-
lar as backends in web development. Not only do they
scale out to large volumes of data, many systems are even
custom-tailored for this domain: NoSQL document stores
like Google Cloud Datastore have been designed to support
massively parallel reads, and even guarantee strong consis-
tency in updating single data objects. However, strongly
consistent updates cannot be implemented arbitrarily fast
in large-scale distributed systems. Consequently, data ob-
jects that experience high-frequent writes can turn into se-
vere performance bottlenecks. In this paper, we present
AutoShard, a ready-to-use object mapper for Java applica-
tions running against NoSQL document stores. AutoShard’s
unique feature is its capability to gracefully shard hot spot
data objects to avoid write contention. Using AutoShard,
developers can easily handle hot spot data objects by adding
minimally intrusive annotations to their application code.
Our experiments show the significant impact of sharding on
both the write throughput and the execution time.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—concurrency,
distributed databases, transaction processing

General Terms
Design, Performance, Algorithms

1. INTRODUCTION
NoSQL document stores are highly appealing in web de-

velopment, especially for applications that require high scal-
ability and high availability. Conveniently, NoSQL data
stores are readily available with established web hosting
platforms, such as Google App Engine [18]. The flexible
data model that these systems commonly provide suits an
agile software development style since the database schema
does not have to be designed up front. New attributes can
be easily added on-the-fly as required by new features. The
simple data access methods (i.e., put() and get(key)) and the
limited query capabilities are usually sufficient for web ap-
plications. Moreover, the sheer scalability of these systems
is impressive: Due to a highly distributed architecture, these
systems gracefully handle large amounts of users and data.

Copyright is held by the author/owner.
Seventeenth International Workshop on the Web and Databases (WebDB
2014), June 22, 2014 - Snowbird, UT, USA.

NoSQL document stores are capable of scaling out over
tens of thousands of nodes. With such an architecture, ar-
bitrary transactions with ACID semantics are usually not
feasible, and effects of eventual consistency come into play.
Yet the application logic often demands strong consistency.
Therefore, systems such as Google Cloud Datastore that
have been designed with web applications in mind, allow
for strongly consistent updates in restricted cases, e.g. when
changes affect a single data object only [5].

Yet strongly consistent updates come at the cost of slower
writes. With Google Cloud Datastore, the supported limit
for writing against a single data object is merely one update
per second [4]. This can result in write contention, an effect
not unique to this particular system, e.g. [2].

Commonly, web applications are read-intensive, so in the
presence of few writes, this limit may not even be noticed.
However, there are certain features in web applications that
are inherently prone to write contention, such as a global
counter recording page visits, or many users hitting a like
button on a popular image.

Example 1. Consider crowd sourcing tools such as Google
Moderator for ranking user-submitted questions (see Fig-
ure 1). In 2008, this tool has been successfully employed
in the U.S. presidential debates, with one million votes from
20,000 people in just 48 hours1. Thanks to a sophisticated
implementation, Google Moderator is highly scalable. How-
ever, a naive implementation on a backend such as Google
Cloud Datastore may not scale: If the counter tracking pos-
itive votes on a question is implemented by a single docu-
ment, already tens of users concurrently voting on the same
popular question will cause write contention. Ultimately,
this triggers runtime errors during peak times.

How to deal with so-called hot spot data objects has al-
ready been subject of study back in the late 70s and early 80s.
Typical use cases in those days were the number of available
seats on a plane, or the overall balance of bank accounts.
The idea of exploiting the semantics of data items and their
transactions has been termed semantics-based transaction
processing, and has lead to sophisticated solutions, such as
the IMS Fast Path system [16], or the Escrow method [13].
A comprehensive survey can be found in [15].

Yet the challenge of managing hot spot data objects in
today’s web applications comes with several novel aspects:

1. NoSQL data stores frequently implement optimistic
concurrency control , whereas solutions designed for re-

1http://en.wikipedia.org/wiki/Google_Moderator

Figure 1: Users vote questions up or down in Google
Moderator during the U.S. presidential debates, cre-
ating hot spot data objects.

lational database systems usually assume pessimistic
locking mechanisms to be in place.

