

Instance-based Matching of Large Ontologies

Erhard Rahm

http://dbs.uni-leipzig.de

June 3, 2009

Agenda

- Ontologies
- Ontology Matching
 - Problem
 - > Match techniques and prototypes (e.g., GLUE)
- Instance-based matching in COMA++
 - Constraint- / Content-based Matching
 - Matching web directories
- Matching by Instance overlap
 - > Similarity measures
 - > Evaluation: Product catalogs, biomedical ontologies
- Stability of ontology mappings
- Conclusions

Ontologies: Usage Forms

- Support a shared understanding of terms/concepts in a domain
 - Annotation of data instances by terms/concepts of an ontology
- Semantically organize information of a domain
 Find data instances based on concepts (queries, navigation)
- Support data integration
 - > e.g. by mapping data sources to shared ontology
- Sample ontologies
 - > Product catalogs of companies, e.g. online shops
 - >Web directories
 - > Biomedical ontologies

Product Catalogs

- Hierarchical categorization of products
- Instances: product descriptions
- Often very large: ten thousands categories, millions of products

				COOL IN CATALOGUES	kitchen & houseware • refrigerators • (freestanding) cookers • vacuum cleaners • washing machines
	ama	zon .com	Shop All Departments Books	>	office equipment, supplies & accessories
Antiques Art Baby Books	Dally Deal Crafts DVDs & Movies D058 & Bears Electronics	Real Estate Specialty Services Sporting Goods Sports Mem, Cards & Fan Shop	Movies, Music & Games Digital Downloads Kindle Computers & Office Electronics Home & Garden	 Movies & TV Blu-ray Video On Demand Music MP3 Downloads Musical Instruments 	 paper cutters laminators paper shredders paper perforators binding machines
Business & Industrial Carres & Photo Cars, Boats, Vehicles & Parts Cell Phones & POAs Clothing, Shoes & Accessories Coins & Paper Money Collectibles Corputers & Networking	Entertainment Memorabila Gift Certificates Health & Beauty Home & Garden Jawelry & Watches Music Musical Instruments Pottery & Class	Stamps Tickets Toys & Hobbies Travel Video Games Everything Else	Grocery, Health & Beauty Toys, Kids & Baby Apparel, Shoes & Jewelry Sports & Outdoors Tools, Auto & Industrial	Video Games Game Downloads S	• men's shavers • hairdryers • electric toothbrushes • solaria
and participation of the second secon					 women's clothing men's clothing

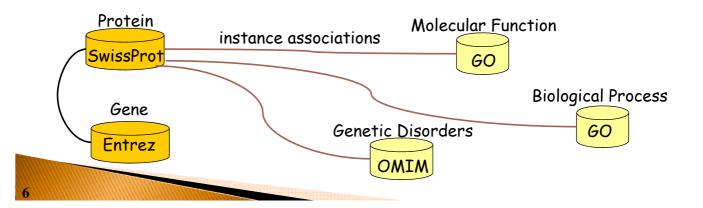
Web Directories

- Categorization of websites
- Instances: website descriptions (URL, name, content description)
- Manual vs. automated category assignment of instances
- General lists or specialized (per region, topic, etc.), e.g.
 - > Yahoo! Directory
 - > Dmoz Open Directory Project (ODP)
 - > Google Directory based on Dmoz
 - > Business.com
 - > Vfunk: Global Dance Music Directory

