
SCALABLE GRAPH DATA
MANAGEMENT AND ANALYTICS

WITH GRADOOP

Erhard Rahm

 second funding period (until 9/2021); ScaDS2

 ScaDS started in Oct. 2014

 BMBF funding: 4+3 years

 collaborative data science research and application

 directors: W.E. Nagel (TUD), E Rahm (UL)

 funded partners in ScaDS2:

PROJECT

http://www.tu-dresden.de/

STRUCTURE SCADS2

3

Application Areas

www.scads.de

Scalable and Secure Data Platforms

Visual Analytics

Big Data Integration & Analytics

Digital Humanities

Life Science & E-Health Business Applications

Material Sciences/Engineering

Environmental Sciences Matter / Energy / Chemistry

Big Data Integration Data Analytics

Scalable Visual Analytics

Service

Center

Immersive Visual Interaction

Scalable Architectures Hardware-based Data Security

SCADS RESULTS

www.scads.de

4

 5 survey articles on ScaDS results in database journal (March 2019)

„GRAPHS ARE EVERYWHERE“

5

Facebook

ca. 1.3 billion users

ca. 340 friends per user

Twitter

ca. 300 million users

ca. 500 million tweets per day

Internet

ca. 2.9 billion users

Gene (human)

20,000-25,000

ca. 4 million individuals

Patients

> 18 millions (Germany)

Illnesses

> 30.000

World Wide Web

ca. 1 billion Websites

LOD-Cloud

ca. 90 billion triples

Social science Engineering Life science Information science

𝑮𝑟𝑎𝑝ℎ = (𝑽𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑬𝑑𝑔𝑒𝑠)

“GRAPHS ARE EVERYWHERE”

6

𝐺𝑟𝑎𝑝ℎ = (𝐔𝐬𝐞𝐫𝐬, 𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝𝑠)

“GRAPHS ARE EVERYWHERE”

Alice

Bob

Eve

Dave

Carol

Mallory

Peggy

Trent

7

“GRAPHS ARE HETEROGENEOUS”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

𝐺𝑟𝑎𝑝ℎ = (𝐔𝐬𝐞𝐫𝐬 ∪ 𝐁𝐚𝐧𝐝𝐬, 𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝𝑠 ∪ 𝐿𝑖𝑘𝑒𝑠)

8

0.2

0.28

0.26

0.33

0.25

0.26

“GRAPHS CAN BE ANALYZED”

Alice

Bob

AC/DC

Dave

Carol

Mallory

Peggy

Metallica

3.6

2.82

𝐺𝑟𝑎𝑝ℎ = (𝐔𝐬𝐞𝐫𝐬 ∪ 𝐁𝐚𝐧𝐝𝐬, 𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝𝑠 ∪ 𝐿𝑖𝑘𝑒𝑠)

9

“GRAPHS CAN BE ANALYZED“

Assuming a social network

1. Determine subgraph

2. Find communities

3. Filter communities

4. Find common subgraph

10

 powerful but easy to use graph data model

 support for heterogeneous, schema-flexible vertices and edges

 support for collections of graphs (not only 1 graph)

 powerful graph operators

 powerful query and analysis capabilities

 interactive, declarative graph queries

 scalable graph mining and machine learning

 high performance and scalability

 persistent graph storage and transaction support

 graph-based integration of many data sources

 versioning and evolution (dynamic /temporal graphs)

 comprehensive visualization support

GRAPH DATA ANALYTICS: REQUIREMENTS

11

COMPARISON

12

Graph Database
Systems
Neo4j, OrientDB

data model rich graph models
(PGM)

focus queries

query language yes

graph analytics (no)

scalability vertical

analysis workflows no

persistency yes

dynamic graphs /
versioning

no

data integration no

visualization (yes)

COMPARISON (2)

13

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

data model rich graph models
(PGM)

generic
graph models

focus queries analytic

query language yes no

graph analytics (no) yes

scalability vertical horizontal

analysis workflows no no

persistency yes no

dynamic graphs /
versioning

no no

data integration no no

visualization (yes) no

COMPARISON (3)

