

Multi-Source Data Matching and Clustering Erhard Rahm

German Al Centers

5 new, permanent German AI centers (in addition to DFKI) :

- Berlin (BIFOLD)
- Dortmund / Bonn (ML2R)
- Dresden / Leipzig (ScaDS.AI)
- München (MCML)
- Tübingen (tuebingen.ai)

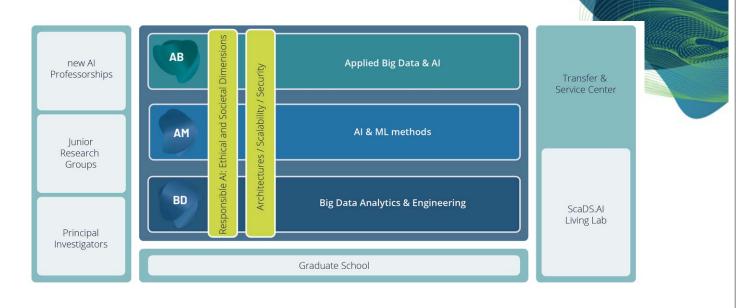
ScaDS.AI

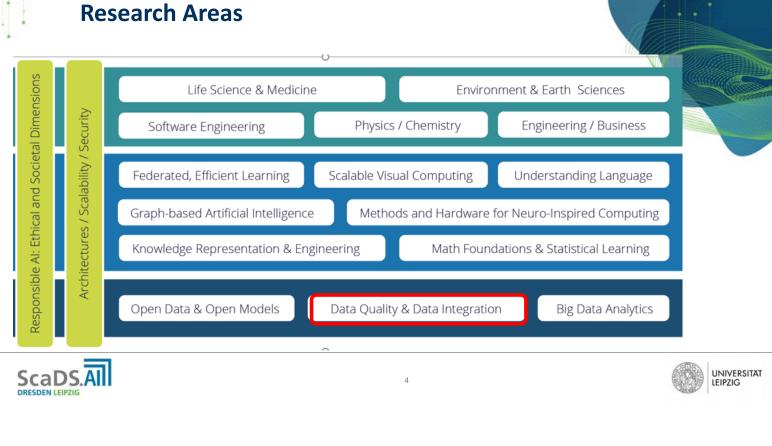
- SCADS.AI: Center for Scalable Data AnalyticS and Artificial Intelligence
- extends previous Big Data center ScaDS Dresden/Leipzig (est. 2014)
- since 2019: AI / Data Science center ScaDS.AI
- July 2022: institutional funding starts
 - co-financed by BMBF and state of Saxony

UNIVERSITAT

LEIPZIG

ScaDS.AI: Overall structure





Data Integration

Provision of uniform access to data originating from multiple, autonomous sources

Physical data integration

- original data is combined within a new dataset / database for access and analysis
- approach of data warehouses, knowledge graphs and most Big Data applications

Virtual data integration

data is accessed on demand in their original data sources, e.g. based on an additional query layer

5

approach of federated databases and linked data •

2 Levels of data integration

Metadata (schema/ontology) level

- Schema Matching: find correspondences between source schemas and target schema
- Schema Merge: combine source schemas into integrated target schema

Instance (entity, data) level

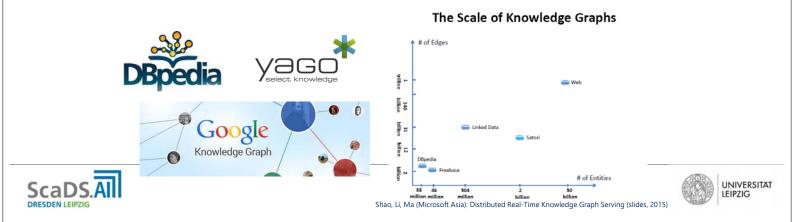
- transform heterogeneous source data into uniform representation
- identify and resolve data quality problems
- identify and resolve equivalent instance records: *link discovery / data matching / entity resolution ...*
- fusion of matching objects

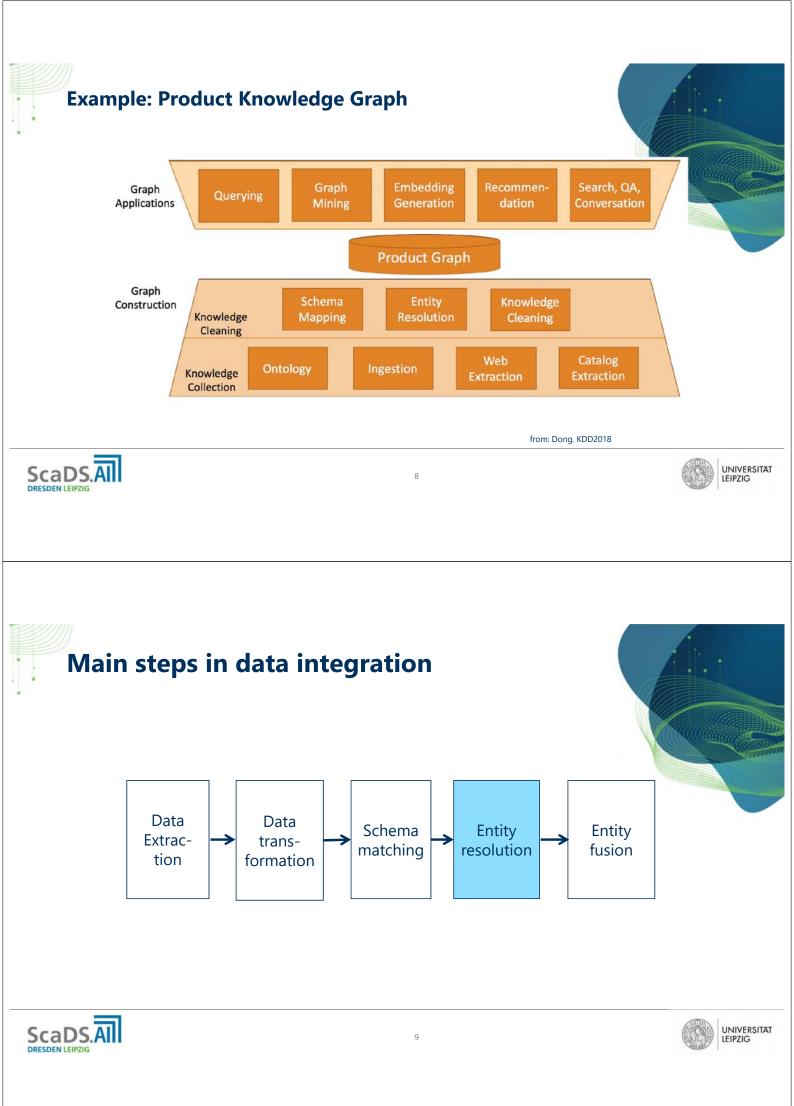
Standard C. & March Landow C. Sandard P. C. S. Mark F. Person, S. Mark S. Mark, S. Mark S