2. When NoSQL data stores are used as database-as-a-
service, it is impossible for developers to extend or even
customize the functionality of their backends. Thus,
we need to be able to handle write contention on the
level of the database application, rather than by phys-
ical database design.

3. Finally, NoSQL data stores commonly do not provide
full ACID transaction behavior, so eventual consis-
tency effects must be considered.

The established approach in the developer community for
managing hot spot data objects in NoSQL data stores is
application-level sharding of documents, e.g. as suggested
in [9, 18] for Google Cloud Datastore, [8] for Amazon Sim-
pleDB, and [2] for Couchbase. Like with traditional data
fragmentation and allocation in distributed systems [14],
sharding data objects effectively distributes write requests
across physical nodes. However, sharding is now managed in
the application code: For example, instead of storing a sin-
gle counter for voting up a Google Moderator question, we
maintain 10 shard counters. Updates are then performed
on a single, randomly chosen shard, and the sum across all
shard counters yields the overall vote count.

While the idea is intuitive, getting sharding right is not
trivial. Writing custom sharding code (e.g. as exemplified
in [9]) requires a deep understanding of the underlying tech-
nology and its transactional behavior. Additionally, this in-
troduces a new level of complexity in the application code,
which in return increases the development and testing ef-
fort. This is not to be underestimated when sharding is
added in hindsight, to already existing code. Also, coupling
the sharding code with the application logic enforces the
technological lock-in with one particular database provider.

What is missing today is a well-principled machinery for
sharding that does not amount to major code refactoring.

Contributions. Our main contributions are:
• We give a systematic overview for sharding hot spot

data objects in NoSQL document stores. In particular,
we introduce static and dynamic property sharding , as
well as entity group sharding .

• We present AutoShard, a novel Java object mapper
specifically designed for NoSQL document stores. Au-
toShard relieves developers from having to deal with

low-level property sharding, and thus restores a clearer
separation between logical and physical database de-
sign. AutoShard is designed for ease-of-use, merely re-
quiring simple declarative annotations in Java classes.
Its architecture relies on self-modifying code to trans-
parently generate sharding code.

• We evaluate static property sharding with AutoShard
and thereby demonstrate a significant improvement on
both the write throughput and the average execution
times of writes against hot spot data objects.

Organization. The remainder of this paper is organized as
follows. Section 2 presents various sharding strategies. We
discuss the tradeoffs in sharding, i.e. eliminating severe per-
formance bottlenecks and thereby trading in eventual consis-
tency effects that are still tolerable for a large class of practi-
cal applications. In Section 3, we introduce AutoShard, our
Java object mapper that unburdens developers from writ-
ing custom sharding code. Instead, developers conveniently
specify which data members are to be sharded by adding
annotations to their Java code. We present details on the
AutoShard architecture in Section 4. We experimentally
evaluate our implementation of AutoShard (Section 5), and
conclude with a summary of our work and the directions for
future research.

2. SHARDING STRATEGIES
We next give an overview of common sharding strategies

as established in the developer community. AutoShard im-
plements two ways of sharding atomic document properties:

• In static property sharding (e.g. [2, 9]), the number of
shards is fixed, whereas

• in dynamic property sharding (e.g. [8]), the number of
shards grows on demand.

Property sharding is applicable to a large class of NoSQL
document stores. We illustrate the idea behind these ap-
proaches, and further discuss entity group sharding , where
sharding is applied to groups of documents. Entity groups
are a feature specific to Google Cloud Datastore [18] and its
underlying software layer, the Google-internal Megastore [1].

2.1 Static Property Sharding
Let us resume our discussion of building a scalable voting

application. An example of a voting question is shown below
in JSON format. We refer to persisted objects as entities.