14

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink Gelly,
Spark GraphX)

data model rich graph models
(PGM)

generic
graph models

generic
graph models

focus queries analytic analytic

query language yes no no

graph analytics (no) yes yes

scalability vertical horizontal horizontal

analysis workflows no no yes

persistency yes no no

dynamic graphs /
versioning

no no no

data integration no no no

visualization (yes) no no

Data Volume and Problem Complexity

E
a
s
e
-o

f-
u

s
e

Graph Processing Systems

Graph Databases

Graph Dataflow Systems Gelly

15

 ScaDS Dresden/Leipzig

 Intro Graph Analytics

 Graph data
 Requirements
 Graph database vs graph processing systems

 Gradoop approach

 Architecture

 Extended Property Graph Model (EPGM)

 Implementation and performance evaluation

 Ongoing work

 Graph-based data integration

 graph transformations

 multi-source matching (FAMER)

 Temporal graphs

 Conclusions

AGENDA

16

 Hadoop-based framework for graph data management and analysis

 persistent graph storage in scalable distributed store (Hbase or Accumulo)

 utilization of Apache Flink for parallel, in-memory processing

 Extended property graph data model (EPGM)

 operators on graphs and sets of (sub) graphs

 support for semantic graph queries (grouping, pattern matching/Cypher, …)

 support for graph mining (frequent subgraph mining, clustering, …)

 declarative specification of graph analysis workflows

 Graph Analytical Language - GrALa

 end-to-end functionality

 graph-based data integration, data analysis and visualization

 open-source implementation: www.gradoop.org

 integration into KNIME

GRADOOP CHARACTERISTICS

17

http://www.gradoop.org/

 integrate data from one or more sources into a dedicated graph store with

common graph data model

 definition of analytical workflows from operator algebra

 result representation in meaningful way

END-TO-END GRAPH ANALYTICS

Data Integration Graph Analytics Visualization

18

HIGH LEVEL ARCHITECTURE

HDFS/YARN

Cluster

HBase Distributed Graph Store

Extended Property Graph Model

Flink Operator Implementations

Data Integration

Flink Operator Execution

Workflow
Declaration

Visual

GrALa DSL
Representation

Data flow

Control flow

Graph Analytics Representation

19

 includes PGM as special case

 support for collections of logical graphs / subgraphs

 can be defined explicitly

 can be result of graph algorithms / operators

 support for graph properties

 powerful operators on both graphs and graph collections

 Graph Analytical Language – GrALa

 domain-specific language (DSL) for EPGM

 flexible use of operators with application-specific UDFs

 plugin concept for graph mining algorithms

EXTENDED PROPERTY GRAPH MODEL (EPGM)

20

• Vertices and directed Edges

21

• Vertices and directed Edges

• Logical Graphs

22

• Vertices and directed Edges

• Logical Graphs

• Identifiers

1 3

4

5

2
1 2

3

4

5

1

2

23

• Vertices and directed Edges

• Logical Graphs

• Identifiers

• Type Labels

1 3

4

5

2
1 2

3

4

5

Person Band

Person

Person

Band

likes likes

likes

knows

likes

1|Community

2|Community

24

• Vertices and directed Edges

• Logical Graphs

• Identifiers

• Type Labels

• Properties
1 3

4

5

2
1 2

3

4

5

Person
name : Alice
born : 1984

Band
name : Metallica
founded : 1981

Person
name : Bob

Person
name : Eve

Band
name : AC/DC
founded : 1973

likes
since : 2014

likes
since : 2013

likes
since : 2015

knows

likes
since : 2014

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

25

Operators

26

Operators

Unary Binary
Algorithms

* auxiliary

G
ra

p
h

 C
o

lle
ct

io
n

Lo
gi

ca
lG

ra
p

h

Aggregation

Pattern Matching

Transformation

Grouping Equality

Call *

Combination

Overlap

Exclusion

Equality

Union

Intersection

Difference

Gelly Library
(PageRank, Connected

Components …)

BTG Extraction

Frequent Subgraphs

Limit

Selection

Distinct

Sort

Apply *

Reduce *

Call *

Adaptive Partitioning

Subgraph

27

Sampling

Combination

Overlap

Exclusion

LogicalGraph graph3 = graph1.combine(graph2);
LogicalGraph graph4 = graph1.overlap(graph2);
LogicalGraph graph5 = graph1.exclude(graph2);