Knowledge Graphs

uniform representation and semantic categorization of entities of different types

- examples: DBPedia, Yago, Wikidata, Google KG, MS Satori, Facebook, ...
- entities often extracted from other resources (Wikipedia, Wordnet etc.) or web pages, documents, web searches etc.
- Knowledge Graphs provide valuable background knowledge for enhancing entities (based on prior *entity linking*), improving search results ...





DATA INTEGRATION CHALLENGES 1

- Data guality
 - unstructured, semi-structured sources
 - need for data cleaning and enrichment
- Large-scale data integration
 - Iarge data/metadata volume or/and many sources
 - improve runtime by reducing search space (e.g. with blocking) and parallel processing (Hadoop clusters, GPUs, etc.)

10

- many sources require holistic data integration: clustering of schema elements and entities, not only binary matching
- High match quality
 - needs effective combination of several similarities
 - use of supervised ML approaches
 - representation learning (embeddings) can provide improved data input

DATA INTEGRATION CHALLENGES 2

- Support for evolution and change
 - addition of new sources and new entities without having to integrate everything again
 - incremental / dynamic vs batch / static data integration
- Graph-based data integration, e.g. to create knowledge graphs
 - integrate entities of multiple types and their relationships
 - requires holistic and incremental data integration
- Privacy for sensitive data
 - privacy-preserving record linkage and data mining

Holistic Data Integration*

scalable approaches for integrating N data sources (N >>2)

increasing need due to numerous sources, e.g., from the web

- many thousands of web shops
- data lakes with thousands to millions of tables

pairwise matching/linking does not scale

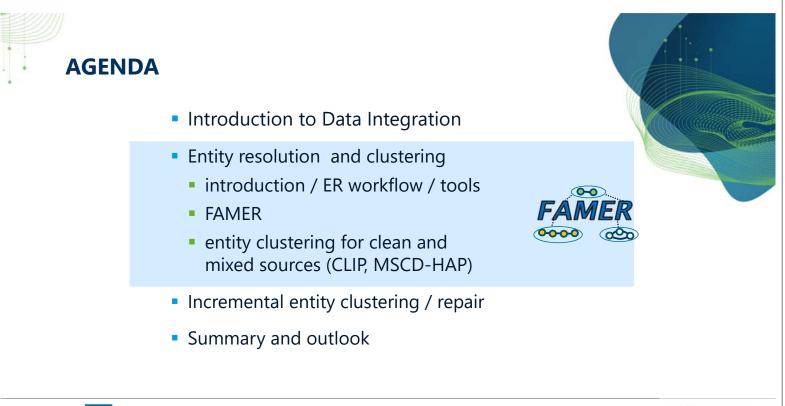
200 sources -> 20.000 mappings

clustering-based approaches

- represent matching entities from k sources in single cluster
- determine cluster representative for further processing/matching
- new entities are only compared with clusters rather than entities of all sources

12

*E. Rahm: The Case for Holistic Data Integration. Proc. ADBIS, LNCS 9809, 2016



UNIVERSITAT

LEIPZIG

DATA MATCHING / ENTITY RESOLUTION

- Identification of semantically equivalent objects
 - within one data source or between different sources

Fujifilm FinePix S6800

manufacturer: Fujifilm resolution: 16.2 MP model: FinePix S6800 zoom: 30x weight: 0,43 kg

14

brand: Fujifilm model: Point & Shoot S6800 weight: 430 gram color: black

brand: Fujifilm

megapixels: 16.2 MP modelNo: S6800 optical zoom: 30x type: Point & Shoot

UNIVERSITAT LEIPZIG

DUPLICATE PUBLICATION ENTRIES

Data cleaning: Problems and current approaches E Rahm, HH Do - IEEE Data Eng. Bull., 2000 Cited by 2456 Related articles All 24 versions

Data Cleaning: Problems & Current Approaches* D Hang-Hai, R Erhard - IEEE bulletin of the technical committee on Data ..., 2000 Cited by 8 Related articles

Problems and Current Approaches* E Rahm, DC Do HH - IEEE Bulletin on Data Engineering.-2000.-23 (4), 2015 Cited by 6 Related articles

Data cleaning: Problems and current approaches' IEEE Data Eng. Bull., 2000* E Rahm, HH Do - 2000 Cited by 5 Related articles

