

AT SCADS DRESDEN/LEIPZIG

ERHARD RAHM, UNIV. LEIPZIG

www.scads.de

Two Centers of Excellence for Big Data in Germany

- ScaDS Dresden/Leipzig
- Berlin Big Data Center (BBDC)

ScaDS Dresden/Leipzig (Competence Center for Scalable Data Services and Solutions Dresden/Leipzig)

- scientific coordinators: Nagel (TUD), Rahm (UL)
- start: Oct. 2014
- duration: 4 years (option for 3 more years)
- initial funding: ca. 5.6 Mio. Euro

- Bundling and advancement of existing expertise on Big Data
- Development of Big Data Services and Solutions
- Big Data Innovations

- Avantgarde-Labs GmbH
- Data Virtuality GmbH
- E-Commerce Genossenschaft e. G.
- European Centre for Emerging Materials and Processes Dresden
- Fraunhofer-Institut f
 ür Verkehrs- und Infrastruktursysteme
- Fraunhofer-Institut f
 ür Werkstoff- und Strahltechnik
- GISA GmbH
- Helmholtz-Zentrum Dresden -Rossendorf

- Hochschule f
 ür Telekommunikation Leipzig
- Institut f
 ür Angewandte Informatik e. V.
- Landesamt f
 ür Umwelt, Landwirtschaft und Geologie
- Netzwerk Logistik Leipzig-Halle e. V.
- Sächsische Landesbibliothek Staatsund Universitätsbibliothek Dresden
- Scionics Computer Innovation GmbH
- Technische Universität Chemnitz
- Universitätsklinikum Carl Gustav Carus

- Data-intensive computing W.E. Nagel
- Data quality / Data integration E. Rahm
- Databases W. Lehner, E. Rahm
- Knowledge extraction/Data mining C. Rother, P. Stadler, G. Heyer
- Visualization S. Gumhold, G. Scheuermann
- Service Engineering, Infrastructure K.-P. Fähnrich, W.E. Nagel, M. Bogdan

- Life sciences G. Myers
- Material / Engineering sciences M. Gude
- Environmental / Geo sciences J. Schanze
- Digital Humanities G. Heyer
- Business Data B. Franczyk

- ScaDS Dresden/Leipzig
- Big Data Integration
 - Introduction
 - Matching product offers from web shops
 - DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Summary and outlook
- References

- Identification of semantically equivalent objects
 - within one data source or between different sources
- Original focus on structured (relational) data, e.g. customer data

Спо	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	М	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222-6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

CID	Name	Street	City	Sex
11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
24	Christian Smith	Hurley St 2	S Fork MN	1

- Thousands of data sources (shops/merchants)
- Millions of products and product offers
- Continous changes
- Many similar, but different products
- Low data quality

Canon VIXIA HF S10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom Flash card, 32 GB, 1y warranty, F/1.8-3.0 The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image processor, ... ***** 12 reviews - Add to Shopping List

Canon (VIXIA) HF S10 iVIS Dual Flash Memory Camcorder

Canon VIXIA HF S10

Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video Canon has a well-known and highly-regarded reputation for optical excellence, Add to Shopping List

Canon VIXIA HF S100 Flash Memory Camcorder ***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200 Add to Shopping List

Canon Vixia Hf S10 Care & Cleaning Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen Guard Canon VIXIA HF S10 Camcorders Care & Cleaning. Add to Shopping List \$975 new from 52 sells

Compare

\$899.00 Made in Jap

aue moap

\$999.00 Performance 2 seller ratings

\$899.95 Arlingtoncan 5 seller ratings

\$2.99 net shop.com ★★★☆☆ 38

- Frequent existence of specific product codes for certain products
- Product code = manufacturer-specific identifier
 - any sequence consisting of alphabetic, special, and numeric characters split by an arbitrary number of white spaces.
- > Utilize to differentiate similar but different products.

Hahnel HL-XF51 7.2V 680mAh for Sony NP-FF51 7.2V Hahnel Hahnel 680mAh HL-XF51 HL-XF51 Web Verification for **Features** Sonv Sonv HL-XF51 NP-FF51 NP-FF51 Tokens Filtered NP-FF51 Tokep Candidates [A-Z]{2}\-[A-Z]{2}[0-9]{2}

Hahnel HL-XF51 - Power Adapter / Battery

Hahnel HL-XF51 with consumer reviews and price col www.dooyoo.co.uk/power-devices-batteries/hahnel-hl

HAHNEL HLXF51 680 mAh, 7.2 V Replace

HAHNEL HLXF51 - Price: 24.95 - Available - 680 mA the Sony NP-FF50/51, Digital Camcorders, Camcorde www.hivvayhifi.com/.../digital-camcorders/hahnel-hlxt