BASIC BINARY OPERATORS

1 3

4

5
2

3

1 2

1 3

4

5
2

1
2 4

5

3

28

udf = (graph => graph[‘vertexCount’] = graph.vertices.size())
graph3 = graph3.aggregate(udf)

AGGREGATION

1 3

4

5
2

3

1 3

4

5
2

3 | vertexCount: 5

UDF

29

LogicalGraph graph4 = graph3.subgraph((vertex => vertex[:label] == ‘green’))
LogicalGraph graph5 = graph3.subgraph((edge => edge[:label] == ‘blue’))
LogicalGraph graph6 = graph3.subgraph(

(vertex => vertex[:label] == ‘green’),
(edge => edge[:label] == ‘orange’))

SUBGRAPH

3

1 3

4

5
2

3

4

1 2

5

3
5

2UDF

UDF

UDF 3

6

1 2

30

GraphCollection collection = graph3.match(“(:Green)-[:orange]->(:Orange)”);

PATTERN MATCHING

3

1 3

4

5
2 Pattern

4 5

1 3

4

2

Graph Collection

31

 support of Cypher query language for pattern matching*

* Junghanns et al.: Cypher-based Graph Pattern Matching in Gradoop. Proc. GRADES 2017

q = "MATCH (p1: Person) -[e: knows *1..3] ->(p2: Person)
WHERE p1.gender <> p2 .gender RETURN *"

GraphCollection matches = g.cypher (q)

LogicalGraph grouped = graph3.groupBy(
[:label], // vertex keys
[:label]) // edge keys

LogicalGraph grouped = graph3.groupBy([:label], [COUNT()], [:label], [MAX(‘a’)])

GROUPING

Keys

3

1 3

4

5
2

+Aggregate

3

a:23 a:84

a:42

a:12

1 3

4

5
2

a:13

a:21

4

count:2 count:3

max(a):42

max(a):84

max(a):13 max(a):21

6 7

4

6 7

32

SAMPLE GRAPH

[0] Tag
name : Databases

[1] Tag
name : Graphs

[2] Tag
name : Hadoop

[3] Forum
title : Graph Databases

[4] Forum
title : Graph Processing

[5] Person
name : Alice
gender : f
city : Leipzig
age : 23

[6] Person
name : Bob
gender : m
city : Leipzig
age : 30

[7] Person
name : Carol
gender : f
city : Dresden
age : 30

[8] Person
name : Dave
gender : m
city : Dresden
age : 42

[9] Person
name : Eve
gender : f
city : Dresden
age : 35
speaks : en

[10] Person
name : Frank
gender : m
city : Berlin
age : 23
IP: 169.32.1.3

0

1

2

3

4

5

6 7 8 9

10

11 12 13 14

15

16

17

18 19 20 21

22

23

knows

since : 2014

knows

since : 2014

knows

since : 2013

hasInterest

hasInterest hasInterest

hasInterest

hasModeratorhasModerator

hasMember hasMember
hasMember hasMember

hasTag hasTaghasTag hasTag

knows

since : 2013

knows

since : 2014

knows

since : 2014

knows

since: 2015

knows

since: 2015

knows

since : 2015
knows

since: 2013

GROUPING: TYPE LEVEL (SCHEMA GRAPH)

vertexGrKeys = [:label]
edgeGrKeys = [:label]
sumGraph = databaseGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

[11] Person

count : 6

[12] Forum

count : 2

[13] Tag

count : 3

hasMember
count : 4

knows
count : 10

hasInterest
count : 4

hasTag
count : 4

hasModerator
count : 2

24

26

28

27

25

34

personGraph = databaseGraph.subgraph((vertex => vertex[:label] == ‘Person’),
(edge => edge[:label] == ‘knows’))

vertexGrKeys = [:label, “city”]
edgeGrKeys = [:label]
sumGraph = personGraph.groupBy(vertexGrKeys, [COUNT()], edgeGrKeys, [COUNT()])