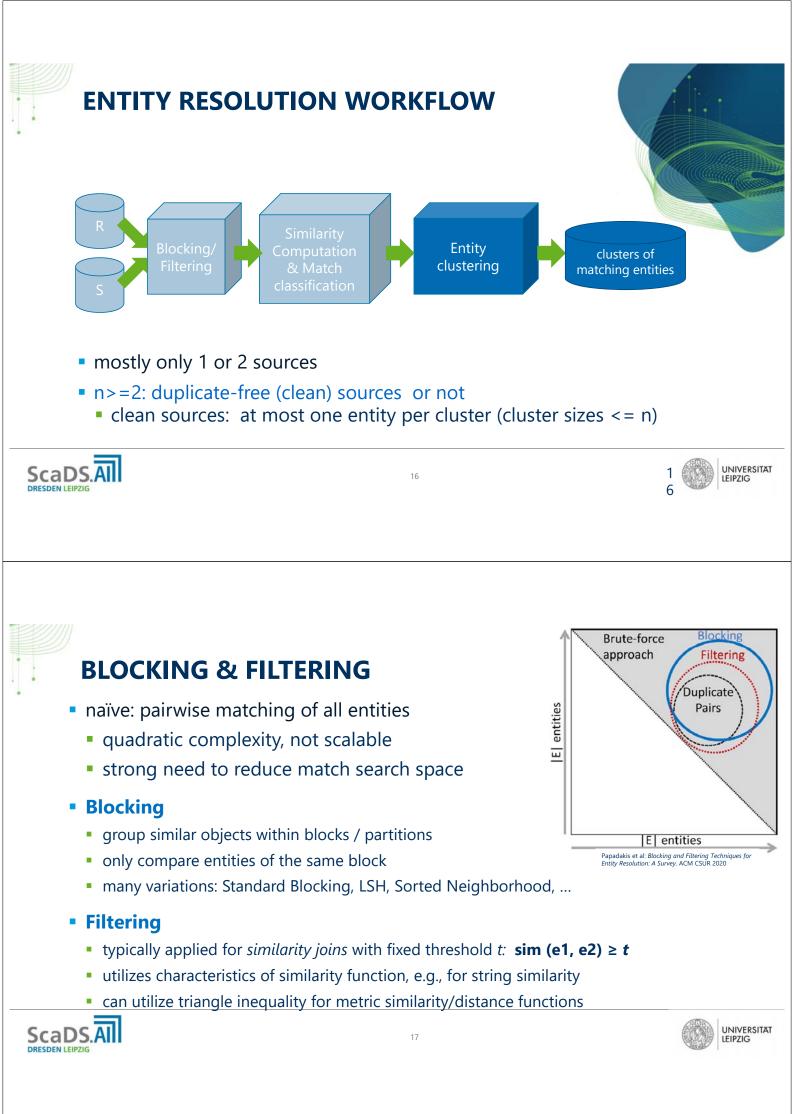
Hong Hai Do* E Rahm - IEEE Bulletin of the Technical Committee on Data ..., 2000 Cited by 4 Related articles

Do. H. 2000. Data cleaning: Problems and current approaches* E Rahm - IEEE Data Engineering Bulletin Cited by 4 Related articles

Do. H. 2000* E Rahm, H Do - Data cleaning: Problems and current approaches, 2011 Cited by 3 Related articles

Data engineering—Special issue on data cleaning* E Rahm, HH Do - Data Engineering, 2000 Cited by 3 Related articles

Data Cleaning: Problems and Current Approaches. IEEE Techn* E Rahm, HH Do - Bulletin on Data Engineering, 2000 Cited by 3 Related articles



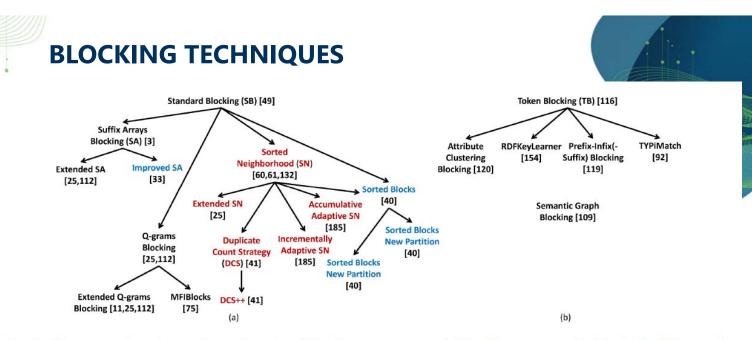
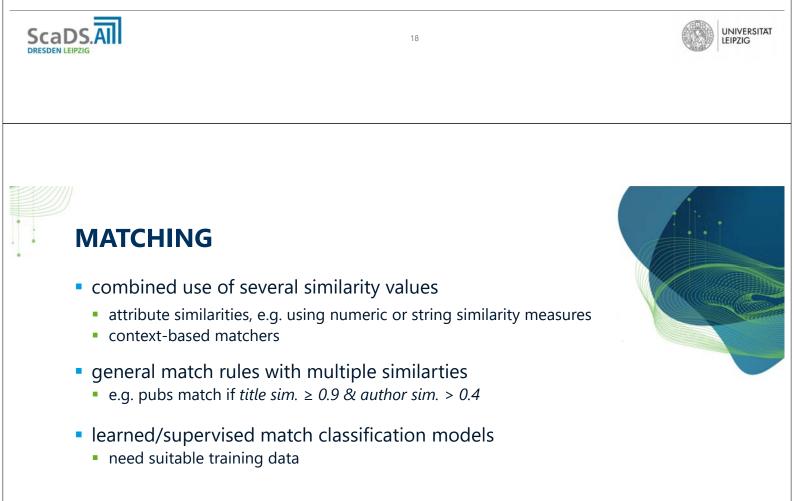


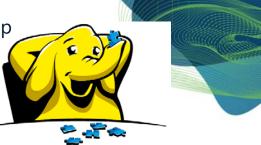
Fig. 3. The genealogy trees of nonlearning (a) schema-aware and (b) schema-agnostic Block Building techniques. Hybrid, hash-, and sort-based methods are marked in blue, black, and red, respectively.