{"kind" : "Question", "id" : 42,
"question" :

"How do you plan to improve public education?",
"author" : "Phil R",
"responses" : [

{"response" :
"i have earned $1048 dollars just by ad clicks",
"author" : "twodollarclick"}],

"votes" : 76}

Each entity is assigned a kind , which is simply a classifica-
tion of the entity as a question in this case. Each entity has
a unique identifier and further properties (c.f. attributes).
Properties may be atomic, multi-valued, structured, and
even nested (e.g. like the list of responses above).

The rate at which users may vote on this question is phys-
ically limited. In systems such as Google Cloud Datastore,
only a minimum write throughput of one write per second
per entity is guaranteed (with 5 to 10 concurrent writes

achievable on average [3]). Yet a controversial question is
likely to receive concurrent votes. Write contention then
causes runtime errors, and ultimately, results in data loss,
since not all updates can be persisted.

The recommended approach is to shard property votes,
creating n + 1 entities instead. One entity stores the ques-
tion without the votes-property, we refer to it as the main
entity. The value of the votes-property is distributed over n
single entities, the shards. This is shown below. The first
shard with identifier 42-1 stores the original value of the
votes-property, whereas the shard_votes-property in all
other shards has been set to zero. We can always obtain
the total number of votes for a given question by computing
the sum over the shard_votes across all n shards.

{"kind" : "Question", "id" : 42,
"question" :

"How do you plan to improve public education?",
"author" : "Phil R",
"responses" : [

{"response" :
"i have earned $1048 dollars just by ad clicks",
"author" : "twodollarclick"}]}

{"kind" : "Shard", "id" : "42-1",
"question" : "42", "shard_votes" : 76}

{"kind" : "Shard", "id" : "42-2",
"question" : "42", "shard_votes" : 0} ...

{"kind" : "Shard", "id" : "42-n",
"question" : "42", "shard_votes" : 0}

Whenever the question is voted on, a single shard is picked
at random, shard_votes is incremented, and the shard is
persisted again. This can usually be executed as an atomic
action, and effectively distributes concurrent writes across
the n shards, rather than all concurrent updates affecting a
single entity. Since addition of integers is commutative and
associative, this is mathematically sound.

Tradeoffs. By sharding the hot spot counter, we have
eliminated a crucial scalability bottleneck in our voting ap-
plication. As we show in Section 5, sharding significantly
improves the write throughput on single entities, while keep-
ing the average transaction time within acceptable bounds.
Yet sharding hast two inherent drawbacks, owing to the par-
ticularities common to many NoSQL document stores:

1. Range queries over shards may not be supported.
2. The computation of the total number of votes may

show eventual consistency effects.
Let us elaborate on drawback (1): NoSQL document stores

commonly provide very restricted query languages. For in-
stance, Google Cloud Datastore would support the following
query over the original, unsharded question entity:

select * from Question where votes > 50

Yet the query language is not expressive enough to com-
pute the equivalent query in the presence of shards. Con-
sequently, developers need to write custom code to retrieve
these questions. On the good side, queries filtering over un-
sharded properties can still be expressed.

(2) We next consider compromises in consistency. In many
NoSQL data stores, updating a single entity is a strongly
consistent action (c.f. [17]). Let us assume that shards 42-2
and 42-3 from our example have been updated concurrently:

{"kind" : "Shard", "id" : "42-2",
"question" : "42", "shard_votes" : 1}

{"kind" : "Shard", "id" : "42-3",
"question" : "42", "shard_votes" : 1}

At this point, the total number of votes reaches 78. Let
us try to retrieve this value. Since the query language is
not expressive enough to aggregate across several entities,
we first issue a query to fetch all shards for question 42:

select * from Shard where question = 42

This query is evaluated across a large cluster of nodes, and
thus may not return a strongly consistent result. Next, we
programmatically aggregate over the shard_votes. Due to
the effects of eventual consistency, repeatedly executing the
query at time of the updates may return the stale results 76
or 77, and eventually will return the consistent value 78.

