

ERHARD RAHM, UNIV. LEIPZIG

www.scads.de

- Founded in 1409
- Now about 30.000 students in 14 faculties
- Computer science
 - 13 professorships and 2 junior professors
 - 150 PhD students and postdocs (120 by third party funding)

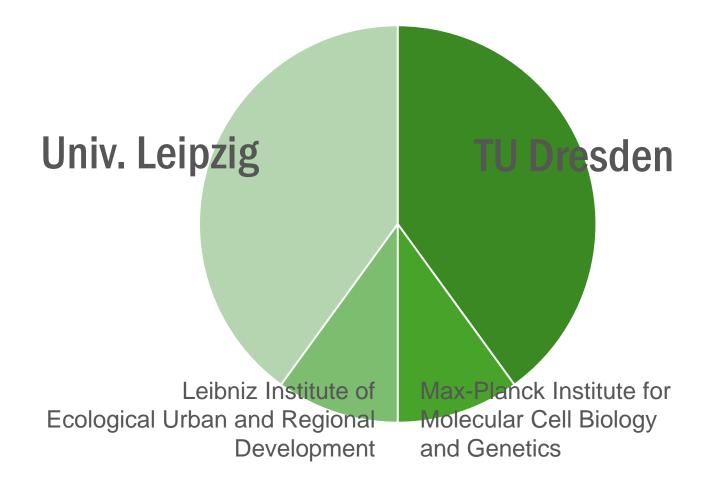
Two Centers of Excellence for Big Data in Germany

- ScaDS Dresden/Leipzig
- Berlin Big Data Center (BBDC)

ScaDS Dresden/Leipzig (Competence Center for Scalable Data Services and Solutions Dresden/Leipzig)

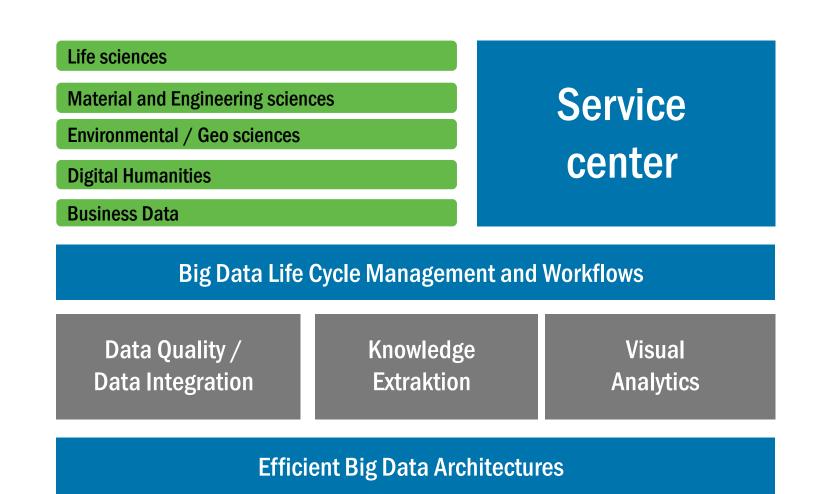
- scientific coordinators: Nagel (TUD), Rahm (UL)
- start: Oct. 2014
- duration: 4 years (option for 3 more years)
- initial funding: ca. 5.6 Mio. Euro

- Bundling and advancement of existing expertise on Big Data
- Development of Big Data Services and Solutions
- Big Data Innovations



- Avantgarde-Labs GmbH
- Data Virtuality GmbH
- E-Commerce Genossenschaft e. G.
- European Centre for Emerging Materials and Processes Dresden
- Fraunhofer-Institut f
 ür Verkehrs- und Infrastruktursysteme
- Fraunhofer-Institut f
 ür Werkstoff- und Strahltechnik
- GISA GmbH
- Helmholtz-Zentrum Dresden -Rossendorf

- Hochschule f
 ür Telekommunikation Leipzig
- Institut f
 ür Angewandte Informatik e. V.
- Landesamt f
 ür Umwelt, Landwirtschaft und Geologie
- Netzwerk Logistik Leipzig-Halle e. V.
- Sächsische Landesbibliothek Staatsund Universitätsbibliothek Dresden
- Scionics Computer Innovation GmbH
- Technische Universität Chemnitz
- Universitätsklinikum Carl Gustav Carus



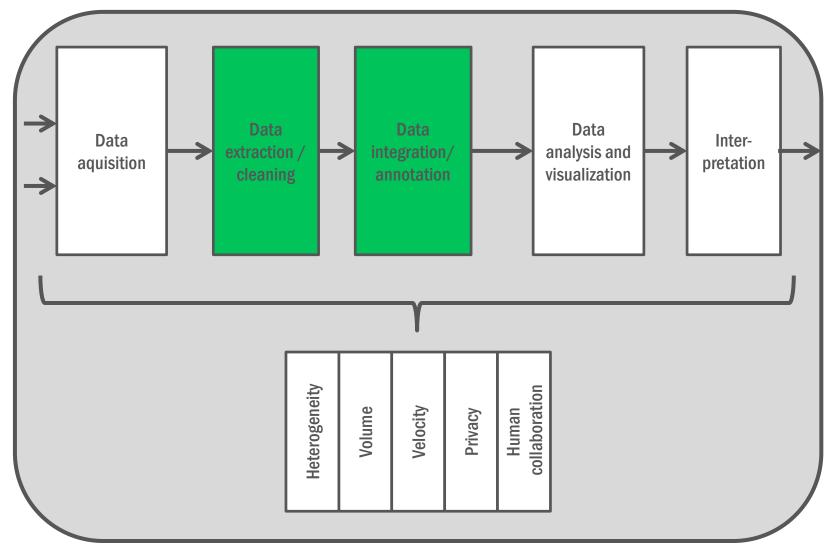
- Data-intensive computing W.E. Nagel
- Data quality / Data integration E. Rahm
- Databases W. Lehner, E. Rahm
- Knowledge extraction/Data mining C. Rother, P. Stadler, G. Heyer
- Visualization S. Gumhold, G. Scheuermann
- Service Engineering, Infrastructure K.-P. Fähnrich, W.E. Nagel, M. Bogdan