GROUPING: PROPERTY-SPECIFIC

1 3

[11] Person

city : Leipzig
count : 2

[12] Person

city : Dresden
count : 3

[13] Person

city : Berlin
count : 1

24

25

26

27

28

knows

count : 3

knows

count : 1
knows

count : 2

knows

count : 2

knows

count : 2

35

GraphCollection filtered = collection.select((graph => graph[‘vertexCount’] > 4));

SELECTION

UDF

vertexCount > 4

1 | vertexCount: 5

2 | vertexCount: 4

0 2

3

4
1

5 7 86

1 | vertexCount: 5

0 2

3

4
1

36

GraphCollection frequentPatterns = collection.callForCollection(new TransactionalFSM(0.5))

CALL (E.G., FREQUENT SUBGRAPHS)

FSM

Threshold: 50%

1

0 1 2

3

4

5 6 7

8

9

10

13

14

2

3

11 12

15 16

17 18

19 20

4

5

6

21 2322

25 2624

7

8

37

COMBINATION GRADOOP WITH KNIME

38

VISUALIZATION (PATENT CITATIONS)

39

VISUALIZATION (GROUPED PATENT CITATIONS)

40

SAMPLING (FACEBOOK, RANDOM WALK)

41

Implementation

and evaluation

42

GRAPH REPRESENTATION

Id Label Properties Graphs

Id Label Properties SourceId TargetId Graphs

EPGMGraphHead

EPGMVertex

EPGMEdge

Id Label Properties POJO

POJO

POJO

DataSet<EPGMGraphHead>

DataSet<EPGMVertex>

DataSet<EPGMEdge>

Id Label Properties Graphs

EPGMVertex

GradoopId := UUID
128-bit

String PropertyList := List<Property>
Property := (String, PropertyValue)
PropertyValue := byte[]

GradoopIdSet := Set<GradoopId>

43

Id Label Properties

1 Community {interest:Heavy Metal}

2 Community {interest:Hard Rock}

Id Label Properties Graphs

1 Person {name:Alice, born:1984} {1}

2 Band {name:Metallica,founded:1981} {1}

3 Person {name:Bob} {1,2}

4 Band {name:AC/DC,founded:1973} {2}

5 Person {name:Eve} {2}

I
d

Label Source Target Properties Graphs

1 likes 1 2 {since:2014} {1}

2 likes 3 2 {since:2013} {1}

3 likes 3 4 {since:2015} {2}

4 knows 3 5 {} {2}

5 likes 5 4 {since:2014} {2}

likes

since : 2014

likes

since : 2013

1 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person

name : Alice

born : 1984

Band

name :

Metallica

founded : 1981

Person

name : Bob

Person

name : Eve

Band

name : AC/DC

founded : 1973likes

since : 2015

know

s

likes

since : 2014
1 2

3

4

5

DataSet<EPGMGraphHead>

DataSet<EPGMVertex> DataSet<EPGMEdge>

GRAPH REPRESENTATION: EXAMPLE

44

// input: firstGraph (G[1]), secondGraph (G[2])

1: DataSet<GradoopId> graphId = secondGraph.getGraphHead()
2: .map(new Id<G>());
3:
4: DataSet<V> newVertices = firstGraph.getVertices()
5: .filter(new NotInGraphBroadCast<V>())
6: .withBroadcastSet(graphId, GRAPH_ID);
7:
8: DataSet<E> newEdges = firstGraph.getEdges()
9: .filter(new NotInGraphBroadCast<E>())
10: .withBroadcastSet(graphId, GRAPH_ID)
11: .join(newVertices)
12: .where(new SourceId<E>().equalTo(new Id<V>())
13: .with(new LeftSide<E, V>())
14: .join(newVertices)
15: .where(new TargetId<E>().equalTo(new Id<V>())
16: .with(new LeftSide<E, V>());

Exclusion

OPERATOR IMPLEMENTATION

likes

since : 2013
likes

since : 2014
1 3

4

5

2

1|Community|interest:Heavy Metal

2|Community|interest:Hard Rock

Person

name : Alice

born : 1984

Band

name :

Metallica

founded : 1981

Person

name : Bob

Person

name : Eve

Band

name : AC/DC

founded : 1973likes

since : 2015

know

s

likes

since : 2014
1 2

3

4

5

45

IMPLEMENTATION OF GRAPH GROUPING

GroupBy(1,2,3) +
GC + GR* + Map
Assign edges to groups
Compute aggregates
Build super edges