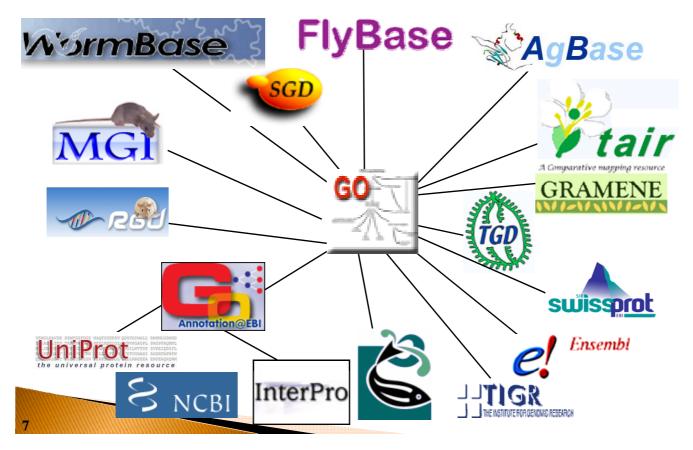
Directory O

Google

VAHOO DIRECTORY

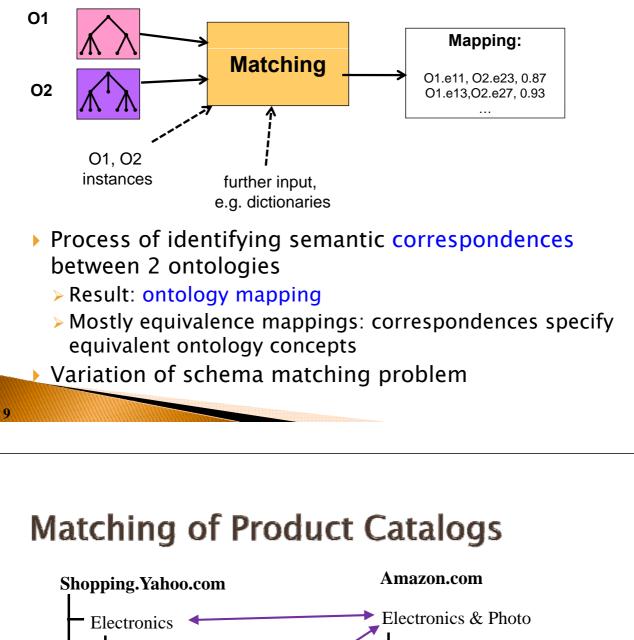

dmoz open directory project

//I BUSINESS.COM

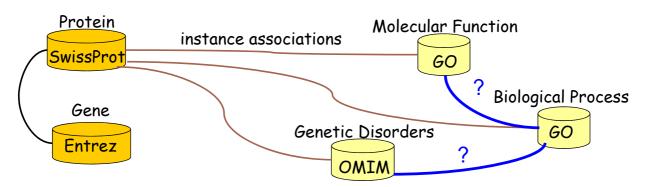


Life Science Ontologies

- Many ontologies for different disciplines, e.g.
 Molecular Biology, Anatomy, Health etc.
- Largest ontologies (> 10,000 concepts), e.g., Gene Ontology (GO), NCI Thesaurus
- Ontologies used to annotate genes and proteins
 ✓ Support for "functional" data analysis
- Instances: annotated objects; separate from ontology


Example: Widespread Usage of GO

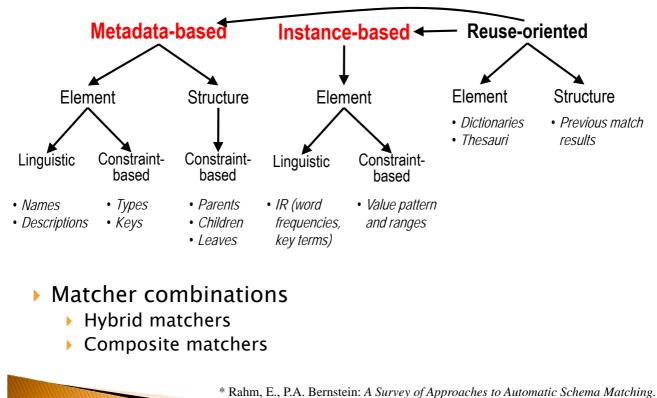
Assumed Ontology Model


- Focus on practically used ontologies
- Ontology O consists of a set of concepts/categories interconnected by relationships (e.g. of type "is-a" or "part-of"). O is represented by a DAG and has a designated root concept.
 - > Concepts have *attributes*, e.g. Id, Name, Description
 - > Concepts may have associated *instances*
- Ontologies may be versioned
- Instances
 - May be managed together with ontology or independently
 - > May be associated to several concepts
 - > May have heterogeneous schemas, even per concept

Ontology Matching / Alignment

- Electronics Photo DVD Recorder Beamer Digital Cameras Digital Cameras Digital Cameras Digital Cameras
- Ontology mappings useful for
 - Improving query results, e.g. to find specific products
 - Advanced (cross-site) product recommendations
 - Automatic categorization of products in different catalogs
 - Merging catalogs