- Life sciences G. Myers
- Material / Engineering sciences M. Gude
- Environmental / Geo sciences J. Schanze
- Digital Humanities G. Heyer
- Business Data B. Franczyk

ScaDS Dresden/Leipzig

Big Data Integration

- Introduction
- Matching product offers from web shops
- DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Big Graph Data
 - Graph-based Business Intelligence with BIIIG
 - GraDoop: Hadoop-based data management and analysis
- Summary and outlook



- Thousands of data sources (shops/merchants)
- Millions of products and product offers
- Continous changes
- Many similar, but different products
- Low data quality

Canon VIXIA HF S10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom Flash card, 32 GB, 1y warranty, F/1.8-3.0 The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image processor, ... ***** 12 reviews - Add to Shopping List

Canon (VIXIA) HF S10 iVIS Dual Flash Memory Camcorder

Canon HF S10 i/VIS Dual Flash Memory CamcorderSPECIAL SALE PRICE: \$899 Display both English/Japanese + we supplu all English manuals in English as PDF. Add to Shopping List

Canon VIXIA HF S10

Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video Canon has a well-known and highly-regarded reputation for optical excellence, Add to Shopping List

Canon VIXIA HF S100 Flash Memory Camcorder ***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200 Add to Shopping List

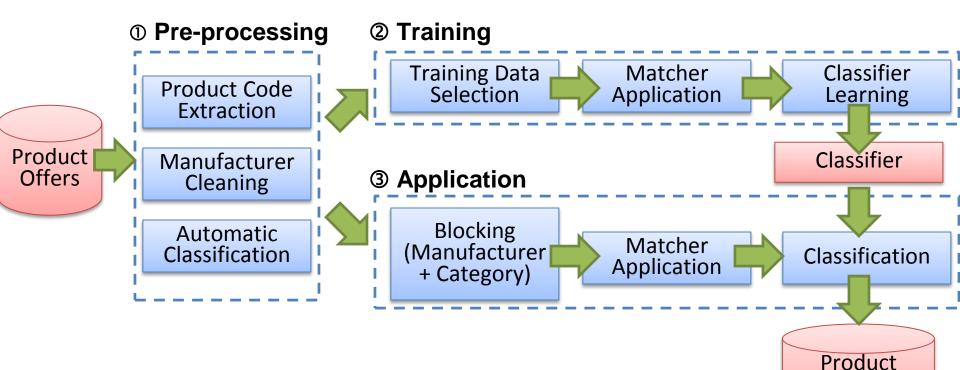
Canon Vixia Hf S10 Care & Cleaning Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen Guard Canon VIXIA HF S10 Camcorders Care & Cleaning. Add to Shopping List \$975 new from 52 selle Compare

