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Object Matching

(entity resolution, deduplication ...)
e
71 Identification of semantically equivalent objects
o within one data source or between different sources
I to merge them, compare them, improve data quality, etc.
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Duplicate web entities: Example 2
T =
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Object Matching Problem
I =,

1 Lots of research work
o String similarities, usage of structural information
2 Combined use of several matchers

o Application of machine learning, ...

11 Study of real-world match systems/problems [VLDB'10]
o Effective matching is difficult: F-Measure <75% for product data

o Matching is expensive: scalability issues for O(n?)

[VLDB’10] Koepcke, Thor, Rahm: Evaluation of entity resolution approaches on real-world match
problems. VLDB 2010




How to speed up object matching?

Blocking to reduce search space
Group similar objects within blocks based on blocking key
Restrict object matching to objects from the same block

Alternative approach: Sorted Neighborhood

Parallelization
Split match computation in sub-tasks to be executed in parallel

Exploitation of cloud infrastructures and frameworks like Map /Reduce

Ovutline

Blocking-based Object Matching with MapReduce

Load Balancing
Problem

Block-Split Approach

Experimental Results

Conclusions & Future Work




MapReduce

71 Programming model for distributed computation

71 Dataflow defined by map and reduce functions
map: (key;,, value,) — list(key,,, value, )
reduce: (k&Y list(value, ) — list(key,,, value,,)

1 MapReduce framework hides all messy details
Automatic parallelization
Robustness, e.g., handles node failures
Scalability

MapReduce
[ 8 |

1 Map function applied on each input object to generate key-
value pairs

71 Each key-value pair is assigned to a reduce task

1 Reduce function is invoked for each object group with same key
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Blocking + MapReduce: Basic scheme
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Load Balancing
[ 10|

r1 Data skew leads to unbalanced workload
o Large blocks prevent utilization of more than a few nodes
o1 Deteriorates scalability and efficiency

o Unnecessary costs (you also pay for underutilized machines!)

11 Key ideas for load balancing

o Additional MR job to determine blocking key distribution, i.e., number
and size of blocks (per input partition)

o Global load balancing that assigns (nearly) the same number of pairs to
reduce tasks




Load Balancing Approaches
o 4|

1 Two load balancing strategies for parallel object matching
with general blocking [ICDE’1 2]
o BlockSplit: Split large blocks into sub-blocks

o PairRange: Global enumeration and tailored distribution of all pairs

=1 Variation for Sorted Neighborhood [CSRD’11]

[ICDE'12] Kolb, Thor, Rahm: Load Balancing for MapReduce-based Entity Matching.
Proc. Int. Conf. on Data Engineering, 2012 (to appear)

[CSRD’11] Kolb, Thor, Rahm: Multi-pass Sorted Neighborhood Blocking with  MapReduce.
Computer Science - Research and Development, 2011 (“Best of BTW2011”)

[BTW’11] Kolb, Thor, Rahm: Parallel Sorted Neighborhood Blocking with MapReduce.
Proc. BTW, 2011

Load Balancing for MR-based Object Matching
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BlockSplit

0 Large blocks split into m sub-blocks

according to m input partitions
large if #Pgoo > #Poveran / #Reducer

2 2 4 6
1 Two types of match tasks I S |
Single (small blocks and sub-blocks) . -
Two sub-blocks
2 3 5 10

O

Greedy load balancing

Sort match tasks by number of pairs in
descending order

Assign match task to reducer with lowest
number of pairs

1 Example
r=3 reduce tasks, split B, in m=2 sub-blocks

w w o O

B,'s match tasks: B, , , B,,, and B,
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BlockSplit: MR-Dataflow
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Evaluation: Data Skew

o1 Evaluation on Amazon EC infrastructure using Hadoop
o Matching of 114.000 product records
o1 BlockSplit robust against data skew
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Evaluation: Scalability
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o1 BlockSplit is scalable

-+ BlockSplit < speedup BlockSplit
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Conclusions and Future Work

01 Faster object matching by
Blocking
Parallel matching
01 Straight-forward utilization of MapReduce possible
... but doing it efficiently requires some work
71 Effective load balancing approaches such as Block-Split
Additional MR job for analysis incurs minimal overhead
o1 Future Work

Load balancing for other data-intensive tasks

Analytic model for determining #reduce tasks
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