Amazon.com: Sony NPFF51 F Series Batter

This InfoLithium F series battery can provide more than time* for your MicroMV Handycam camcorder. Compati www.amazon.com/Sony-NPFF51-Battery-DCRPC109-35

Sony NP-FF51 Battery, Camcorder Chargers

Sony NP-FF51 Battery, Chargers, Adapters and Accesso batteries are specifically designed for each specific carr www.atbatt.com/carrcorder-batteries/b/sony/m/np-ff51.a

Match Result

- **Blocking** to reduce search space
 - group similar objects within blocks based on *blocking key*
 - restrict object matching to objects from the same block

Parallelization

- split match computation in sub-tasks to be executed in parallel
- exploitation of Big Data infrastructures such as Hadoop (Map/Reduce or variations)

Data skew leads to unbalanced workload

- Large blocks prevent utilization of more than a few nodes
- Deteriorates scalability and efficiency
- Unnecessary costs (you also pay for underutilized machines!)

Key ideas for load balancing

- Additional MR job to determine blocking key distribution, i.e., number and size of blocks (per input partition)
- Global load balancing that assigns (nearly) the same number of pairs to reduce tasks
- Simplest approach : BlockSplit (ICDE2012)
 - split large blocks into sub-blocks with multiple match tasks
 - distribute the match tasks among multiple reduce tasks

- Example: 3 MP3 players + 6 cell phones \rightarrow 18 pairs (1 time unit)
- Parallel matching on 2 (reduce) nodes

- Evaluation on Amazon EC infrastructure using Hadoop
- Matching of 114.000 product records

ScaDS DEDOOP: EFFICIENT DEDUPLICATION WITH HADOOP

- Parallel execution of data integration/ match workflows with Hadoop
- Powerful library of match and blocking techniques
- Learning-based configuration
- GUI-based workflow specification
- Automatic generation and execution of Map/Reduce jobs on different clusters
- Automatic load balancing for optimal scalability
- Iterative computation of transitive closure (extension of MR-CC)

"This tool by far shows the most mature use of MapReduce for data deduplication" www.hadoopsphere.com

- ScaDS Dresden/Leipzig
- Big Data Integration
 - Introduction
 - Matching product offers from web shops
 - DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Summary and outlook
- References

ScaDS PRIVACY-PRESERVING RECORD LINKAGE

- Object matching with encrypted data to preserve privacy
 - data exchange / integration for person-related data
 - many use cases: medicine (e.g., cancer registries), census, ...
- numerous PPRL approaches (Vatsalan et al., 2013), some requiring trustee or secure multi-party protocol
- scalability problem for large datasets (e.g., for census purposes)

- effective and simple approach uses cryptographic bloom filters (Schnell et al, 2009)
- tokenize all match-relevant attribute values, e.g. using bigrams or trigrams
 - typical attributes: first name, last name (at birth), sex, date of birth, country of birth, place of birth
- map each token with a family of hash functions to fixed-size bit vector (fingerprint)
 - original data cannot be reconstructed
- match of bit vectors (Jaccard similarity) is good approximation of true match result

SCADS SIMILARITY COMPUTATION - EXAMPLE

 $\operatorname{Sim}_{\operatorname{Jaccard}}(r1, r2) = (r1 \wedge r2) / (r1 \vee r2)$

 $\operatorname{Sim}_{\operatorname{Jaccard}}(r1, r2) = 7/11$

ScaDS PP-JOIN: POSITION PREFIX JOIN (XIAO ET AL, 2008)

- one of the most efficient *similarity join* algorithms
 - determine all pairs of records with $sim_{Jaccard}(x,y) \ge t$
- use of filter techniques to reduce search space
 - length, prefix, and position filter
- relatively easy to run in parallel
- good candidate to improve scalability for PPRL

matching records pairs must have similar lengths

```
\operatorname{Sim}_{\operatorname{Jaccard}}(\mathbf{x},\mathbf{y}) \ge t \Rightarrow |\mathbf{x}| \ge |\mathbf{y}| * t
```

- length / cardinality: number of tokens for strings, number of bits for bit vectors
- Example for minimal similarity t = 0,8:

• Similar records must have a minimal overlap α in their sets of tokens (or set bit positions)

$$\operatorname{Sim}_{\operatorname{Jaccard}}(\mathbf{x},\mathbf{y}) \ge t \iff \operatorname{Overlap}(\mathbf{x},\mathbf{y}) \ge \alpha = \left\lceil \left(\frac{t}{1+t} * (|\mathbf{x}|) + |\mathbf{y}|\right) \right\rceil$$