\$899.00 Made in Jap

\$9999.00 Performance 2 seller ratings

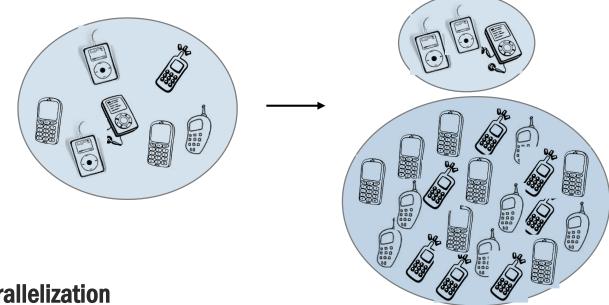
\$899.95 Arlingtoncan 5 seller ratings

\$2.99 net shop.com ★★★☆☆ 38



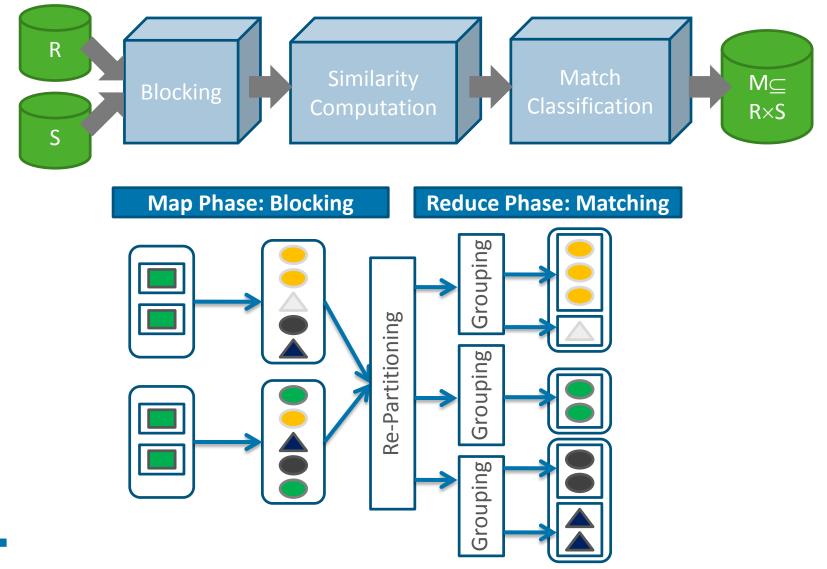
Match Result

- **Blocking** to reduce search space
 - group similar objects within blocks based on *blocking key*
 - restrict object matching to objects from the same block



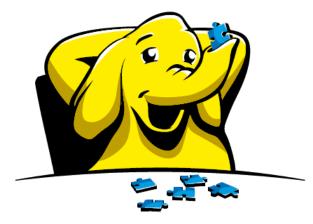
Parallelization

- split match computation in sub-tasks to be executed in parallel
- exploitation of Big Data infrastructures such as Hadoop (Map/Reduce or variations)

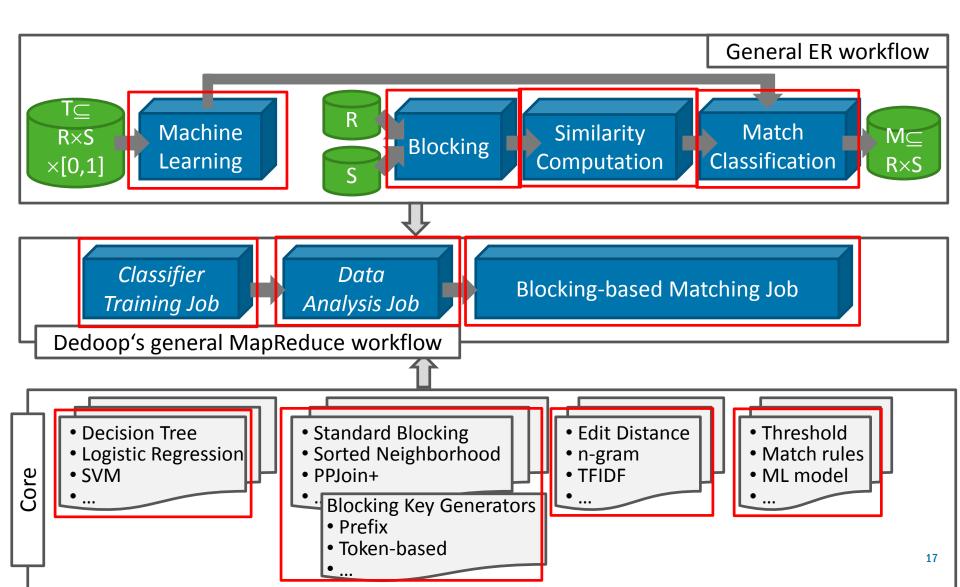


ScaDS DEDOOP: EFFICIENT DEDUPLICATION WITH HADOOP

- Parallel execution of data integration/ match workflows with Hadoop
- Powerful library of match and blocking techniques
- Learning-based configuration
- GUI-based workflow specification
- Automatic generation and execution of Map/Reduce jobs on different clusters
- Automatic load balancing for optimal scalability
- Iterative computation of transitive closure (extension of MR-CC)



"This tool by far shows the most mature use of MapReduce for data deduplication" www.hadoopsphere.com

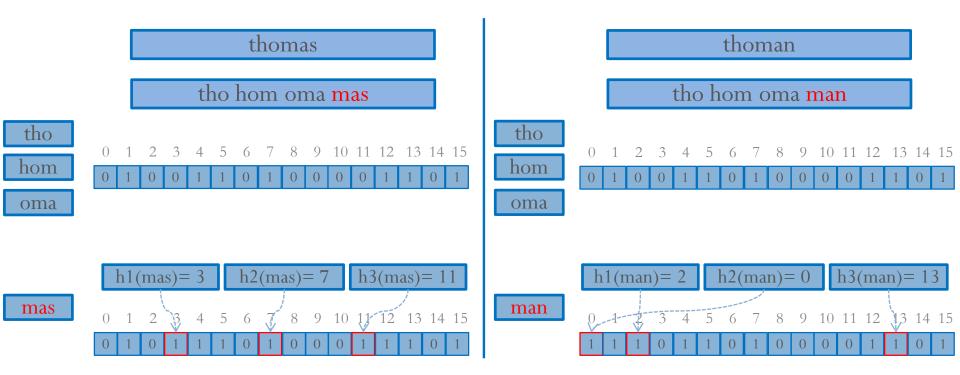


- ScaDS Dresden/Leipzig
- Big Data Integration
 - Introduction
 - Matching product offers from web shops
 - DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Big Graph Data
 - Graph-based Business Intelligence with BIIIG
 - GraDoop: Hadoop-based data management and analysis
- Summary and outlook