Matching Life Science Ontologies

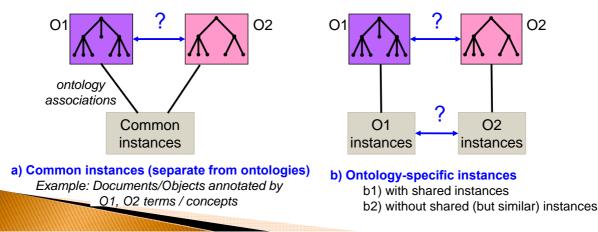


- Ontology mappings useful for
 - Improved analysis
 - Answering questions such as "Which Molecular Functions are involved in which Biological Processes?"
 - Validation (curation) and recommendation of instance associations
 - Ontology merge or curation, e.g. to reduce overlap between ontologies

Ontology Matching is challenging

- High degree of semantic heterogeneity in independently developed ontologies
- Syntactic differences
 - > Different models and languages
- Structural differences
 - Different is-a and part-of hierarchies
 - > Overlapping categories
- Semantic differences
 - Naming ambiguities and conflicts
- Modeling errors / inconsistencies
- Instance / content differences
 - Different scope
 - Heterogeneous instance representations
- Fully automatic, generic solutions ?

Automatic Match Techniques*


VLDB Journal 10(4), 2001

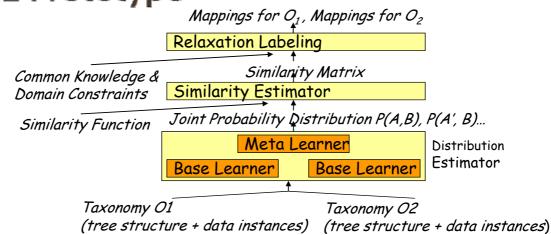
Instance-based matching

semantics of a category may be better expressed by the instances associated to category than by metadata (e.g. concept name, description) > Categories with most similar instances should match

O2

- Main problem: Availability of (shared/similar) instances for most/all concepts
- Common cases:

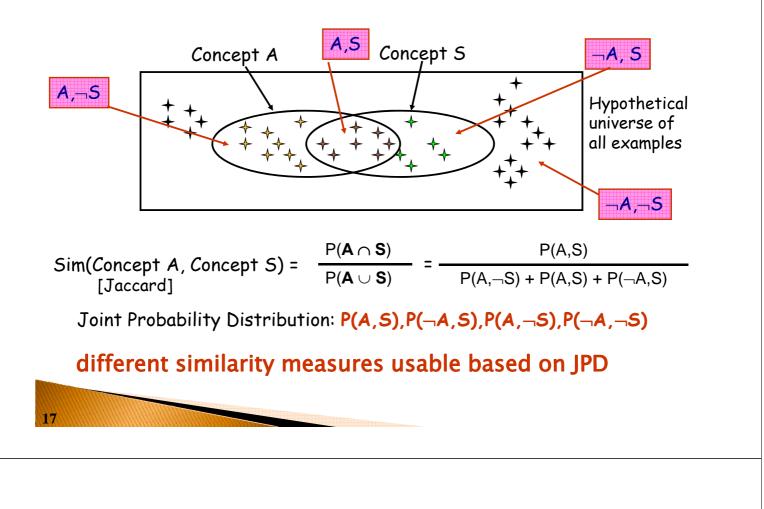
Match Prototypes


- Many prototypes for schema or ontology matching *
- Instance-based schema matching (XML, relational)
 - ➢ SEMINT
 - > LSD
 - > Clio
 - ≻ iMap

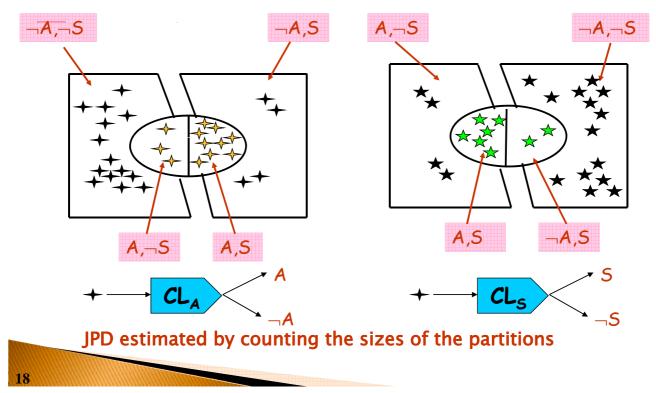
15

- > Dumas
- Instance-based ontology matching (OWL)
 - > GLUE, U of Washington
 - > COMA++, U Leipzig (supports schema + ont. matching)
 - > FOAM / QOM, U Karlsruhe
 - > Sambo, Linköping U, Sweden
 - > Falcon-AO, South East U, China
 - » RiMOM, Tsinghua U, China