- Prefix filter approximates this test
 - order all tokens (bit positions) for all records according to their overall frequency from infrequent to frequent
 - exclude pairs of records without any overlap in their prefixes with

$$prefix_length(\mathbf{x}) = \left[((1-t)*|\mathbf{x}|) + 1 \right]$$

Example (*t* = 0.8)

ScaDS PRIVACY-PRESERVING PP-JOIN (P4JOIN)

evaluate overlap of set positions in bit vectors

Preprocessing phase

- determine frequency per bit positions and reorder all bit vectors according to the overall frequency of bit positions
- determine length and prefix per bit vector
- sort all bit vectors in ascending order of their "length" (number of set positions)

Match phase (sequential scan)

- for each record apply *length filter* to determine window of relevant records to match with
- apply *prefix filter* (AND operation on prefix) to exclude record pairs without prefix overlap
- apply *position filter* for further savings

records (id, bit vector/ fingerprint)

ID	fingerprint	card. tokens (set positions)
A	1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0	8 0 2 3 6 9 11 13 14
В	1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0	4 0 1 5 9
С	1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0	7 0 2 6 9 11 13 14

determine *frequency* ordering O_f

reorder fingerprints according to O_f

ID	fingerprint	card.	tokens (set position)	sorted tokens
Α	1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0	8	0 2 3 6 9 11 13 14	3 2 6 11 13 14
В	1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0	4	0 1 5 9	1 5 0 9
С	1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0	7	0 2 6 9 11 13 14	2 6 11 13 14 0

	ID]	rec	ord	ler	ed	fin	ige	rp	rin	t		card.
continue with reordered	A	C)	1	0	1	1	1	1	1	1	1	0	0	0	8
Ingerprints	В	1		0	1	0	0	0	0	0	1	1	0	0	0	4
	С	C)	0	0	1	1	1	1	1	1	1	0	0	0	7

1 3 5 2 6 11 13 14 0 9

 sort records by length (cardinality) and determine prefixes

prefix_length(x) = $\lceil ((1-t)*|x|) + 1 \rceil$

ID	reordered fingerprint	card. prefix length	prefix fingerprint
В	1010000110000	4 2	1 0 1
С	0 0 0 1 1 1 1 1 1 1 0 0 0 0	7 3	$0 \ 0 \ 0 \ 1 \ 1 \ 1$
Α	0 1 0 1 1 1 1 1 1 1 0 0 0 0	8 3	0 1 0 1 1

compare records ordered by length

when reading record C it is observed that it does not meet the length filter w.r.t. B \rightarrow record B (|B|=4) can be excluded from all further comparisons

record A still needs to be considered w.r.t. C due to similar length

only records with overlapping prefix need to be matched

AND operation on prefix fingerprints

ID	reordered fingerprint card.	prefix fingerprint
В	1010000110000 4	1 0 1
С	0 0 0 1 1 1 1 1 1 0 0 0 0 7	0 0 0 1 1 1
Α	0101111110000 8	0 1 0 1 1

AND operation on prefixes shows non-zero result for C and C so that these records still need to be considered for matching

- improvement of prefix filter to avoid matches even for overlapping prefixes
 - estimate maximally possible overlap and checking whether it is below the *minimal* overlap α to meet threshold t
 - *original position filter* considers the position of the last common prefix token
- revised position filter
 - record x, prefix 1 1 0 1
 record y, prefix 1 1 1
 length 8
 - highest prefix position (here fourth pos. in x) limits possible overlap with other record: the third position in y prefix cannot have an overlap with x
 - maximal possible overlap = #shared prefix tokens (2) + min (9-3, 8-3)= 7
 < minimal overlap α = 8

comparison between NestedLoop, P4Join, MultiBitTree

- MultiBitTree: best filter approach in previous work by Schnell
 - applies length filter and organizes fingerprints within a binary tree so that fingerprints with the same set bits are grouped within sub-trees
 - can be used to filter out many fingerprints from comparison

two input datasets R, S

- determined with FEBRL data generator
 N=[100.000, 200.000, ..., 500.000]. |R|=1/5·N, |S|=4/5·N
- bit vector length: 1000
- similarity threshold 0.8

runtime in minutes on standard PC

Approach	Dataset size N									
Арргоасн	100.000	200.000	300.000	400.000	500.000					
NestedLoop	6,10	27,68	66,07	122,02	194,77					
MultiBitTree	4,68	18,95	40,63	78,23	119,73					
P4 Length filter only	3,38	20,53	46,48	88,33	140,73					
P4 Length+Prefix	3,77	22,98	52,95	99,72	159,22					
P4 Length+Prefix+Position	2,25	15,50	40,05	77,80	125,52					