- Need for comprehensive privacy support ("privacy by design")
 - Privacy-preserving publishing of datasets
 - Privacy-preserving record linkage
 - Privacy-preserving data mining
- Privacy-preserving record linkage
 - object matching with encrypted data to preserve privacy
 - conflicting requirements: high privacy, scalability and match effectiveness
 - use of central linking unit (Trusted third party) vs. symmetric approaches (Secure Multiparty Computing)

- effective and simple encryption uses cryptographic bloom filters (Schnell et al, 2009)
- tokenize all match-relevant attribute values, e.g. using bigrams or trigrams
 - typical attributes: first name, last name (at birth), sex, date of birth, country of birth, place of birth
- map each token with a family of one-way hash functions to fixed-size bit vector (fingerprint)
 - original data cannot be reconstructed
- match of bit vectors (Jaccard similarity) is good approximation of true match result

ScaDS SIMILARITY COMPUTATION - EXAMPLE



 $\operatorname{Sim}_{\operatorname{Jaccard}}(r1, r2) = (r1 \wedge r2) / (r1 \vee r2)$

 $\operatorname{Sim}_{\operatorname{Jaccard}}(r1, r2) = 7/11$

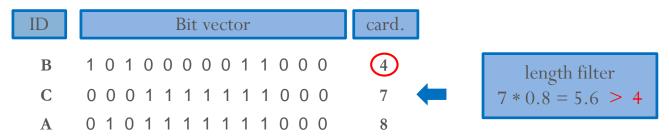
ScaDS PP-JOIN: POSITION PREFIX JOIN (XIAO ET AL, 2008)

- one of the most efficient *similarity join* algorithms
 - determine all pairs of records with $sim_{Jaccard}(x,y) \ge t$
- use of filter techniques to reduce search space
 - Iength, prefix, and position filter
- relatively easy to run in parallel
- good candidate to improve scalability for PPRL
- evaluate set bit positions instead of (string) tokens

matching records pairs must have similar lengths

 $\operatorname{Sim}_{\operatorname{Jaccard}}(\mathbf{x},\mathbf{y}) \ge t \Rightarrow |\mathbf{x}| \ge |\mathbf{y}| * t$

- Iength / cardinality: number of set bits in bit vector
- Example for minimal similarity t = 0,8:



 record B of length 4 cannot match with C and all records with greater length (number of set positions), e.g., A

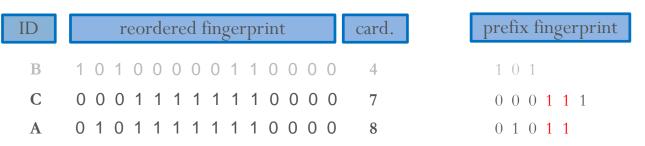
Similar records must have a minimal overlap α in their sets of tokens (or set bit positions)

$$\operatorname{Sim}_{\operatorname{Jaccard}}(\mathbf{x},\mathbf{y}) \ge t \iff \operatorname{Overlap}(\mathbf{x},\mathbf{y}) \ge \alpha = \left\lceil \left(\frac{t}{1+t} * (|\mathbf{x}|) + |\mathbf{y}|\right) \right\rceil$$

- Prefix filter approximates this test
 - reorder bit positions for all fingerprints according to their overall frequency from infrequent to frequent
 - exclude pairs of records without any overlap in their prefixes with

```
prefix_length(x) = \lceil ((1-t)*|x|) + 1 \rceil
```

Example (t = 0.8)



AND operation on prefixes shows non-zero result for C and A so that these records still need to be considered for matching 24

- improvement of prefix filter to avoid matches even for overlapping prefixes
 - estimate maximally possible overlap and checking whether it is below the *minimal* overlap α to meet threshold t
 - *original position filter* considers the position of the last common prefix token
- revised position filter
 - record x, prefix 1 1 0 1
 record y, prefix 1 1 1
 length 8
 - highest prefix position (here fourth pos. in x) limits possible overlap with other record: the third position in y prefix cannot have an overlap with x
 - maximal possible overlap = #shared prefix tokens (2) + min (9-3, 8-3)= 7
 < minimal overlap α = 8

comparison between NestedLoop, P4Join, MultiBitTree

- MultiBitTree: best filter approach in previous work by Schnell
 - applies length filter and organizes fingerprints within a binary tree so that fingerprints with the same set bits are grouped within sub-trees
 - can be used to filter out many fingerprints from comparison

two input datasets R, S

- determined with FEBRL data generator
 N=[100.000, 200.000, ..., 500.000]. |R|=1/5·N, |S|=4/5·N
- bit vector length: 1000
- similarity threshold 0.8

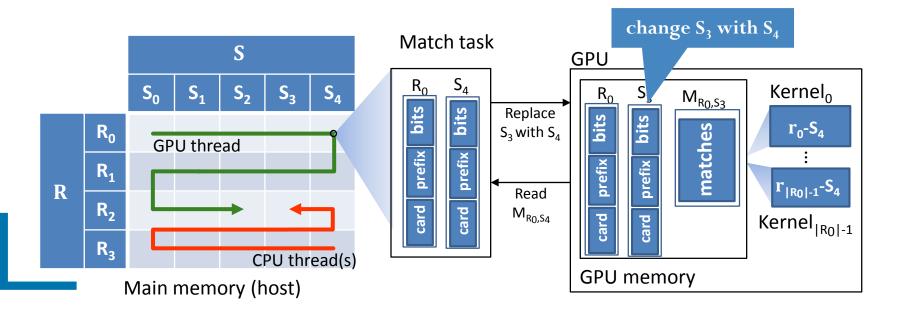
runtime in minutes on standard PC

Approach	Dataset size N					
	100.000	200.000	300.000	400.000	500.000	
NestedLoop	6,10	27,68	66,07	122,02	194,77	
MultiBitTree	4,68	18,95	40,63	78,23	119,73	
P4 Length filter only	3,38	20,53	46,48	88,33	140,73	
P4 Length+Prefix	3,77	22,98	52,95	99,72	159,22	
P4 Length+Prefix+Position	2,25	15,50	40,05	77,80	125,52	