Papadakis et al: Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM CSUR 2020

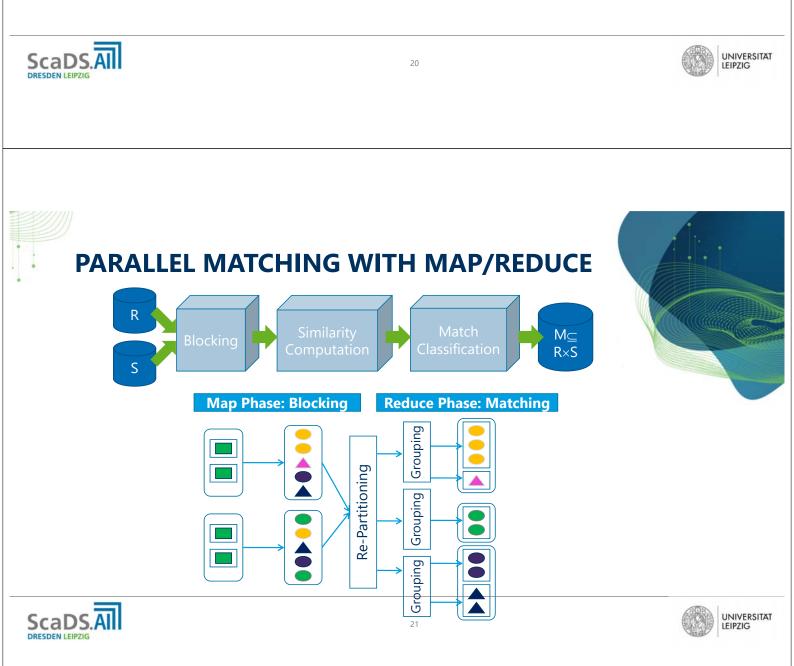


DEDOOP: DEDUPLICATION WITH HADOOP

- Parallel execution of match workflows with Hadoop
- library of match and blocking techniques
- learning-based match configuration
- GUI-based workflow specification
- automatic generation and execution of Map/Reduce jobs on different clusters
- Automatic load balancing for optimal scalability



"This tool by far shows the most mature use of MapReduce for data deduplication" www.hadoopsphere.com



RECENT ER TOOLS

- Magellan
 - PyMatcher component provides several blocking and similarity algorithms to customize match approach

22

- support for machine learning, including deep learning
- JedAl
 - supports matching for structured and unstructured data
 - plethora of methods for blocking, matching and clustering
 - provides GUI

RECENT ER TOOLS 2

- FAMER
 - FAst Multi-source Entity Resolution system
 - built on Apache Flink
 - Blocking, linking and clustering module for multiple sources
 - many clustering approaches included for clean and dirty sources
 - support for incremental matching and clustering

UNIVERSITAT

LEIPZIG

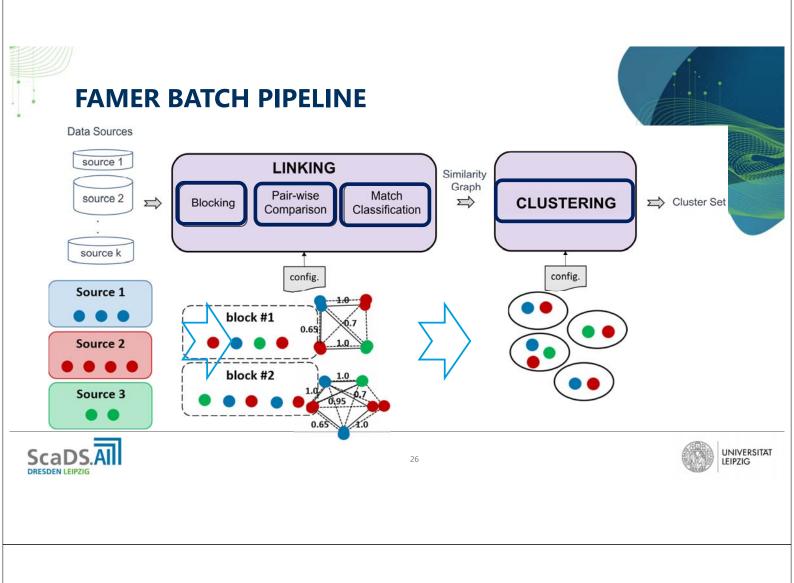
TOOL COMPARISON

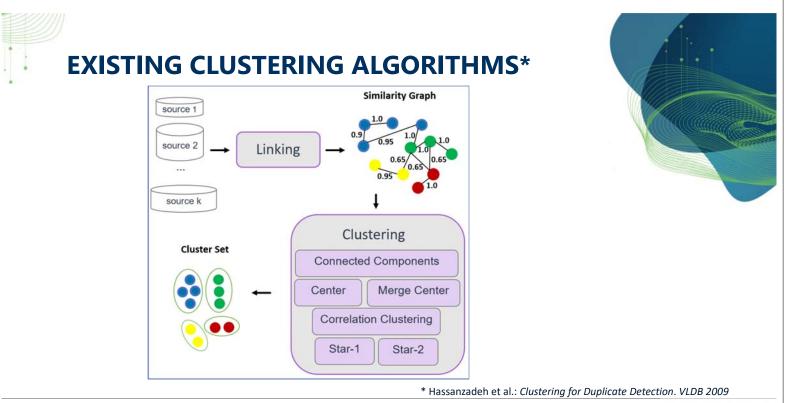
	Magellan	JedAl	FAMER
Blocking			
Matching			
Clustering			
Incremental ER			
GUI			
Big Data Architecture	only in commercial CloudMatcher		Apache Flink