Filter + Map
Extract super vertex tuples
Build super vertices

GroupBy(1) + GroupReduce*
Assign vertices to groups
Compute aggregates
Create super vertex tuples
Forward updated group members

V

E

Map
Extract
attributes

Filter + Map
Extract group members
Reduce memory footprint

Join*
Replace Source/TargetId
with corresponding super
vertex id

Map
Extract
attributes

*requires worker communication

V1 V2

V3

V‘

E1 E2 E‘

46

TEST WORKFLOW: SUMMARIZED COMMUNITIES

http://ldbcouncil.org/

1. Extract subgraph containing only Persons and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

47

TEST WORKFLOW: SUMMARIZED COMMUNITIES

https://git.io/vgozj

1. Extract subgraph containing only Persons

and knows relations

2. Transform Persons to necessary information

3. Find communities using Label Propagation

4. Aggregate vertex count for each community

5. Select communities with more than 50K users

6. Combine large communities to a single graph

7. Group graph by Persons location and gender

8. Aggregate vertex and edge count of grouped graph

48

BENCHMARK RESULTS

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)

 16x 48 GB RAM

 1 Gigabit Ethernet

 Hadoop 2.6.0

 Flink 1.0-SNAPSHOT

0

200

400

600

800

1000

1200

1 2 4 8 16

R
u

n
ti

m
e

 [
s]

Number of workers

Runtime

Graphalytics.100

1

2

4

8

16

1 2 4 8 16

Sp
ee

d
u

p

Number of workers

Speedup

Graphalytics.100 Linear

49

BENCHMARK RESULTS 2

Dataset # Vertices # Edges

Graphalytics.1 61,613 2,026,082

Graphalytics.10 260,613 16,600,778

Graphalytics.100 1,695,613 147,437,275

Graphalytics.1000 12,775,613 1,363,747,260

Graphalytics.10000 90,025,613 10,872,109,028

1

10

100

1000

10000

R
u

n
ti

m
e

 [
s]

Datasets

 16x Intel(R) Xeon(R) 2.50GHz (6 Cores)

 16x 48 GB RAM

 1 Gigabit Ethernet

 Hadoop 2.6.0

 Flink 1.0-SNAPSHOT

50

COMPARISON

51

Graph Database
Systems
Neo4j, OrientDB

Graph Processing
Systems
(Pregel, Giraph)

Graph Dataflow
Systems (Flink
Gelly, Spark
GraphX)

data model rich graph
models (PGM)

generic
graph models

generic
graph models

Extended PGM

focus queries analytic analytic analytic

query language yes no no (yes)

graph analytics (no) yes yes yes

scalability vertical horizontal horizontal horizontal

Workflows no no yes yes

persistency yes no no yes

dynamic graphs
/ versioning

no no no ongoing work

data integration no no no ongoing work

visualization (yes) no no yes

 ScaDS Dresden/Leipzig

 Intro Graph Analytics

 Graph data
 Requirements
 Graph database vs graph processing systems

 Gradoop approach

 Architecture

 Extended Property Graph Model (EPGM)

 Implementation and performance evaluation

 Ongoing work

 Graph-based data integration

 graph transformations

 multi-source matching (FAMER)

 Temporal graphs

 Conclusions

AGENDA

52

 need to integrate diverse data from different sources (or from data

lake) into semantically expressive graph representation

 for later graph analysis

 for constructing knowledge graphs

 traditional tasks for data acquisition, data transformation & cleaning,

schema / entity matching, entity fusion, data enrichment / annotation

 new challenges

 many data sources (pairwise linking of sources not sufficient)

 match and fuse both entities and relationships

 several entity and relationship types

 more complex preparatory data transformations to resolve

structural heterogeneity in input sources/graphs

GRAPH-BASED DATA INTEGRATION

53

GRAPH DATA INTEGRATION WORKFLOW

54

(3) Graph
integration

Integrated Instance Graph

Domain expert

meta
data

(1) Graph
transformation

D
a
ta

 S
o

u
rc

e
s

(2) Graph linking
& clustering

FAMERGrETL

GrETL

GRAPH TRANSFORMATION OPERATORS*

55

 high level operators implemented on top of Apache Flink as addition to Gradoop

* M. Kricke, E. Peukert, E. Rahm: Graph transformations in Gradoop. Proc. BTW 2019