- similar results for P4Join and Multibit Tree
- relatively small improvements compared to NestedLoop

- Operations on bit vectors easy to compute on GPUs
 - Length and prefix filters
 - Jaccard similarity
- Frameworks CUDA und OpenCL support data-parallel execution of general computations on GPUs
 - program ("kernel") written in C dialect
 - Iimited to base data types (float, long, int, short, arrays)
 - no dynamic memory allocation (programmer controls memory management)
 - important to minimize data transfer between main memory and GPU memory

- partition inputs R and S (fingerprints sorted by length) into equallysized partitions that fit into GPU memory
 - generate match tasks per pair of partition
 - only transfer to GPU if length intervals per partition meet length filter
 - optional use of CPU thread to additionally match on CPU



GeForce GT 610

	100.000	200.000	300.000	400.000	500.000
GForce GT 610	0,33	1,32	2,95	5,23	8,15
GeForce GT 540M	0,28	1,08	2,41	4,28	6,67

- improvements by up to a factor of 20, despite low-profile graphic cards
- still non-linear increase in execution time with growing data volume

ScaDS Dresden/Leipzig

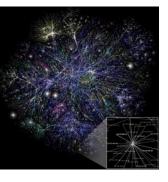
Big Data Integration

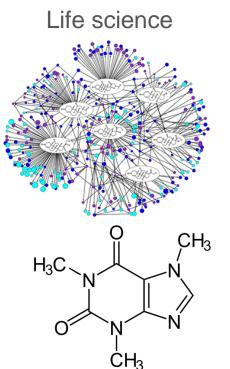
- Introduction
- Matching product offers from web shops
- DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Big Graph Data
 - Graph-based Business Intelligence with BIIIG
 - GraDoop: Hadoop-based data management and analysis
- Summary and outlook

ScaDS ,GRAPHS ARE EVERYWHERE"

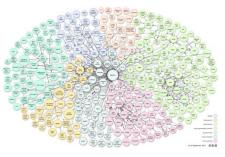
Social science

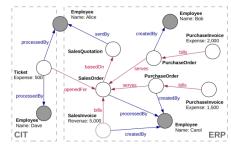
Engineering





Information science





Facebook

ca. 1.3 Billion users ca. 340 friends per user

Twitter

- ca. 300 Million users
- ca. 500 Million Tweets per day

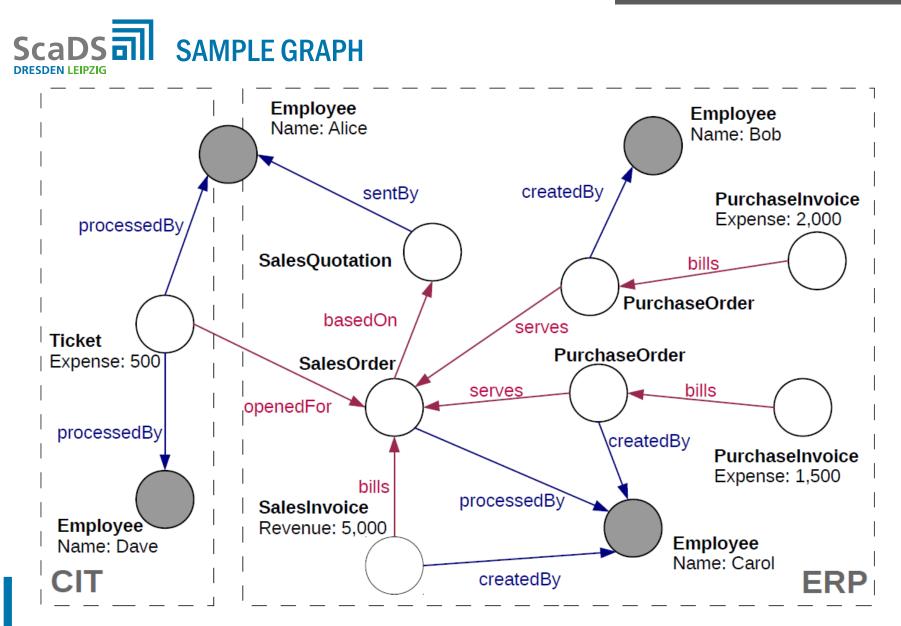
Internet ca. 2.9 Billion Users

Gene (human) 20,000-25,000 ca. 4 Million individuals Patients > 18 Millionen (Germany) Illnesses > 30.000

