
www.scads.de

BIG DATA INTEGRATION

AT SCADS DRESDEN/LEIPZIG

ERHARD RAHM, UNIV. LEIPZIG

Two Centers of Excellence for Big Data in Germany

 ScaDS Dresden/Leipzig

 Berlin Big Data Center (BBDC)

ScaDS Dresden/Leipzig (Competence Center for

Scalable Data Services and Solutions Dresden/Leipzig)

 scientific coordinators: Nagel (TUD), Rahm (UL)

 start: Oct. 2014

 duration: 4 years (option for 3 more years)

 initial funding: ca. 5.6 Mio. Euro

GERMAN CENTERS FOR BIG DATA

2

 Bundling and advancement of existing expertise on Big Data

 Development of Big Data Services and Solutions

 Big Data Innovations

GOALS

3

Leipzig

Dresden

FUNDED INSTITUTES

TU DresdenUniv. Leipzig

Max-Planck Institute for

Molecular Cell Biology

and Genetics

Leibniz Institute of

Ecological Urban and Regional

Development

4

 Hochschule für Telekommunikation

Leipzig

 Institut für Angewandte Informatik

e. V.

 Landesamt für Umwelt, Landwirtschaft

und Geologie

 Netzwerk Logistik Leipzig-Halle e. V.

 Sächsische Landesbibliothek – Staats-

und Universitätsbibliothek Dresden

 Scionics Computer Innovation GmbH

 Technische Universität Chemnitz

 Universitätsklinikum Carl Gustav Carus

 Avantgarde-Labs GmbH

 Data Virtuality GmbH

 E-Commerce Genossenschaft e. G.

 European Centre for Emerging

Materials and Processes Dresden

 Fraunhofer-Institut für Verkehrs- und

Infrastruktursysteme

 Fraunhofer-Institut für Werkstoff- und

Strahltechnik

 GISA GmbH

 Helmholtz-Zentrum Dresden -

Rossendorf

ASSOCIATED PARTNERS

5

GROBSTRUKTUR DES ZENTRUMS

Big Data Life Cycle Management and Workflows

Efficient Big Data Architectures

Data Quality /

Data Integration

Visual

Analytics

Knowledge

Extraktion

Life sciences

Material and Engineering sciences

Digital Humanities

Environmental / Geo sciences

Business Data

Service

center

6

 Data-intensive computing W.E. Nagel

 Data quality / Data integration E. Rahm

 Databases W. Lehner, E. Rahm

 Knowledge extraction/Data mining

C. Rother, P. Stadler, G. Heyer

 Visualization

S. Gumhold, G. Scheuermann

 Service Engineering, Infrastructure

K.-P. Fähnrich, W.E. Nagel, M. Bogdan

RESEARCH PARTNERS

7

 Life sciences G. Myers

 Material / Engineering sciences M. Gude

 Environmental / Geo sciences J. Schanze

 Digital Humanities G. Heyer

 Business Data B. Franczyk

APPLICATION CORRDINATORS

8

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

9

BIG DATA ANALYSIS PIPELINE

10

Data

integration/

annotation

Data

extraction /

cleaning

Data

aquisition

Data

analysis and

visualization

Inter-

pretation

H
e

te
ro

ge
n

ei
ty

Vo
lu

m
e

Ve
lo

ci
ty

P
ri

va
cy

H
u

m
a

n

co
lla

b
o

ra
ti

o
n

 Identification of semantically equivalent objects

 within one data source or between different sources

 Original focus on structured (relational) data, e.g. customer data

OBJECT MATCHING (DEDUPLICATION)

CID Name Street City Sex

11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0

24 Christian Smith Hurley St 2 S Fork MN 1

Cno LastName FirstName Gender Address Phone/Fax

24 Smith Christoph M 23 Harley St, Chicago IL,

60633-2394
333-222-6542 /

333-222-6599

493 Smith Kris L. F 2 Hurley Place, South Fork

MN, 48503-5998
444-555-6666

11

 Thousands of data sources (shops/merchants)

 Millions of products and

product offers

 Continous changes

 Many similar, but

different products

 Low data quality

BIG DATA INTEGRATION USE CASE
INTEGRATION OF PRODUCT OFFERS IN COMPARISON PORTAL

12

 Frequent existence of specific product codes for certain products

 Product code = manufacturer-specific identifier

 any sequence consisting of alphabetic, special, and numeric

characters split by an arbitrary number of white spaces.