TYPICAL WORKFLOW

56

Transformation:

Vertex to Property

fuse Vertices

PROPERTY TO VERTEX

57

Label: Person

Name: Bob

Interests: [Soccer, Music]

Label: Person

Name: Alice

Interests: [Music]

Label: Interest

Name: Soccer

Label: Interest

Name: Music

Pseudocode:
inputGraph

.propertyToVertex (Person, Interests, Interest, Name)

CONNECT NEIGHBORS

58

Label: Author

Name: Erhard Rahm

Label: Author

Name: Eric Peukert

Pseudocode:
inputGraph

.connectNeighbors(Publication, Author, co-author)

.fuseEdges(co-author, count, SUM)

.vertexInducedSubgraph(ByLabel(Author))

Label: Publication

Title: FAMER

Label: Author

Name: Alieh Saeedi

Label: Publication

Title: Data Integration

at ScaDS
Label: Author

Name: Erhard Rahm

Label: Author

Name: Eric Peukert

Label: Author

Name: Alieh Saeedi

Label: co-author

count: 2

Label: co-author

count: 1

Label: co-author

count: 1

FAst Multi-source Entity Resolution System

• scalable linking & clustering for many sources

ENTITY LINKING AND CLUSTERING

59

Source D

Source E

Source B
Source A

Source C

Input Linking: Similarity Graph Clustering

FAMER OVERVIEW

FAMER

60

Pair-wise

Comparison
Blocking

Match

Classifier

Linking

FAMER OVERVIEW

FAMER

61

FAMER CLUSTERING

FAMER

62

Source-inconsistency

overlap

LINK STRENGTH

– Link Strength

• Strong

• Normal

• Weak

63

CLIP QUALITY

FAMER

64

 Geographical domain

 4 sources

 F-Measure

Similarity Graph

CLIP

 current graph databases and graph processing systems focus

on static graphs

 real graphs like social networks, citation networks, road

networks etc change over time

 graph elements are continuously added, removed or updated

 slowly evolving networks vs. streaming graph data (e.g., sensor data)

 analytical questions are often time-related

 as-of queries on past states (snapshots)

 change/evolution analysis …

 need to efficiently update/refresh analysis results (graph metrics,

communities/clusters, …)

 need of scalable approaches for managing and analyzing

temporal and stream graphs

DYNAMIC GRAPHS

65

 support for bitemporal graphs

 time intervals for valid time (val-from, val-to) and transaction

time (tx-from, tx-to) for vertices, edges and graphs

 valid time provided by user, tx time is system-provided

 similar to temporal support in SQL:2011

 changes to existing operators

 time predicates (as-of, between, overlap, precedes/suceeds

…) for subgraph, pattern matching, grouping …

 new operators

 snapshot extraction (as-of subgraph)

 graph diff (between two snaphshots)

TEMPORAL GRAPHS IN GRADOOP

66

67

 affiliation memberships with a duration of less than 3 years

 graph.subgraph (null, e -> e.label = ’member’ AND YEAR(e.to)-

YEAR(e.from) < 3

 authors who had an US affiliation in 2017 (temporal pattern matching)

 (a:Author)-[m:member]->(f:Affiliation country : USA) WHERE m.asOf(2017)

 graph snapshot as of 2010

 graph.snapshot (asOf(2010))

 graph difference

 graph.diff (asOf(2010),asOf(2019))

EXAMPLE QUERIES

68

GRAPH DIFF BETWEEN 2010 AND NOW

69

 ScaDS Dresden/Leipzig

 Intro Graph Analytics

 Graph data
 Requirements
 Graph database vs graph processing systems

 Gradoop approach

 Architecture

 Extended Property Graph Model (EPGM)

 Implementation and performance evaluation

 Ongoing work

 Graph-based data integration

 graph transformations

 multi-source matching (FAMER)