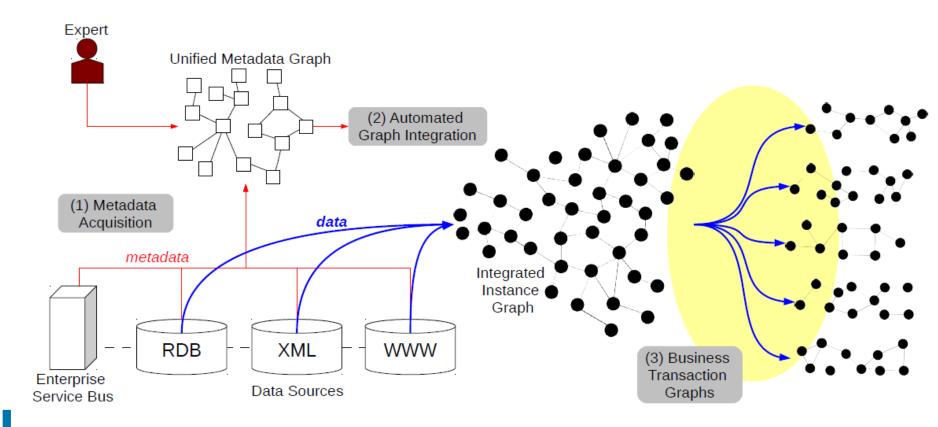
World Wide Web ca. 1 Billion Websites LOD-Cloud ca. 31 Billion Triples

ScaDS USE CASE: GRAPH-BASED BUSINESS INTELLIGENCE

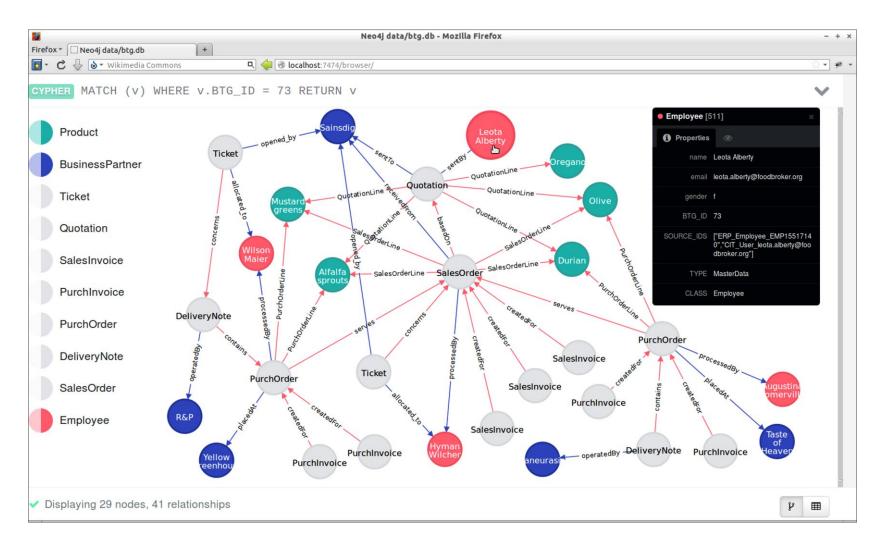
- Business intelligence usually based on relational data warehouses
 - enterprise data is integrated within dimensional schema
 - analysis limited to predefined relationships
 - no support for relationship-oriented data mining
- Graph-based approach (BIIIG)
 - Integrate data sources within an instance graph by preserving original relationships between data objects (transactional and master data)
 - Determine subgraphs (business transaction graphs) related to business activities
 - Analyze subgraphs or entire graphs with aggregation queries, mining relationship patterns, etc.



"Business Intelligence on Integrated Instance Graphs"



SCADS SCREENSHOT FOR NEO4J IMPLEMENTATION

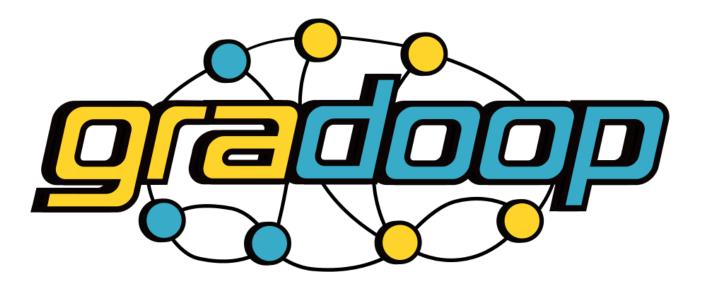


Relational database systems

- store vertices and edges in tables
- utilize indexes, column stores, etc.
- Graph database system, e.g. Neo4J
 - use of property graph data model: vertices and edges have arbitrary set of properties (represented as key-value pairs)
 - focus on simple transactions and queries
- Distributed graph processing systems, e.g., Google Pregel, Apache Giraph, GraphX, etc.
 - In-memory storage of graphs in Shared Nothing cluster
 - parallel processing of general graph algorithms, e.g. page rank, connected components, ...