 Utilize to differentiate similar but different products.

USE OF PRODUCT CODES

Hahnel HL-XF51 7.2V 680mAh for Sony NP-FF51

Canon VIXIA HF S100 Camcorder - 1080p - 8.59 MP

13

PRODUCT CODE EXTRACTION

Hahnel
HL-XF51

for
Sony

NP-FF51

Hahnel HL-XF51 7.2V 680mAh for Sony NP-FF51

7.2V
680mAh

Hahnel
HL-XF51

Sony
NP-FF51

HL-XF51

NP-FF51

Features

Tokens Filtered
Tokens

Candidates W
eb

 V
er

if
ic

at
io

n
[A-Z]{2}\-[A-Z]{2}[0-9]{2}

14

LEARNING-BASED MATCH APPROACH

Product Code
Extraction

Manufacturer
Cleaning

Automatic
Classification

Product
Offers

Training Data
Selection

Matcher
Application

Classifier
Learning

Blocking
(Manufacturer

+ Category)
Matcher

Application Classification

Classifier

Product
Match Result

 Training

 Application

 Pre-processing

15

 Blocking to reduce search space

 group similar objects within blocks based on blocking key

 restrict object matching to objects from the same block

 Parallelization

 split match computation in sub-tasks to be executed in parallel

 exploitation of Big Data infrastructures such as Hadoop

(Map/Reduce or variations)

HOW TO SPEED UP OBJECT MATCHING?

16

GENERAL OBJECT MATCHING WORKFLOW

17

S

Blocking
Similarity

Computation

Match
Classification

M

RS

R

Map Phase: Blocking Reduce Phase: Matching

G
ro

u
p

in
g

G
ro

u
p

in
g

G
ro

u
p

in
g

R
e-

Pa
rt

it
io

n
in

g

 Data skew leads to unbalanced workload

 Large blocks prevent utilization of more than a few nodes

 Deteriorates scalability and efficiency

 Unnecessary costs (you also pay for underutilized machines!)

 Key ideas for load balancing

 Additional MR job to determine blocking key distribution, i.e., number
and size of blocks (per input partition)

 Global load balancing that assigns (nearly) the same number of pairs to
reduce tasks

 Simplest approach : BlockSplit (ICDE2012)

 split large blocks into sub-blocks with multiple match tasks

 distribute the match tasks among multiple reduce tasks

LOAD BALANCING

18

 Example: 3 MP3 players + 6 cell phones 18 pairs (1 time unit)

 Parallel matching on 2 (reduce) nodes

BLOCK SPLIT: 1 SLIDE ILLUSTRATION

3 pairs

(16%)

15 pairs

(84%)

Speedup:

18/15=1.2

3

4

2

2 4

3 pairs

6 pairs

9 pairs (50%)

1 pair

8 pairs

9 pairs (50%)

Speedup: 2

naiive approach BlockSplit

19

 Evaluation on Amazon EC infrastructure using Hadoop

 Matching of 114.000 product records

BLOCK SPLIT EVALUATION: SCALABILITY

20

 Parallel execution of data integration/

match workflows with Hadoop

 Powerful library of match and blocking

techniques

 Learning-based configuration

 GUI-based workflow specification

 Automatic generation and execution of

Map/Reduce jobs on different clusters

 Automatic load balancing for optimal scalability

 Iterative computation of transitive closure (extension of MR-CC)

DEDOOP: EFFICIENT DEDUPLICATION WITH HADOOP

21

“This tool by far shows the

most mature use of

MapReduce for data

deduplication”
www.hadoopsphere.com

DEDOOP OVERVIEW

S
Blocking

Similarity
Computation

Match
Classification

M

RS

T
RS
[0,1]

Machine
Learning

R

General ER workflow

• Decision Tree
• Logistic Regression
• SVM
• …

• Standard Blocking
• Sorted Neighborhood
• PPJoin+
• …

• Threshold
• Match rules
• ML model
• …

• Edit Distance
• n-gram
• TFIDF
• …Blocking Key Generators

• Prefix
• Token-based
• …

C
o

re

Dedoop‘s general MapReduce workflow

Classifier
Training Job

Data
Analysis Job

Blocking-based Matching Job

22

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

23

 Object matching with encrypted data to preserve privacy

 data exchange / integration for person-related data

 many use cases: medicine (e.g., cancer registries), census, …

 numerous PPRL approaches (Vatsalan et al., 2013), some

requiring trustee or secure multi-party protocol

 scalability problem for large datasets (e.g., for census

purposes)