 Temporal graphs

 Conclusions

AGENDA

70

 Big Graph Analytics

 many alternatives, but limitations

 graph collections not generally supported

 Insufficient support for graph-based data integration and support for dynamic
graph data

 GraDoop (www.gradoop.org)

 open-source infrastructure for entire processing pipeline: graph acquisition,
storage, integration, transformation, analysis (queries + graph mining),
visualization

 extended property graph model (EPGM) with powerful operators (e.g., grouping,
pattern matching) and support for graph collections

 leverages Hadoop ecosystem (Hbase, Apache Flink)

 Integration into Knime

SUMMARY

71

http://www.gradoop.org/

 Graph-based data integration

 Integration matching for multiple vertex and edge types

 Incemental addition of new data (sources)

 maintenance of knowledge graphs

 Dynamic data

 Implementation of new operators

 Support for stream data

 Graph mining on dynamic graphs

 Machine learning on graphs

 use of graph embeddings, e.g., for approximate pattern matching

 better predictions by using contextual data …

OUTLOOK / CHALLENGES

72

 M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, E. Rahm: Cypher-based Graph Pattern Matching in Gradoop. Proc. ACM SIGMOD workshop on Graph Data

Management Experiences and Systems (GRADES), 2017

 M. Junghanns, M. Kießling, N. Teichmann, K. Gomez, A. Petermann, E. Rahm: Declarative and distributed graph analytics with GRADOOP. PVLDB 2018

 M. Junghanns, A. Petermann, K. Gomez, E. Rahm: GRADOOP - Scalable Graph Data Management and Analytics with Hadoop. Arxiv, 2015

 M. Junghanns, A. Petermann, M. Neumann, E. Rahm: Management and Analysis of Big Graph Data: Current Systems and Open Challenges. In: Big Data

Handbook (eds.: S. Sakr, A. Zomaya) , Springer, 2017

 M. Junghanns, A. Petermann, E. Rahm: Distributed Grouping of Property Graphs with GRADOOP. Proc. BTW, 2017

 M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, E. Rahm: Analyzing Extended Property Graphs with Apache Flink. Proc. ACM SIGMOD workshop on

Network Data Analytics (NDA), 2016

 M. Kricke, E. Peukert, E. Rahm: Graph transformations in Gradoop. Proc. BTW 2019

 M. Nentwig, E. Rahm: Incremental Clustering on Linked Data. Proc. ICDMW 2018

 A. Petermann, M. Junghanns, S. Kemper, K. Gomez, N. Teichmann, E. Rahm: Graph Mining for Complex Data Analytics. Proc. ICDM 2016 (Demo paper)

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: BIIIG : Enabling Business Intelligence with Integrated Instance Graphs. Proc. ICDEW 2014

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: Graph-based Data Integration and Business Intelligence with BIIIG. PVLDB 2014

 A. Petermann, M. Junghanns, R. Müller, E. Rahm: FoodBroker - Generating Synthetic Datasets for Graph-Based Business Analytics. Proc. 5th Int. Workshop on

Big Data Benchmarking (WBDB), 2014

 A. Petermann, M. Junghanns, E. Rahm: DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems. Proc. BDCAT 2017

 E. Rahm: The Case for Holistic Data Integration. Proc. ADBIS, 2016

 E. Rahm et al.: Big Data Competence Center ScaDS Dresden/Leipzig: Overview and selected research activities. Datenbank-Spektrum 2019

 C. Rost, A. Thor, E. Rahm: Temporal graph analysis using Gradoop. Proc. BTW workshops, 2019

 M.A. Rostami, M. Kricke, E. Peukert, S. Kühne, M. Wilke, S. Dienst, E. Rahm: BIGGR: Bringing Gradoop to Applications. Datenbank-Spektrum 2019

 A. Saeedi, M. Nentwig, E. Peukert, E. Rahm: Scalable Matching and Clustering of Entities with FAMER. CSIMQ 2018

 A. Saeedi, E. Peukert, E. Rahm: Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution. Proc. ADBIS, LNCS 10509, 2017

 A. Saeedi, E. Peukert, E. Rahm: Using Link Features for Entity Clustering in Knowledge Graphs. Proc. ESWC 2018

REFERENCES

73