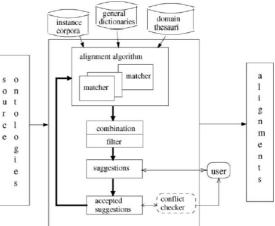
* Euzenat/Shvaiko: Ontology matching. Springer 2007


GLUE Prototype*

- Use of machine learning to find ontology mappings
- Base learners use concept names + data instances (description)
- Similarity measures computed from "joint probability distribution" of concepts
- Evaluation on comparatively small ontologies: 3 match tasks, per ontology: 34-331 concepts, 6-30 non-leaf concepts, 1500-14000 instances, 34-236 correspondences


* Doan, AH; et al: *Learning to Match Ontologies on the Semantic Web*. VLDB Journal, 12(4):303-319, 2003

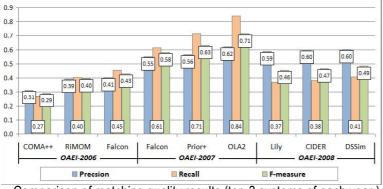
GLUE: Concept Similarity

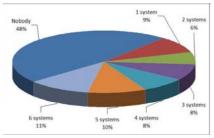

GLUE: Machine Learning for Computing Similarities

Mutual use of trained classifiers to determine instance-concept associations (requires no shared but only similar instances)

SAMBO Prototype*

- System for aligning and merging biomedical ontologies
- Framework to find similar concepts in overlapping OWL ontologies for alignment and merge tasks
 - Combined use of different matchers and auxiliary information
 - Linguistic, structure-based, constraint-based
 - Instance-based matching
 Based on texts (e.g., papers)
 Two concepts are similar if a
 - document describes both concepts
 - description logic reasoner checks results for ontology consistency and cycles


* Lambrix, P; Tan, H.: SAMBO – A system for aligning and merging biomedical ontologies. Journal of Web Semantics, 4(3):196-206, 2006

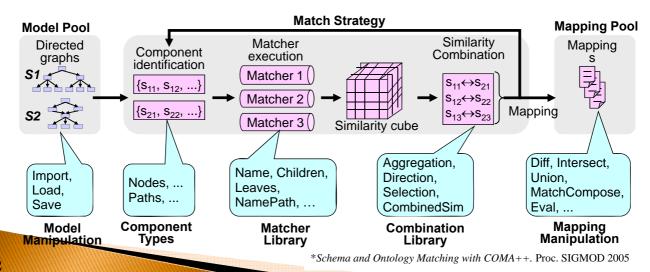

OAEI*: Directory Results

Dataset

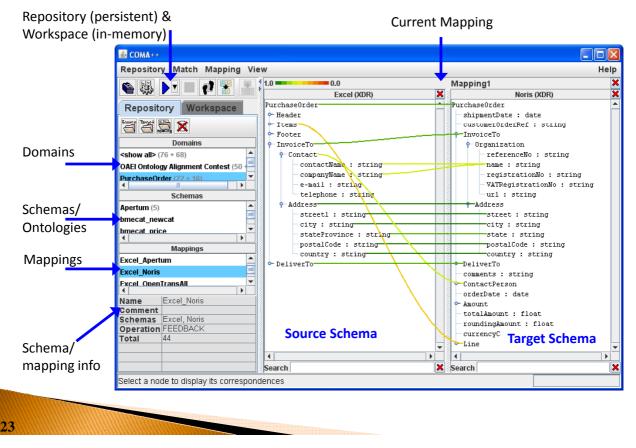
19

- > extracted from Google, Yahoo and Looksmart web directory
- More than 4,500 simple node matching tasks, no instances