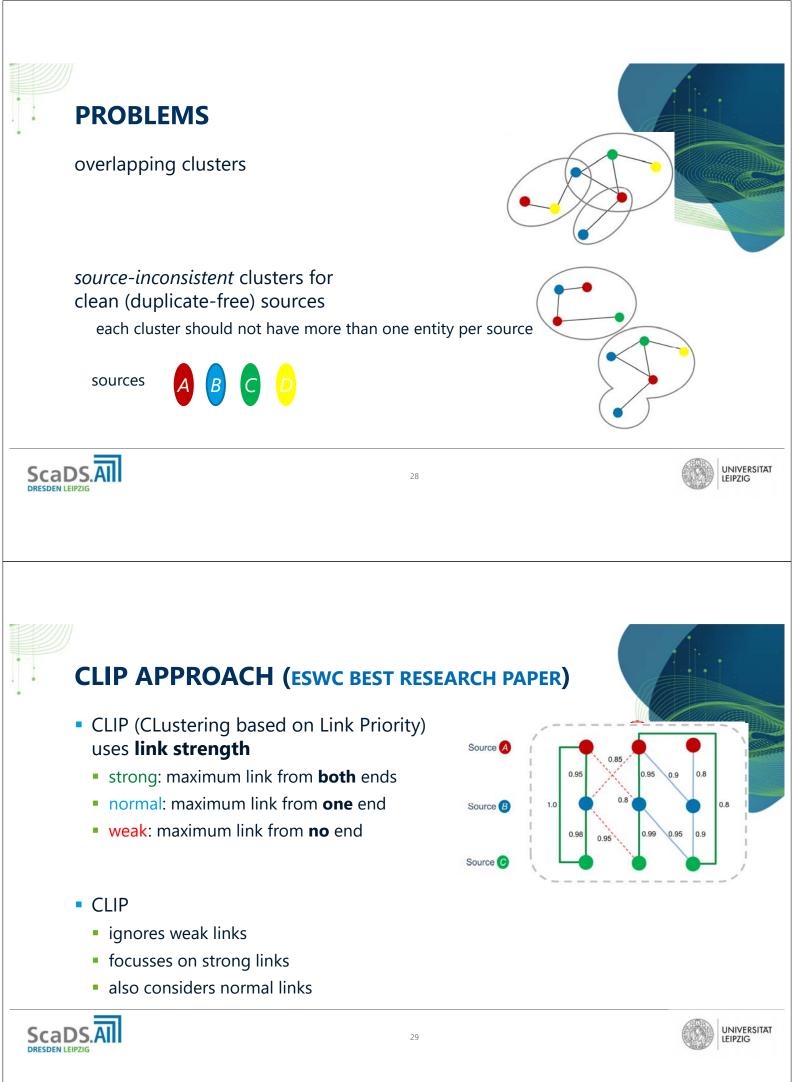
0-0 **FAMER TOOL** 0-0-0 • FAst Multi-source Entity Resolution System scalable linking & clustering for many sources Input Linking: Similarity Graph Clustering a_2 Source B Source a, А C., d₂ C Source D $c_1 e_1$ (a1) Source C Source E

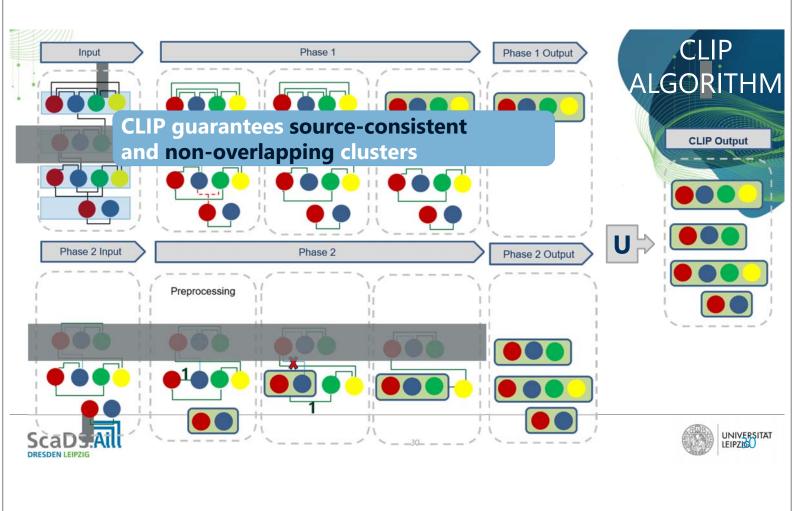
24

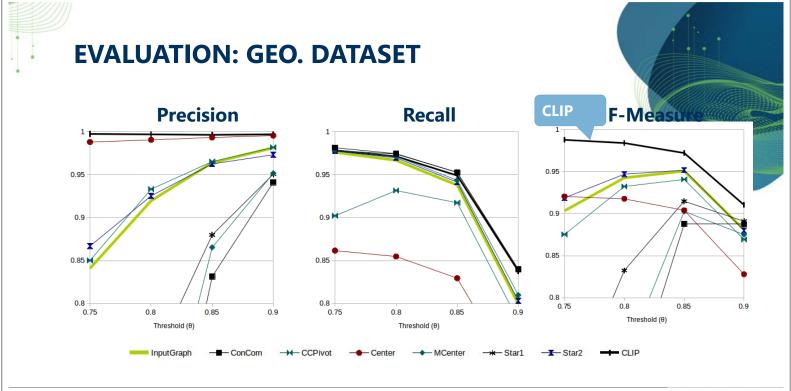
UNIVERSITAT LEIPZIG





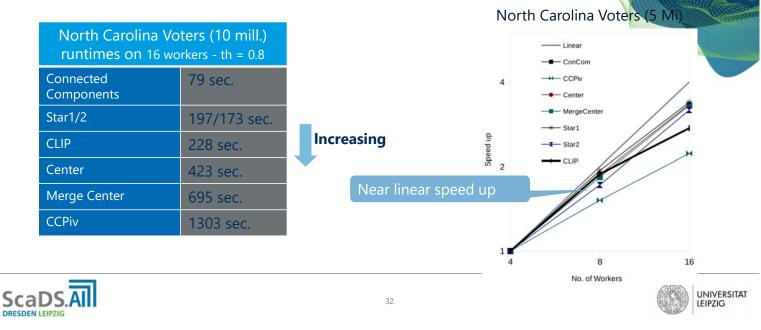






RUNTIME AND SPEED-UP

Experiments based on Hadoop and Apache Flink (16 machines)