In an application such as the voting app, temporarily stale
results are tolerable, as long as queries return the consis-
tent state by the time that the result is to be utilized (e.g.
when the presidential debate actually begins). Therefore,
sharding trades strong consistency for scalability in terms of
concurrent writes. This is a valid tradeoff for applications
where we are mainly interested in a ballpark number (e.g.
counting the number of visitors to a website), and where the
order of updates does not matter (unlike an auctioning site,
for example). After all, the alternative is an application that
suffers from runtime errors and data loss at peak times.

2.2 Dynamic Property Sharding
We now introduce an alternative approach, which we refer

to as dynamic property sharding. The previous discussion
of tradeoffs applies here as well. In our running example, we
start with a single shard where the property shard_votes

is set to the original value of votes.

{"kind" : "Shard", "id" : "473",
"question" : "42", "shard_votes" : 76}

For each user who increments the counter, we add a new
shard and let the NoSQL data store assign a unique key.
Thus, when two users increment the counter concurrently,
two new shards with shard_votes=1 are added:

{"kind" : "Shard", "id" : "119",
"question" : "42", "shard_votes" : 1}

{"kind" : "Shard", "id" : "236",
"question" : "42", "shard_votes" : 1}

Even under immense write load, increments can be ex-
ecuted without any concurrent writes against a single en-
tity. This comes at the cost of higher storage requirements.
Again, the total shard value is computed by aggregating
over all shards. This may temporarily yield stale results,
again due to eventual consistency effects. An independent
batch process, e.g., run nightly or when the system is under
less load, compacts the shards that have accumulated. This
reduces the number of shards, as well as the storage costs.
Since there is a single thread writing (or rather, deleting) the
shards, this does not cause write contention. Dynamic prop-
erty sharding scales more gracefully under peak loads, yet
amounts to a considerable implementation effort, involving
background batch processes or MapReduce jobs.

@Entity class Question {
@Id private int id;
private String question;
private String author;
private List<Response> responses;

@Shardable (neutral=0, shards=10)
private int votes = 0;

@ShardMethod
public void voteUp() {
this.votes++;

}

@ShardFold
public static int foldVotes(int x, int y) {
return x + y;

}
/* ... not showing getters and setters ... */

}

Figure 2: Java class with AutoShard annotations.

2.3 Entity Group Sharding
Entity groups are a particular feature of Google Cloud

Datastore [5] and Megastore [1]. Entities can be arranged in
groups by defining a hierarchy between entities. By physi-
cally co-locating the entities inside a group, the system can
guarantee ACID updates within the scope of the group.

Different from our original data design of a question with
nested responses, we can store the responses in the same
group as the question. Below, property parent-id refer-
ences the question as the root of the hierarchy.

{"kind" : "Question", "id" : 42,
"question" :

"How do you plan to improve public education?",
"author" : "Phil R",
"votes" : 76}

{"kind" : "Response", "id" : 47, "parent-id" : 42,
"response" :

"i have earned $1048 dollars just by ad clicks",
"author" : "twodollarclick"}

{"kind" : "Response", "id" : 67, "parent-id" : 42,
"response" : "Crucial for our future",
"author" : "Stan S"}

As with single entities, Datastore limits the number of
concurrent writes against an entity group. Several users
responding to a question in a heated debate thus turn the
group into a hot spot data object. In entity group sharding,
we consequently shard entity groups, now distributing writes
over several groups. To restore all entities from the original
group, we compute the union of entities from across several
groups. This improves the rate of successful writes, at the
cost of making certain atomic updates impossible.2

3. THE AUTOSHARD OBJECT MAPPER
The main focus of our work is a novel object mapper

framework for automatically rewriting annotated Java classes
with property sharding. Like other object mappers, (e.g. [6,
7,11,12]), AutoShard takes care of the mundane marshalling

2Google Cloud Datastore only allows ACID transactions in-
volving up to five entity groups [18].

of persisted entities into Java objects and back, thus greatly
simplifying application development. Just like established
object mappers, AutoShard relies on Java language meta-
data annotations.