In 2008 the systems together did not manage to discover 48% of the total number of positive correspondences


Comparison of matching quality results (top-3 systems of each year)

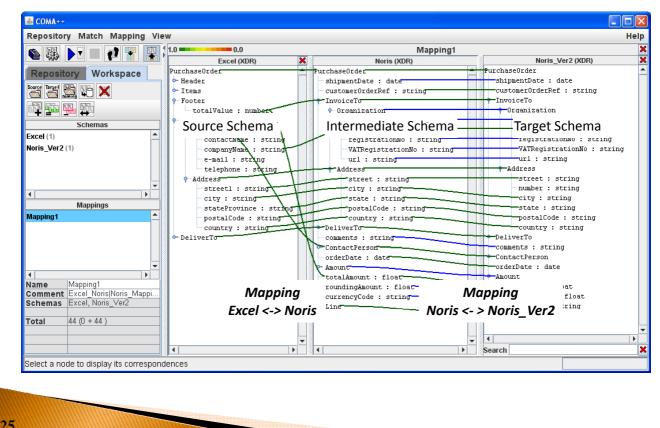
Agenda


- Ontologies
- Ontology Matching
 - Problem
 - > Match techniques and prototypes (e.g., GLUE)
- Instance-based matching in COMA++
 - Constraint- / Content-based Matching
 - Matching web directories
- Matching by Instance overlap
 - > Similarity measures
 - > Evaluation: Product catalogs, biomedical ontologies
- Stability of ontology mappings
- Conclusions

COMA++*

- Extends previous COMA prototype (VLDB2002)
- Matching of XML & rel. Schemas and OWL ontologies
- Several match strategies: Parallel (composite) and sequential matching; Fragment-based matching for large schemas; Reuse of previous match results

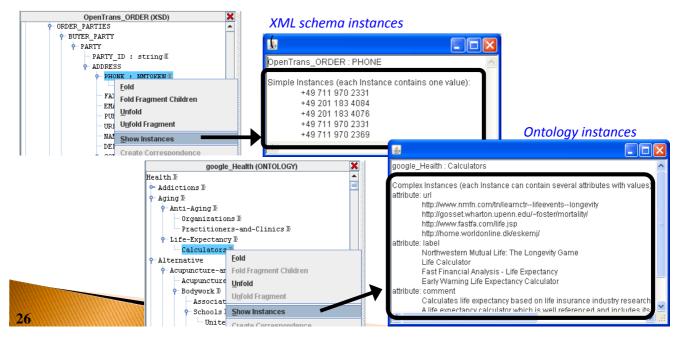
COMA++ GUI Overview


Matcher & Match Strategies

Configuration of matcher									
Existing Matchers						X			
Name	Constituent	s Constituent.	Aggregation	Direction	Selection	Combination			
CHILDREN	CHILDREN	NAMESTAT	SIMMAX	BOTH	MULTIPL	AVERAGE			
COMA	DOWNPA.	. NAME, P	SIMAVER	BOTH	MULTIPL	AVERAGE			
COMA OPT	DOWNPA.	. NAME, P	SIMAVER	BOTH	MULTIPL	AVERAGE			
COMMENT	COMMEN.	. SIM TRIG	SIMMAX	BOTH	MAXN(1)	AVERAGE			
CONTEXTS	DOWNPA.	. PATH,	SIMAVER	BOTH	MULTIPL	AVERAGE			
DATATYPE	DATATYPE	SIM DAT	SIMMAX	BOTH	MAXN(1)	AVERAGE			
INSTANCES	DOM/NDA	INST DID	CIMAVED	POTH	MULTIPL	AVERAGE			
LEAVES					MULTIPL	AVERAGE			
NAME	1 Me	etadata	i-basec		MULTIPL	AVERAGE			
NAMESTAT					MAXN(1)	AVERAGE			
NAMETYPE	SELFNODE	ENAME, D	SIMWEIG	BOTH	MAXN(1)	AVERAGE			
NODES	SUBSUM		SIMAVER	BOTH	MULTIPL	AVERAGE			
PARENTS	PARENTS	LEAVES.	SIMAVER	BOTH	MULTIPI	AVERAGE			
PATH	SELFPATH		SIMAVER	BOTH	MAXN(1)	AVERAGE			
SIBLINGS	SIBLINGS	LEAVES.	SIMAVER	BOTH	MAXN(1)	AVERAGE			
STATISTICS	STATIST			BOTH	MAXN(1)	AVERAGE			
STATTYPEINST		EISTATISTI	SIMWEIG	BOTH	MAXN(1)	AVERAGE			
Name REUSE									
		Ceuse-I	Jaseu						
Name	Constitu	ents Preproc	essing Me	asure	Direction	Selection			
INST ALL CONTENT				BC	TH N	/AXN(1)			
INST CONSTRAINT	ı In	stance	-hased	BC		AAXN(1)			
INST DIRECT CONTEN	1 111	stance	-Daseu	. BC	TH N	AAXN(1)			
Nama		Olasa		lax		Info			
Name Stem dg MaxDelta001		Class		Jar	DIRECTI	dmoz goo			
Stem dg MaxDeltaun						dmoz goo			
Stem ug maxilo	Use	r-prog	ramme	ea	Dirteon	unior_goo			
					Configure	Cancel			