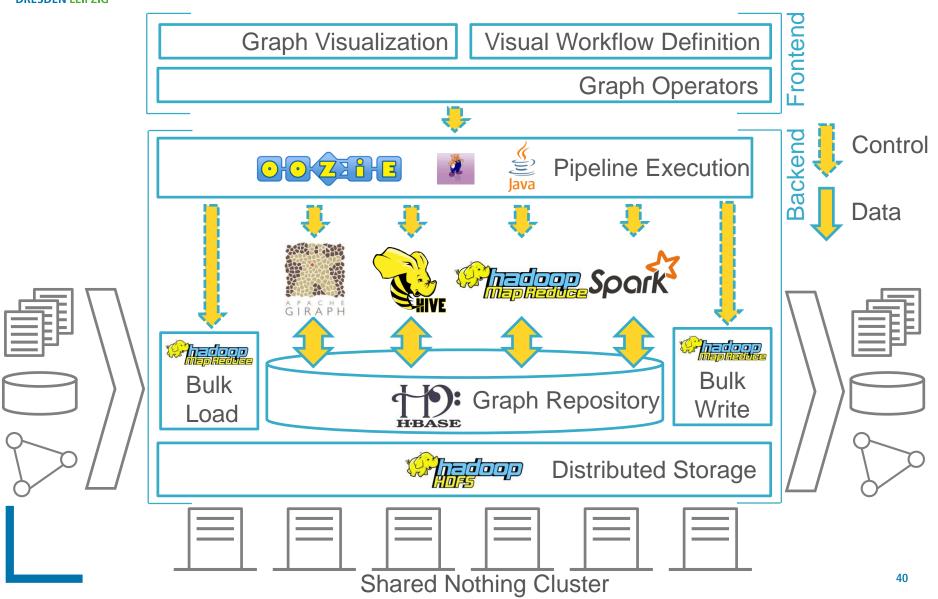
WHAT'S MISSING?

A comprehensive framework and research platform for efficient, distributed and domain independent graph analytics.

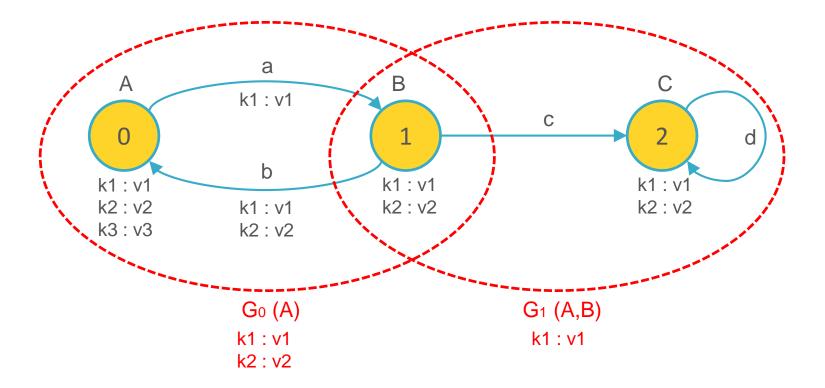


- Hadoop-based framework for graph data management and analysis
- Graph storage in scalable distributed store, e.g., HBase
- Extended property graph data model
 - operators on graphs and sets of (sub) graphs
 - support for semantic graph queries and mining
- Leverages powerful components of Hadoop ecosystem
 - MapReduce, Giraph, Spark, Pig, Drill ...
- New functionality for graph-based processing workflows and graph mining

ScaDS GRADOOP – HIGH LEVEL ARCHITECTURE



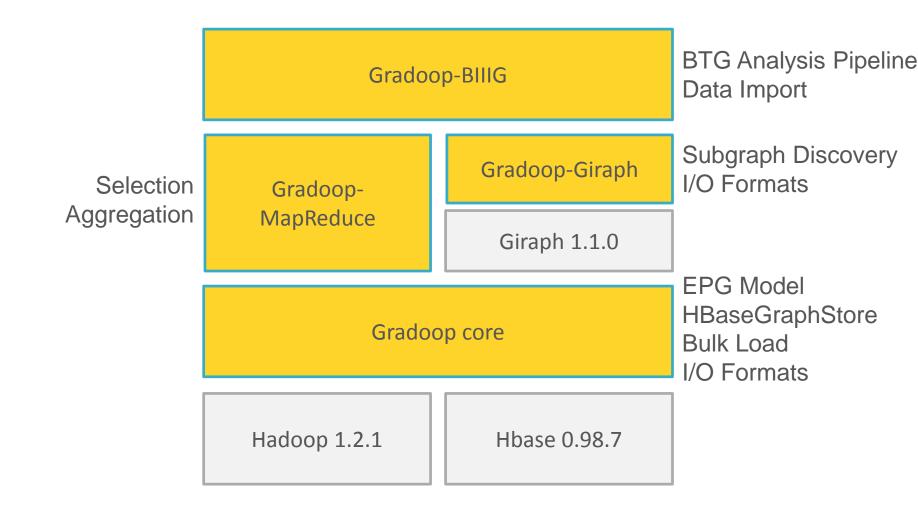
Partitioned Directed Labeled Attributed Multigraph