MULTI-SOURCE CLEAN/DIRTY CLUSTERING

- previous assumption: data sources are duplicate-free
- more realistic assumption: some sources are dirty
 - solution: first deduplicate dirty sources
 - problem: requires immense effort and perhaps not completely successful [7]

solution: MSCD approaches

- approaches that can deal with dirty sources
- only a fraction (possibly 0%) of sources have to be clean
- goal: achieve better match quality than general clustering scheme while avoiding limitation of requiring duplicate-free sources
- two approaches added to FAMER based on hierarchical agglomerative clustering (HAC) and affinity propagation (AP)

MSCD-HAC

- modify Hierarchical Agglomerative Clustering ->MSCD-HAC
- iterative approach
 - initially each entity forms a cluster
 - continuously determine most similar pair of clusters (c_i, c_j) as long as minimal merge sime threshold is exceeded. Merge clusters c_i, c_j only when
 - they are *Reciprocal Nearest Neighbours* (RNN), i.e. $NN(c_j) = c_i$ and $NN(c_i) = c_j$
 - merge results in source-consistent clusters, i.e., at most one entity of a clean source in a cluster

34

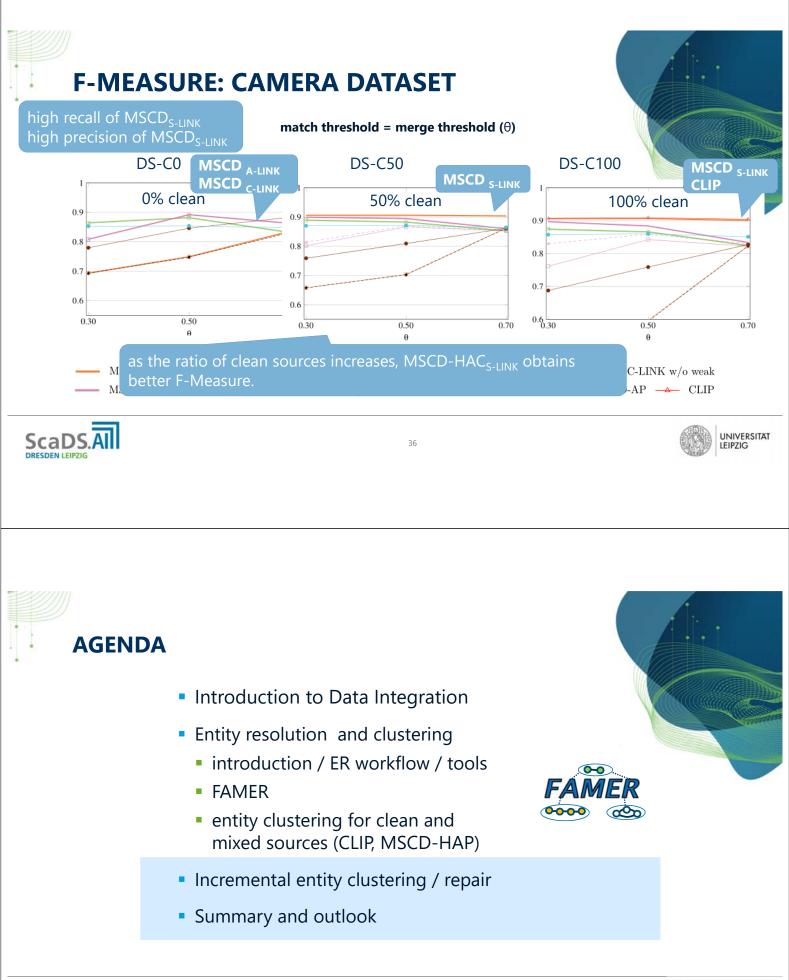
- 3 approaches to determine cluster similarity sim (c_i, c_i)
 - Single linkage (S-LINK): sim c_i, c_i = max {sim(e_m,e_n)}
 - Complete linkage (C-LINK) : sim c_i, c_i = min {sim(e_m, e_n)}
 - Average linkage (A-LINK) : sim c_i, c_i = avg {sim(e_m,e_n)}

EVALUATION SUMMARY

- camera dataset* (23 sources, ~21 K entities)_
 - combination of clean and dirty sources
- all approaches are experimented on all MSC and MSCD datasets
- MSCD clustering schemes MSCD-HAC and MSCD-AP are compared with
 - generic clustering schemes
 - CLIP

* ACM Sigmod programming contest 2020

;)	0	
	MSCD dataset	%entities from clean sources
	DS-C0	0%
	DS-C26	26%
	DS-C32	32%
	DS-C50	50%
	DS-C62	62%
	DS-C80	80%
	DS-C100	100%

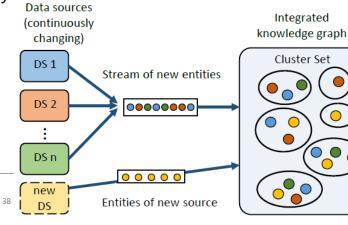


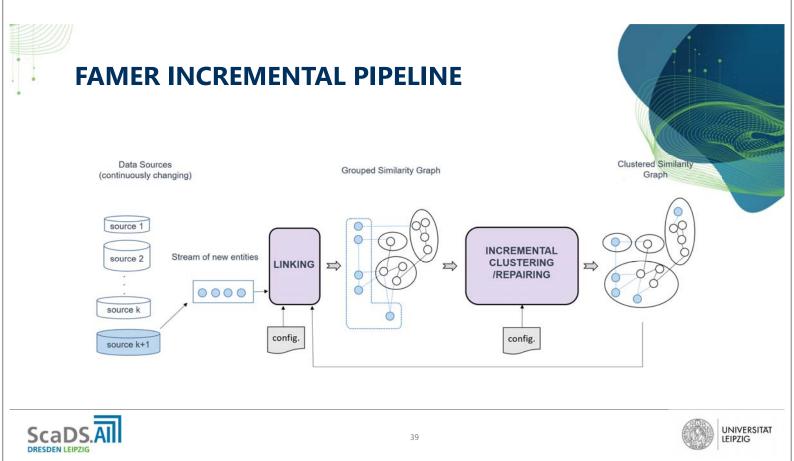
MOTIVATION

- static one-time matching and clustering insufficient
- need for incremental approaches
 - data sources change over time
 - new relevant data sources are added continuously
- expensive re-computation of similarity graph /clusters to be avoided
- order in which new entities are added should have minimal impact
 - need to repair wrong clusters