We show how AutoShard helps with our running example,
the voting app. The Java class from Figure 2 represents a
Question that can be voted up. In the following, we resolve
write contention by property sharding.

As is customary with object mappers, the annotation @En-

tity specifies that an instance of class Question is to be per-
sisted as an entity. The annotation @Id marks the unique
key of the persisted entity.

The mapping of an instance of class Question onto a per-
sisted entity is straightforward. As discussed previously, a
single entity is a performance bottleneck with multiple users
voting concurrently on the same question. To solve this
problem by sharding, we merely add annotations. The an-
notation @Shardable specifies that the class member votes

is to be sharded.3 When processing shards, the method
annotated with @ShardMethod will be applied to a single
shard, rather than the global value of the votes counter. We
could even declare several sharding functions (e.g., to in-
crement and decrement votes). Since in this example the
shard method is incrementation, we specify zero as the neu-
tral element (see neutral=0). This information is exploited
in initializing new shards. Further, we request static prop-
erty sharding with ten shards (specifying shards=10). If no
shard limit is specified, AutoShard shards dynamically.

With annotation @ShardFold, we declare the static func-
tion foldVotes as the folding function. This function is
called for aggregating over all shards. We may specify even
more complex folding operations, as long as they are com-
mutative and associative. It is the responsibility of the de-
velopers to correctly annotate their Java classes.

4. THE AUTOSHARD ARCHITECTURE
The AutoShard object mapper is, to our knowledge, the

first Java object mapper to shard properties based on simple
annotations. Our approach relies on self-modifying code by
blending Java code with Groovy technology [10]. Groovy
is a dynamic language that runs in the JVM and smoothly
inter-operates with Java code. Further, Groovy allows us to
annotate code structures for transformations in the abstract
syntax tree (AST) during compilation.

Figure 3 shows the architecture of the AutoShard frame-
work. A Java class with AutoShard annotations serves as
input. The Groovy parser produces an AST and our Au-
toShard AST transformer restructures this tree. Class mem-
bers annotated as @Shardable, as well as the sharding and
the folding method, are now transformed.

We consider the modifications required for the class from
Figure 2. When compiling for Google Cloud Datastore, Au-
toShard’s Groovy-based compiler generates the Java class
shown in Figure 4. For the sharded property votes, com-
pilation introduces a new (private) attribute shard_votes

that stores a single shard value. The body of user-defined
method voteUp is transferred to a private method, and the
original method is replaced as shown in Figure 4. This new
implementation calls the original function both for the shard

3Figure 2 shows the simple case of a single sharded class
member. Naturally, the syntax of AutoShard annotations
also allows for several data members to be sharded.

Figure 3: The AutoShard framework architecture
for compiling annotated Java classes.

value (shard_votes) and for the actual value (votes). Since
the signatures of the class methods do not change, the re-
maining application code need not be adapted.

At runtime, we use the modified Question class during
loading, updating, and saving entities:

Loading: When a new instance of a Question is loaded,
AutoShard retrieves the main entity to map all unsharded
class members. For the sharded class member votes it reads
all shards and generates two data members. First, the (regu-
lar) data member votes is initialized to the aggregated shard
value. AutoShard uses the @ShardFold method (foldVotes
for class Question) to aggregate over all shards. Second,
the (internal) data member shard_votes is initialized to the
neutral element zero.

Updates: When shard method voteUp is invoked for up-
dating the counter value, the update is executed on both
the (regular) data member votes as well as the (internal)
data member shard_votes. This ensures that whenever the
application code accesses votes, it sees the expected value.

Saving: When entity Question is persisted after changes
have been made, AutoShard first updates the main entity.
For the sharded class member a random shard is loaded
from storage, as shown in Figure 5. Its value is updated
by invoking the @ShardFold (foldVotes for class Question)
method on the loaded shard value and on shard_votes. The
shard is persisted within a nested transaction, so that we do
not interfere with any transactions that may be running in
the remaining code. Since the sharded value is re-set to the
neutral element, it will capture future updates. Note that
the regular property votes still holds the current value.