- similar results for P4Join and Multibit Tree
- relatively small improvements compared to NestedLoop

- Operations on bit vectors easy to compute on GPUs
 - Length and prefix filters
 - Jaccard similarity
- Frameworks CUDA und OpenCL support data-parallel execution of general computations on GPUs
 - program ("kernel") written in C dialect
 - Iimited to base data types (float, long, int, short, arrays)
 - no dynamic memory allocation (programmer controls memory management)
 - important to minimize data transfer between main memory and GPU memory

- partition inputs R and S (fingerprints sorted by length) into equallysized partitions that fit into GPU memory
 - generate match tasks per pair of partition
 - only transfer to GPU if length intervals per partition meet length filter
 - optional use of CPU thread to additionally match on CPU

GeForce GT 610

	100.000	200.000	300.000	400.000	500.000
GForce GT 610	0,33	1,32	2,95	5,23	8,15
GeForce GT 540M	0,28	1,08	2,41	4,28	6,67

- improvements by up to a factor of 20, despite low-profile graphic cards
- still non-linear increase in execution time with growing data volume

- ScaDS Dresden/Leipzig
- Big Data Integration
 - Introduction
 - Matching product offers from web shops
 - DeDoop: Deduplication with Hadoop
- Privacy-preserving record linkage with PP-Join
 - Cryptographic bloom filters
 - Privacy-Preserving PP-Join (P4Join)
 - GPU-based implementation
- Summary and outlook
- References

ScaDS Dresden/Leipzig

- Research focus on data integration, knowledge extraction, visual analytics
- broad application areas (scientific + business-related)
- solution classes for applications with similar requirements

Big Data Integration

- Big data poses new requirements for data integration (variety, volume, velocity, veracity)
- comprehensive data preprocessing and cleaning
- Hadoop-based approaches for improved scalability, e.g. Dedoop
- Usabilty: machine-learning approaches, GUI, monitoring

Privacy-Preserving Record Linkage

- increasingly important tp protect personal information
- Scalability issues for Big Data
- Bloom filters allow simple, effective and relatively efficient match approach
- still scalability issues for Big Data -> reduce search space and apply parallel processing

Privacy-preserving PP-Join (P4JOIN)

- relatively easy adoption for bit vectors with improved position filter
- comparable performance to Multibit trees but easier to parallelize
- GPU version achieves significant speedup
- further improvements needed to reduce quadratic complexity

- Parallel execution of more diverse data integration workflows for text data, image data, sensor data, etc.
 - Learning-based configuration to minimize manual effort (active learning, crowd-sourcing)
- Holistic integration of many data sources (data + metadata)
 - Clustering across many sources
 - N-way merging of related ontologies (e.g. product taxonomies)
- Realtime data enrichment and integration for sensor data
- Improved privacy-preserving record linkage

- H. Köpcke, A. Thor, S. Thomas, E. Rahm: *Tailoring entity resolution for matching product offers*. Proc. EDBT 2012: 545-550
- L. Kolb, E. Rahm: *Parallel Entity Resolution with Dedoop*. Datenbank-Spektrum 13(1): 23-32 (2013)
- L. Kolb, A. Thor, E. Rahm: Dedoop: *Efficient Deduplication with Hadoop*. PVLDB 5(12), 2012
- L. Kolb, A. Thor, E. Rahm: *Load Balancing for MapReduce-based Entity Resolution*. ICDE 2012: 618-629
- L. Kolb, Z. Sehili, E. Rahm: *Iterative Computation of Connected Graph Components with MapReduce*. Datenbank-Spektrum 14(2): 107-117 (2014)
- E. Rahm, W.E. Nagel: ScaDS Dresden/Leipzig: Ein serviceorientiertes Kompetenzzentrum f
 ür Big Data. Proc. Gl-Jahrestagung 2014: 717
- R.Schnell, T. Bachteler, J. Reiher: *Privacy-preserving record linkage using Bloom filters*. BMC Med. Inf. & Decision Making 9: 41 (2009)
- Z. Sehili, L. Kolb, C. Borgs, R. Schnell, E. Rahm: *Privacy Preserving Record Linkage with PPJoin*. Proc. BTW Conf. 2015 (to appear)
- D. Vatsalan, P. Christen, V. S. Verykios: A taxonomy of privacy-preserving record linkage techniques. Information Syst. 38(6): 946-969 (2013)
- C. Xiao, W. Wang, X. Lin, J.X. Yu: *Efficient Similarity Joins for Near Duplicate Detection*. Proc. WWW 2008