ScaDS.Al

DRESDEN LEIPZIG

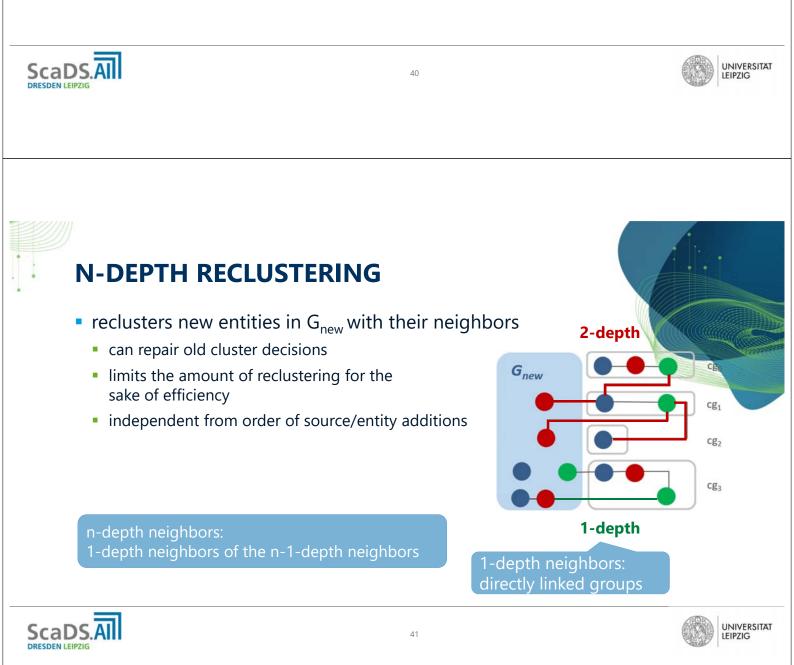


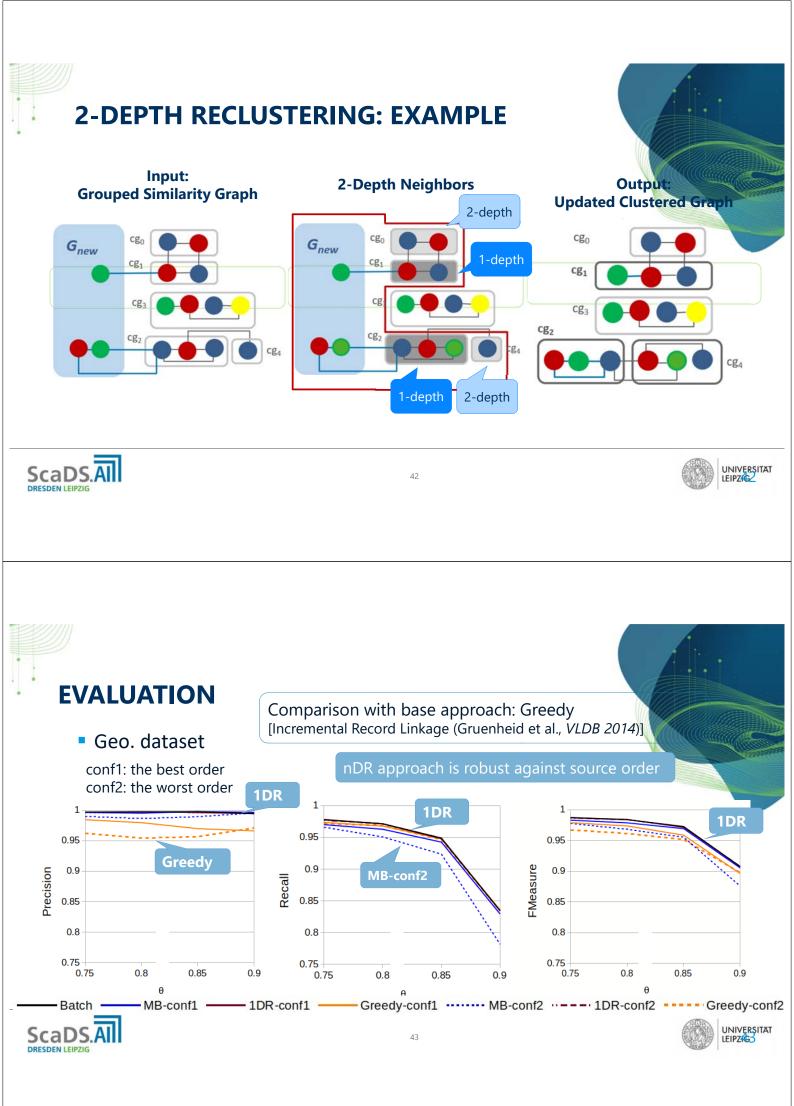


MAX-BOTH MERGE (MBM)

pre-cluster new entities If a cluster pair ($c_{new'}$, c_{old}) is linked via a max-both link if source-consistent ($c_{new'}$, c_{old}) Merge ($c_{new'}$, c_{old})

- MBM inserts new entity either into existing cluster or forms a new cluster out of it
 - merging only for *max-both (strong) links* and when source-consistency constraint is met (at most one entity per clean source)





EVALUATION: RUNTIME

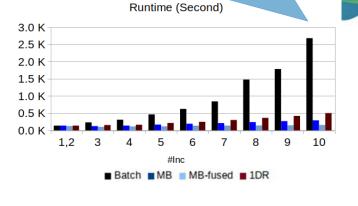
with less resources Batch runtime is significantly higher