PRIVACY-PRESERVING RECORD LINKAGE

24

 effective and simple approach uses cryptographic bloom filters

(Schnell et al, 2009)

 tokenize all match-relevant attribute values, e.g. using bigrams or

trigrams

 typical attributes: first name, last name (at birth), sex, date of birth, country of

birth, place of birth

 map each token with a family of hash functions to fixed-size bit

vector (fingerprint)

 original data cannot be reconstructed

 match of bit vectors (Jaccard similarity) is good approximation of

true match result

PPRL WITH BLOOM FILTERS

25

SIMILARITY COMPUTATION - EXAMPLE

26

mas

tho hom oma mantho hom oma mas

0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h1(mas)= 3 h2(mas)= 7 h3(mas)= 11

tho

hom

oma

man

0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SimJaccard (r1, r2) = (r1 ᴧ r2) / (r1 ᴠ r2)

SimJaccard (r1, r2) = 7/11

0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h1(man)= 2 h2(man)= 0 h3(man)= 13

tho

hom

oma

thomanthomas

 one of the most efficient similarity join algorithms

 determine all pairs of records with simJaccard(x,y) ≥ t

 use of filter techniques to reduce search space

 length, prefix, and position filter

 relatively easy to run in parallel

 good candidate to improve scalability for PPRL

PP-JOIN: POSITION PREFIX JOIN (XIAO ET AL, 2008)

27

 matching records pairs must have similar lengths

 length / cardinality: number of tokens for strings, number of bits for

bit vectors

 Example for minimal similarity t = 0,8:

 Exclude from comparison if length of shorter record is less than t* length of

LENGTH FILTER

SimJaccard(x, y) ≥ t ⇒ |x| ≥ | y| ∗ t

| r1 | ≥ | r2 | ∗ t ? 4 ≥ 5,6 ? no

| r4| ≥ | r2 | ∗ t ? 6 ≥ 5,6 ? yes

records tokens (bigrams) length

4
7

r1=Tom
r2=Thomas

r4=Tommy 6

[_t, to, om, m_]

[_t, th, ho, om, ma, as, s_]

[_t, to, om, mm, my, y_]

28

 Similar records must have a minimal overlap α in their sets of tokens (or set bit

positions)

 Prefix filter approximates this test

 order all tokens (bit positions) for all records according to their overall frequency from

infrequent to frequent

 exclude pairs of records without any overlap in their prefixes with

 Example (t = 0.8)

PREFIX FILTER

29

prefix_length(x) = é ((1-t)∗|x|) + 1

r2=Thomas

records sorted tokens Prefix

[ho, th, ma]

[ma, as, s_]r3=Tomas

prefix length

3

3

[ho, th, ma, as, s_, _t, om]

[ma, as, s_, to, _t, om]

[mm, my, y_, to, -t, om] [mm, my, y_]3r4=Tommy

prefix(r2) ∩ prefix(r3) ={ma}≠ {} prefix(r2) ∩ prefix(r4) = {}

prefix(r3) ∩ prefix(r4) = {}

SimJaccard(x, y) ≥ t ⇔ Overlap(x, y) ≥ α = é(
𝒕

𝟏+𝒕
∗ (|𝒙|) + |𝒚|))

 evaluate overlap of set positions in bit vectors

 Preprocessing phase

 determine frequency per bit positions and reorder all bit vectors according to the

overall frequency of bit positions

 determine length and prefix per bit vector

 sort all bit vectors in ascending order of their „length“ (number of set positions)

 Match phase (sequential scan)

 for each record apply length filter to determine window of relevant records to match

with

 apply prefix filter (AND operation on prefix) to exclude record pairs without prefix

overlap

 apply position filter for further savings

PRIVACY-PRESERVING PP-JOIN (P4JOIN)

30

 records (id, bit vector/ fingerprint)

 determine frequency ordering Of

P4JOIN: PREPROCESSING (1)

31

tokens (set positions)fingerprint

3 1 2 1 0 1 2 0 0 3 0 2 0 2 2 0

1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0

ID

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

card.