Configuration of match strategies

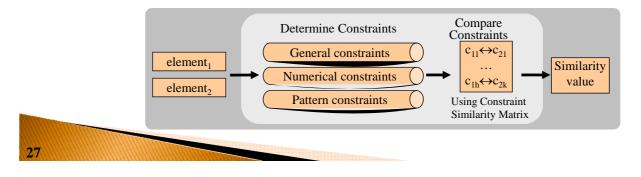
🕌 Configure S	Strategy (Advanced)	
	Change to Basic	
 Context 	(COMA default strategy)	
	Context Matcher	COMA 💌
🗆 Fil	teredContext Node Matcher NODES	•
○ Nodes		
	Node Matcher	NAMETYPE 💌
Reuse	(use existing mapping paths)	
Fragment		
	Fragment Identification	SUBSCHEMA -
	Match Strategy	FilteredContext 💌
	(Configure this Strategy => see above))
	Restore Defaults Save Sav	e & Execute Cancel


Reuse of Mappings

Instance-based Matching in COMA++

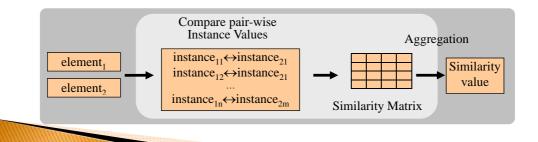
Instance matchers introduced in 2006

- Constraint-based matching
- Content-based matching: 2 variations
- Coma++ maintains instance value set per element

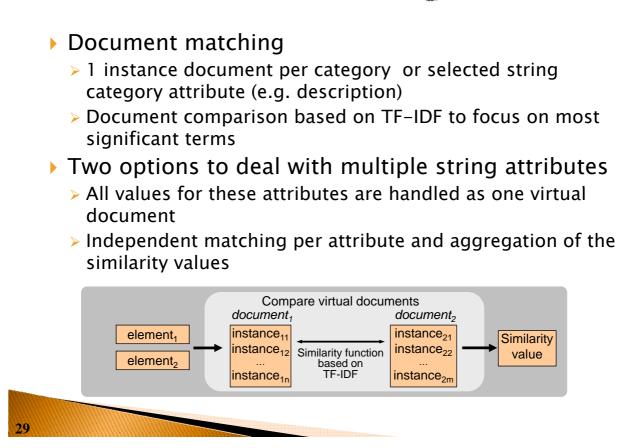


Constraint-based Matching

- Instance constraints are assigned to schema elements
 - General constraints: always applicable Example: average length and used characters (letters, numeral, special char.)
 - Numerical constraints: for numerical instance values Example: positive or negative, integer or float
 - Pattern constraints: Example: Email and URL

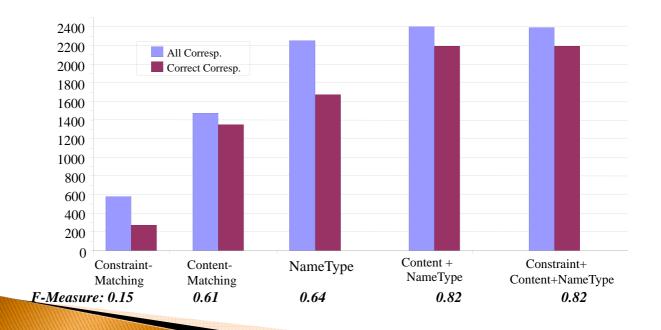

"My@email.com" vs. "Your@email.org"