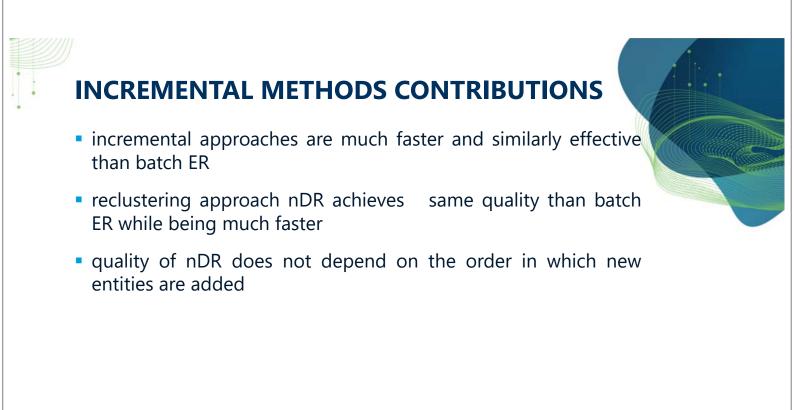
North Carolina Voters, 10 Mill. entities

MB is faster than nDR

incremental approaches are faster than Batch

accumulated runtimes (s) for source-wise ER					
#worker	Batch	MB	1DR		
4	117,852	5,648	21,179		
8	33,791	2,178	4,283		
16	8,542	1,778	2,513		
threshold (θ):	0.7				





44

SUMMARY

- Data integration still faces many challenges automation, data quality, efficiency/scalability, privacy support, continious change ...
- need for multi-source entity resolution with clustering
- FAMER integrates new and effective approaches for
 - consideration of duplicate-free (clean) data sources
 - support for incremental matching/clustering and cluster repair

OPEN RESEARCH PROBLEMS

- Largely automatic creation/refinement of large-scale knowledge graphs
- requires tackling of several tasks / challenges
 - development and evolution of KG ontology
 - initial population of KG
 - data acquisition / extraction / cleaning for new data to be integrated
 - learning-based classification of new entities
 - incremental schema/property matching for many entity types
 - incremental entity resolution/clustering for many entity types
 - entity fusion ...
- Multi-modal data integration

UNIVERSITAT

LEIPZIG

REFERENCES (1)

- D. Ayala, I. Hernández, D. Ruiz, E. Rahm, Erhard: LEAPME: Learning-based Property Matching with Embeddings. De Knowledge Engineering 2022
- P. Christen: Data Matching. Springer 2012
- L. Dong: Challenges and Innovations in Building a Product Knowledge Graph. Tutorial, KDD 2018
- J. Fisher, P. Christen, Q. Wang, E. Rahm: A clustering-based framework to control block sizes for entity resolution. Proc. KDD 2015
- A. Gruenheid et al.: Incremental record linkage. VLDB 2014
- O. Hassanzadeh et al.: Clustering for Duplicate Detection. VLDB 2009
- H. Köpcke, A. Thor, E. Rahm: Learning-based approaches for matching web data entities. IEEE Internet Computing 14(4), 2010
- H. Köpcke, A. Thor, E. Rahm: Evaluation of entity resolution approaches on real-world match problems. PVLDB 2010
- H. Köpcke, A. Thor, S. Thomas, E. Rahm: Tailoring entity resolution for matching product offers. Proc. EDBT 2012: 545-550
- L. Kolb, A. Thor, E. Rahm: Dedoop: Efficient Deduplication with Hadoop. PVLDB 5(12), 2012
- L. Kolb, E. Rahm: Parallel Entity Resolution with Dedoop. Datenbank-Spektrum 13(1): 23-32 (2013)
- L. Kolb, A. Thor, E. Rahm: Load Balancing for MapReduce-based Entity Resolution. ICDE 2012: 618-629
- S. Lerm, A. Saeedi, E. Rahm: Extended Affinity Propagation Clustering for Multi-source Entity Resolution. BTW 2021
- S. Mudgal et al.: *Deep learning for entity matching: A design space exploration*. SIGMOD 2018.
- M. Nentwig, A. Groß, E. Rahm: Holistic Entity Clustering for Linked Data. IEEE ICDMW 2016 2016
- M. Nentwig, A. Gro
 ß, Anika; M. Möller, E. Rahm: Distributed Holistic Clustering on Linked Data. LNCS 10574, 2017, pp 371-382

48

M. Nentwig, M. Hartung, A. Ngonga, E. Rahm: A Survey of Current Link Discovery Frameworks. Semantic Web Journal, 2017

REFERENCES (2)

- G. Papadakis et al.: The return of jedAI: end-to-end entity resolution for structured and semi-structured da 2018
- G. Papadakis et al: Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM CSUR 2020
- D. Obraczka, A. Saeedi, A. E. Rahm, E.: Knowledge Graph Completion with FAMER. Proc. KDD DI2KG, 2019
- D. Obraczka, J. Schuchart, E. Rahm: Embedding-Assisted Entity Resolution for Knowledge Graphs. Proc. ESWC KGCW, 2021
- E. Rahm, H. H. Do: Data Cleaning: Problems and Current Approaches. IEEE Techn. Bulletin on Data Engineering, 2000
- E. Rahm: The case for holistic data integration. Proc. ADBIS, 2016
- A. Saeedi, L. David, E. Rahm, E: Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering. KEOD 2021
- A. Saeedi, M. Nentwig, E. Peukert, E. Rahm: Scalable matching and clustering of entities with FAMER. CSIM Quarterly 2018
- A. Saeedi, E. Peukert, E. Rahm: Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution. Proc. ADBIS, LNCS 10509, 2017
- A. Saeedi, E. Peukert, E. Rahm: Using Link Features for Entity Clustering in Knowledge Graphs. ESWC 2018
- A. Saeedi, E. Peukert, E. Rahm: Incremental Multi-source Entity Resolution for Knowledge Graph Completion. ESWC 2020
- J. Shao, Q. ; Wang, A. Wijesinghe, E. Rahm: ERGAN: Generative Adversarial Networks for Entity Resolution. ICDM 2020
- M. Wilke, E. Rahm: Towards Multi-modal Entity Resolution for Product Matching. GVDB 2021

UNIVERSITAT

LEIPZIG