Persisting entities and retrieving them by key are the main
building blocks for web applications when interacting with
the NoSQL backend. NoSQL document stores also provide
basic query languages. For example, Google Cloud Data-
store allows queries on entities of the same kind (or type)
using simple property filters. Queries on unsharded proper-
ties or entities are not affected by AutoShard compilation.
Hence, they can be run without changes (c.f. Section 2.1).

5. EVALUATION
We investigate the runtime benefits of sharding with Au-

toShard. We have implemented AutoShard with property
sharding for Google Cloud Datastore, a commercial NoSQL
document store handling 6.3 trillion daily requests4. Our

4Quoting Urs Hölzle in his keynote at Google Cloud Platform

class Question {
private int votes; // the aggregated value
private int shard_votes; // single shard value

// internal method with body of
// original voteUp method
private void _voteUp() {
this.votes++;

}

// new voteUp method
public void voteUp() {
int tmp = votes;
votes = shard_votes;
_voteUp(); // updating the shard value
shard_votes = votes;

votes = tmp;
_voteUp(); // updating the aggregated value

}

// the @ShardFold method
public static int foldVotes(int x, int y) {
return x + y;

}
/* ... not showing unsharded class members,

getters, and setters ... */
}

Figure 4: The modified Java class Question as gen-
erated by AutoShard during compilation.

evaluation scenario deals with a Java implementation of a
voting tool in the style of Google Moderator. The applica-
tion is hosted on Google App Engine.

We start with a naive implementation that does not take
precautions for handling concurrent writes. A shell script
simulates an increasing number of users voting on popular
questions, e.g., 75 voting requests per second are equally
spread across 16 questions. This causes write contention on
the level of persisted entities. As seen in Figure 6, for this
naive implementation without any transaction retries (naive
“w/o Tx retry”), 25% of the transactions fail due to write
contention. This failure rate is obviously unacceptable for
real world web applications.

We then repeat the experiment with a sharded version,
where we have added the AutoShard annotations from Fig-
ure 2 to the code and have recompiled the application. This
time, the application experiences only 4% of failed requests
(see AutoShard “w/o TxRetry”). This improvement is due
to the fact that write contention is reduced by distribut-
ing writes across multiple shards. However, a failure rate
of 4% can still be considered alarming. Note that in this
experiment, we can observe a slight increase in the average
transaction time, due to the overhead imposed by sharding.

To ensure that all votes are indeed persisted, we add
transaction retries (“w/TxRetry”), so transactions retry un-
til they succeed. This obviously increases execution time.
We repeat the experiment with the naive implementation,
as well as with the code generated by AutoShard, and vi-
sualize the performance results in Figure 6. Both versions
show a 100% success rate, yet the average transaction time
for the sharded version is clearly superior (300ms vs. 430ms).

Live 2014, available online at https://cloud.google.com/
events/google-cloud-platform-live/.

public void save(Question q) {
DataStore.put(q); // save the main entity
BEGIN TRANSACTION
// read ONE shard value at random
shard = DataStore.getRandomShard(q);

// fold shard value with object shard property
// using the @ShardFold method
shard.shard_votes =
Question.foldVotes(shard.shard_votes, q.shard_votes);

// save the updated shard
DataStore.put(shard);

// re-initialize local shard_votes data member
q.shard_votes = 0; // 0 = neutral element
END TRANSACTION
}

Figure 5: Pseudo-code for saving sharded Question

entities with AutoShard.

Figure 6: Evaluation of static property sharding
where 2,000 users vote on 16 questions. A naive im-
plementation shows an unacceptable failure rate of
over 25%. AutoShard reduces the failure rate down
to 4% (using 16 shards). When adding a transac-
tion retry mechanism to ensure a 100% success rate,
AutoShard significantly reduces the average trans-
action time compared to the naive implementation.