8

4

7

0 2 3 6 9 11 13 14

0 1 5 9

0 2 6 9 11 13 14

frequency

1 1 1 2 2 2 2 2 3 3

1 3 5 2 6 11 13 14 0 9

Of

sort positions in ascending frequency order

(ignore unused positions)

count #occurences per index

position

 reorder fingerprints according to Of

PPPP-JOIN: PREPROCESSING (2)

32

tokens (set position)fingerprint

1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0

ID

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0

A

B

C

card.

8

4

7

0 2 3 6 9 11 13 14

0 1 5 9

0 2 6 9 11 13 14

sorted tokens

3 2 6 11 13 14 0 9

1 5 0 9

2 6 11 13 14 0 9

1 1 1 2 2 2 2 2 3 3

1 3 5 2 6 11 13 14 0 9

Of

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

A

B

C

card.

8

4

7

1 3 5 2 6 11 13 14 0 9

continue with reordered
fingerprints

 sort records by length (cardinality) and

determine prefixes

P4JOIN: PREPROCESSING (3)

prefix_length(x) = é ((1-t)∗|x|) + 1

prefix length prefix fingerprint

1 0 1

0 0 0 1 1 1

0 1 0 1 1

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

B

C

A

card.

8

4

7

2

3

3

33

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

B

C

A

card.

8

4

7

 compare records ordered by length

P4JOIN: APPLY LENGTH FILTER

34

length filter

7 * 0.8 = 5.6

when reading record C it is observed that it does not meet the length filter w.r.t. B

-> record B (|B|= 4) can be excluded from all further comparisons

record A still needs to be considered w.r.t. C due to similar length

length filter

8 * 0.8 = 6.4

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

B

C

A

card.

8

4

7

 only records with overlapping prefix need to be matched

 AND operation on prefix fingerprints

P4JOIN: PREFIX FILTER

35

0 0 0 1 1 1 prefix fingerprint

1 0 1

0 0 0 1 1 1

0 1 0 1 1

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

B

C

A

card.

8

4

7

AND operation on prefixes shows non-zero result for C and C so that these records still need

to be considered for matching

 improvement of prefix filter to avoid matches even for overlapping

prefixes

 estimate maximally possible overlap and checking whether it is below the minimal

overlap α to meet threshold t

 original position filter considers the position of the last common prefix token

 revised position filter

 record x, prefix length 9

 record y, prefix length 8

 highest prefix position (here fourth pos. in x) limits possible overlap with

other record: the third position in y prefix cannot have an overlap with x

 maximal possible overlap = #shared prefix tokens (2) + min (9-3, 8-3)= 7

< minimal overlap α = 8

P4JOIN: POSITION FILTER

36

1 1 0 1

1 1 1

 comparison between NestedLoop, P4Join, MultiBitTree

 MultiBitTree: best filter approach in previous work by Schnell

 applies length filter and organizes fingerprints within a binary tree so

that fingerprints with the same set bits are grouped within sub-trees

 can be used to filter out many fingerprints from comparison

 two input datasets R, S

 determined with FEBRL data generator

N=[100.000, 200.000, …, 500.000]. |R|=1/5⋅N, |S|=4/5⋅N

 bit vector length: 1000

 similarity threshold 0.8

EVALUATION

37

 runtime in minutes on standard PC

 similar results for P4Join and Multibit Tree

 relatively small improvements compared to NestedLoop

EVALUATION RESULTS

38

Approach
Dataset size N

100.000 200.000 300.000 400.000 500.000

NestedLoop 6,10 27,68 66,07 122,02 194,77

MultiBitTree 4,68 18,95 40,63 78,23 119,73

P4 Length filter only 3,38 20,53 46,48 88,33 140,73

P4 Length+Prefix 3,77 22,98 52,95 99,72 159,22

P4 Length+Prefix+Position 2,25 15,50 40,05 77,80 125,52

 Operations on bit vectors easy to compute on GPUs

 Length and prefix filters

 Jaccard similarity

 Frameworks CUDA und OpenCL support data-parallel

execution of general computations on GPUs

 program („kernel“) written in C dialect

 limited to base data types (float, long, int, short, arrays)

 no dynamic memory allocation (programmer controls memory

management)

 important to minimize data transfer between main memory and

GPU memory

GPU-BASED PPRL

39

 partition inputs R and S (fingerprints sorted by length) into equally-

sized partitions that fit into GPU memory

 generate match tasks per pair of partition

 only transfer to GPU if length intervals per partition meet length

filter

 optional use of CPU thread to additionally match on CPU

EXECUTION SCHEME

𝐒

S0 S1 S2 S3 S4

𝐑

R0

R1

R2

R3

GPU thread

CPU thread(s)