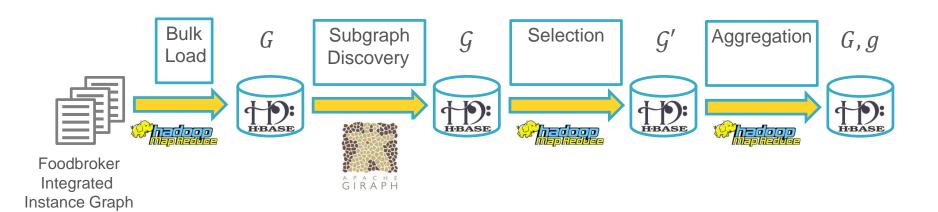


Scads GRADOOP OPERATORS

	Operator	Input	Output
Single Graph Operations	Aggregation $\gamma: \mathcal{G} \to (\mathbb{R} \cup \Sigma)$ $\mathcal{G} \mapsto g$	Graph <i>G</i>	Number/String g
	Subgraph Discovery $\theta_{v,\epsilon}: \mathcal{G} \to \mathbb{G}$ $\mathcal{G} \mapsto \mathcal{G}$	$\begin{array}{ll} Graph & G \\ Vertex \ map & \upsilon \colon V \to \mathbb{G} \\ Edge \ map & \epsilon \colon E \to \mathbb{G} \end{array}$	Graph set ${\cal G}$
Graph Set Operations	Operator	Input	Output
	Selection $\sigma_{\varphi} \colon \mathbb{G} \to \mathbb{G}$ $\mathcal{G} \mapsto \mathcal{G}'$	Graph set \mathcal{G} Predicate $\varphi: \mathcal{G} \to \{0,1\}$	Graph set \mathcal{G}'
Binary Graph Comparison	Operator	Input	Output
	Similarity $\sim: \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ $\langle G_1, G_2 \rangle \mapsto s$	Graphs G_1, G_2	Similarity s
n-ary Graph Comparison	Operator	Input	Output
	Frequent Subgraphs $\phi_t \colon \mathbb{G} \to \mathbb{G}$ $\mathcal{G} \mapsto \mathcal{G}'$	Graph set \mathcal{G} Treshold $0 \le t \le 1$	Graph set \mathcal{G}'

- Summarization
- Pattern Match
- Projection
- Map
- Union
- Intersect
- Difference
- Edit Steps
- Equivalence
- Equality
- Inner Join
- Outer Join





ScaDS Dresden/Leipzig

Big Data Integration

- Introduction
- Matching product offers from web shops
- DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Big Graph Data
 - Graph-based Business Intelligence with BIIIG
 - GraDoop: Hadoop-based data management and analysis
- Summary and outlook

ScaDS Dresden/Leipzig

- Research focus on data integration, knowledge extraction, visual analytics
- broad application areas (scientific + business-related)
- solution classes for applications with similar requirements

Big Data Integration

- Big data poses new requirements for data integration (variety, volume, velocity, veracity)
- comprehensive data preprocessing and cleaning
- Hadoop-based approaches for improved scalability, e.g. Dedoop
- Usability: machine-learning approaches, GUI, ...

Scalable Privacy-Preserving Record Linkage

- bloom filters allow simple, effective and relatively efficient match approach
- Privacy-preserving PP-Join (P4JOIN) achieves comparable performance to multibit trees but easier to parallelize
- GPU version achieves significant speedup
- further improvements needed to reduce quadratic complexity

Big Graph Data

- high potential of graph analytics even for business data (BIIIG)
- GraDoop: infrastructure for entire processing pipeline: graph acquisition, storage, integration, transformation, analysis (queries + graph mining), visualization
- Ieverages Hadoop ecosystem including graph processing systems
- extended property graph model with powerful operators

- Parallel execution of more diverse data integration workflows for text data, image data, sensor data, etc.
 - learning-based configuration to minimize manual effort (active learning, crowd-sourcing)
- Holistic integration of many data sources (data + metadata)
 - clustering across many sources
 - N-way merging of related ontologies (e.g. product taxonomies)
- Improved privacy-preserving record linkage
 - better scalability, also for n-way (multi-party) PPRL
- Big Graph data management
 - complete processing framework
 - improved usability

- H. Köpcke, A. Thor, S. Thomas, E. Rahm: *Tailoring entity resolution for matching product offers*. Proc. EDBT 2012: 545-550
- L. Kolb, E. Rahm: *Parallel Entity Resolution with Dedoop*. Datenbank-Spektrum 13(1): 23-32 (2013)
- L. Kolb, A. Thor, E. Rahm: Dedoop: *Efficient Deduplication with Hadoop*. PVLDB 5(12), 2012
- L. Kolb, A. Thor, E. Rahm: *Load Balancing for MapReduce-based Entity Resolution*. ICDE 2012: 618-629
- L. Kolb, Z. Sehili, E. Rahm: *Iterative Computation of Connected Graph Components with MapReduce*. Datenbank-Spektrum 14(2): 107-117 (2014)
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: *BIIIG : Enabling Business Intelligence with Integrated Instance Graphs*. Proc. 5th Int. Workshop on Graph Data Management (GDM 2014)
- A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG. Proc. VLDB Conf., 2014
- E. Rahm, W.E. Nagel: ScaDS Dresden/Leipzig: Ein serviceorientiertes Kompetenzzentrum f
 ür Big Data. Proc. GI-Jahrestagung 2014: 717
- R.Schnell, T. Bachteler, J. Reiher: *Privacy-preserving record linkage using Bloom filters*. BMC Med. Inf. & Decision Making 9: 41 (2009)
- Z. Sehili, L. Kolb, C. Borgs, R. Schnell, E. Rahm: *Privacy Preserving Record Linkage with PPJoin*. Proc. BTW Conf. 2015
- C. Xiao, W. Wang, X. Lin, J.X. Yu: *Efficient Similarity Joins for Near Duplicate Detection*. Proc. WWW 2008