This brief evaluation scenario confirms the usefulness of
AutoShard, i.e., Autoshard is capable of gracefully sharding
hot spot data objects. An extended evaluation will compare
static and dynamic sharding and will analyze the impact of
the number of shards on the transaction time.

6. SUMMARY AND FUTURE WORK
In this paper we have presented AutoShard, a ready-to-use

object mapper for Java applications running against NoSQL
document stores. In addition to mapping Java objects to
persisted entities, AutoShard is capable of sharding proper-
ties so that hot spot data objects can be managed gracefully.
This form of application-managed sharding ties in with the
long tradition of efforts to avoid write contention over hot
spot data objects (c.f. [15]).

A main strength of AutoShard is the ease with which data
objects may be sharded, namely by merely annotating the
Java code. We have demonstrated the merits of AutoShard
by contrasting the performance of a naive implementation of
a realistic web application with a sharded version generated

by AutoShard. Our experiments show the significant impact
of property sharding on the throughput of write requests.

In our future work, we are investigating a generic approach
to property and entity group sharding that is not specific to a
certain data store. Programmers should be able to describe
all relevant data store properties (e.g., consistency model,
ACID guarantees) so that AutoShard can implement suit-
able sharding strategies. We will examine how to automat-
ically identify properties that require sharding as well as to
automatically determine a suitable number of shards. We
are currently extending AutoShard so that queries involv-
ing sharded properties or entities are handled transparently
(whenever possible). AutoShard is scheduled to be made
available as open source software.

7. REFERENCES
[1] J. Baker, C. Bond, J. C. Corbett, J. Furman, et al.

Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. In Proc. CIDR, pages 223–234, 2011.

[2] Couchbase Inc. Making the Shift from Relational to
NoSQL. Couchbase Whitepaper. 2013.
http://info.couchbase.com/Relational-to-NoSQL.html.

[3] A. Fuller and M. Wilder. More 9s Please: Under The
Covers of the High Replication Datastore. Google I/O
Conference 2011.
https://www.youtube.com/watch?v=xO015C3R6dw.

[4] Google Inc. Balancing Strong and Eventual Consistency
with Google Cloud Datastore, 2014.
https://cloud.google.com/developers/articles/
balancing-strong-and-eventual-consistency-with-
google-cloud-datastore.

[5] Google Inc. Google Cloud Datastore, 2014.
https://developers.google.com/appengine/docs/java/
datastore/.

[6] Google Inc. Using JDO with App Engine, 2014.
https://developers.google.com/appengine/docs/java/
datastore/jdo/.

[7] Google Inc. Using JPA with App Engine, 2014.
https://developers.google.com/appengine/docs/java/
datastore/jpa/overview.

[8] M. Habeeb. A Developer’s Guide to Amazon SimpleDB.
Developer’s Library. Pearson Education, 2010.

[9] Joe Gregorio. Sharding Counters, January 2013.
https://developers.google.com/appengine/articles/
sharding_counters.

[10] D. Koenig, G. Laforge, and A. Glover. Groovy in Action.
Manning Publications Co., 2006.

[11] Morphia. A type-safe Java library for MongoDB, 2014.
http://code.google.com/p/morphia/.

[12] Objectify AppEngine. The simplest convenient interface to
the Google App Engine Datastore, 2014.
https://code.google.com/p/objectify-appengine/.

[13] P. E. O’Neil. The Escrow transactional method. ACM
Trans. Database Syst., 11(4):405–430, Dec. 1986.

[14] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

[15] K. Ramamritham and P. K. Chrysanthis. Executive
Briefing: Advances in Concurrency Control and
Transaction Processing. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996.

[16] A. Reuter. Concurrency on high-traffic data elements. In
Proc. PODS, pages 83–92, 1982.

[17] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley Professional, 1st edition, 2012.

[18] D. Sanderson. Programming Google App Engine. Google
Press, 2012.