Match task

m
at

ch
e

s

MR0,S3

GPU memory

Replace
S3 with S4

Read
MR0,S4

Kernel0

Kernel|R0|-1

…

GPU

𝐫0-S4

𝐫|R0|-1-S4

b
it

s

R0 S4

b
it

s

R0 S3

change S3 with S4

40

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x b
it

s

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x

Main memory (host)

100.000 200.000 300.000 400.000 500.000

GForce GT 610 0,33 1,32 2,95 5,23 8,15

GeForce GT 540M 0,28 1,08 2,41 4,28 6,67

GPU-BASED EVALUATION RESULTS

41

GeForce GT 610
• 48 Cuda Cores@810MHz
• 1GB
• 35€

GeForce GT 540M
• 96 Cuda Cores@672MHz
• 1GB

 improvements by up to a factor of 20, despite low-profile graphic cards

 still non-linear increase in execution time with growing data volume

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

42

 ScaDS Dresden/Leipzig

 Research focus on data integration, knowledge extraction, visual

analytics

 broad application areas (scientific + business-related)

 solution classes for applications with similar requirements

 Big Data Integration

 Big data poses new requirements for data integration (variety,

volume, velocity, veracity)

 comprehensive data preprocessinga and cleaning

 Hadoop-based approaches for improved scalability, e.g. Dedoop

 Usabilty: machine-learning approaches, GUI, monitoring …

SUMMARY

43

 Privacy-Preserving Record Linkage

 increasingly important tp protect personal information

 Scalability issues for Big Data

 Bloom filters allow simple, effective and relatively efficient match
approach

 still scalability issues for Big Data -> reduce search space and apply
parallel processing

 Privacy-preserving PP-Join (P4JOIN)

 relatively easy adoption for bit vectors with improved position filter

 comparable performance to Multibit trees but easier to parallelize

 GPU version achieves significant speedup

 further improvements needed to reduce quadratic complexity

SUMMARY (2)

44

 Parallel execution of more diverse data integration workflows for text

data, image data, sensor data, etc.

 Learning-based configuration to minimize manual effort (active

learning, crowd-sourcing)

 Holistic integration of many data sources (data + metadata)

 Clustering across many sources

 N-way merging of related ontologies (e.g. product taxonomies)

 Realtime data enrichment and integration for sensor data

 Improved privacy-preserving record linkage

OUTLOOK

45

 H. Köpcke, A. Thor, S. Thomas, E. Rahm: Tailoring entity resolution for matching product offers. Proc. EDBT 2012:

545-550

 L. Kolb, E. Rahm: Parallel Entity Resolution with Dedoop. Datenbank-Spektrum 13(1): 23-32 (2013)

 L. Kolb, A. Thor, E. Rahm: Dedoop: Efficient Deduplication with Hadoop. PVLDB 5(12), 2012

 L. Kolb, A. Thor, E. Rahm: Load Balancing for MapReduce-based Entity Resolution. ICDE 2012: 618-629

 L. Kolb, Z. Sehili, E. Rahm: Iterative Computation of Connected Graph Components with MapReduce.

Datenbank-Spektrum 14(2): 107-117 (2014)

 E. Rahm, W.E. Nagel: ScaDS Dresden/Leipzig: Ein serviceorientiertes Kompetenzzentrum für Big Data. Proc. GI-

Jahrestagung 2014: 717

 R.Schnell, T. Bachteler, J. Reiher: Privacy-preserving record linkage using Bloom filters. BMC Med. Inf. &

Decision Making 9: 41 (2009)

 Z. Sehili, L. Kolb, C. Borgs, R. Schnell, E. Rahm: Privacy Preserving Record Linkage with PPJoin. Proc. BTW Conf.

2015 (to appear)

 D. Vatsalan, P. Christen, V. S. Verykios: A taxonomy of privacy-preserving record linkage techniques. Information

Syst. 38(6): 946-969 (2013)

 C. Xiao, W. Wang, X. Lin, J.X. Yu: Efficient Similarity Joins for Near Duplicate Detection. Proc. WWW 2008

REFERENCES

46