- Use of constraint similarity matrix to determine element similarity (like data type matching)
- Simple and efficient approach
- > Effectiveness depends on availability of constrained value ranges / pattern
- Approach does not require shared instances

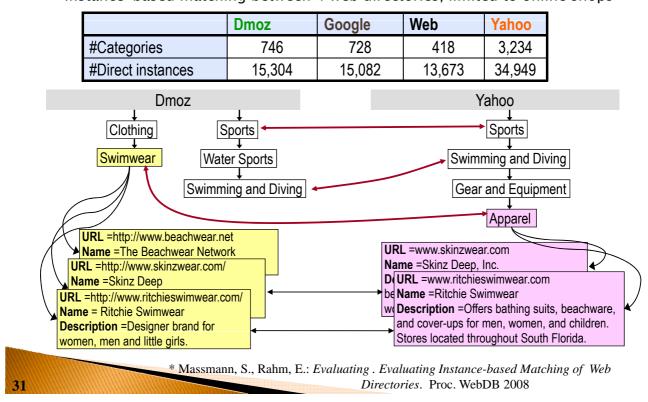


Content-based Matching

- 2 variations
 - *Value Matching*: pairwise similarity comparison of instance values
 - Document (value set) matching: combine all instances into a virtual document and compare documents
 - Both approaches do not require shared instances
- Value matching
 - Use any similarity measure for pairwise value comparison
 - Aggregate individual similarity values (similarity matrix) into a combined concept similarity (e.g., based on Dice)

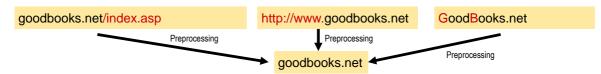


Content-based Matching 2

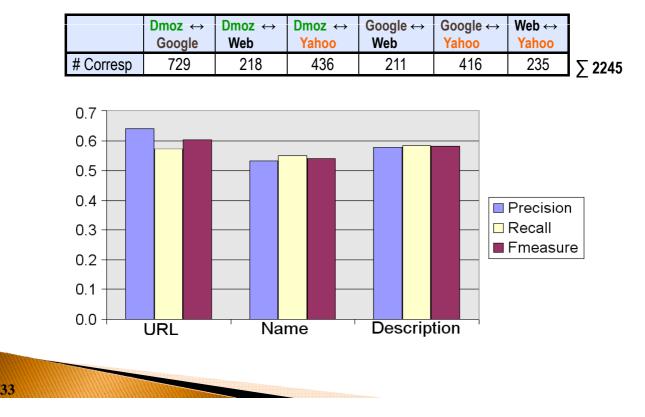


Evaluation for OAEI benchmark test

- 39 of 51 test cases based on instances
- > 2966 correspondences in reference alignment

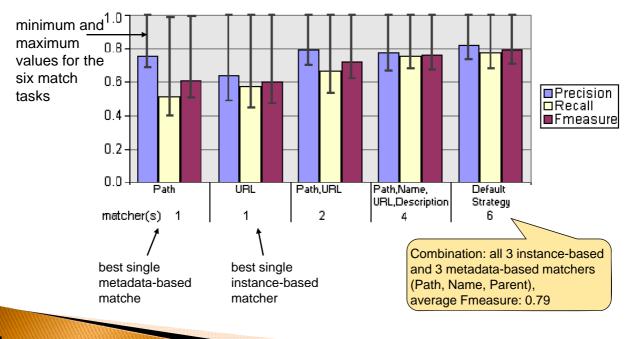

Use case: Web Directory Matching *

> Instance-based matching between 4 web directories, limited to online shops


Web Directory Matching

- Instances are shop websites
- Instance-based matching on 3 attributes: shop URL, name, description
 Use of directly and indirectly associated instances
- URL matcher based an value matching
 - After URL preprocessing, equal URLs are needed (same shops in different directories) to find matching categories

- Name matcher based on value matching
- Description matcher based on document matching
- Name / description matching do not need shared instances

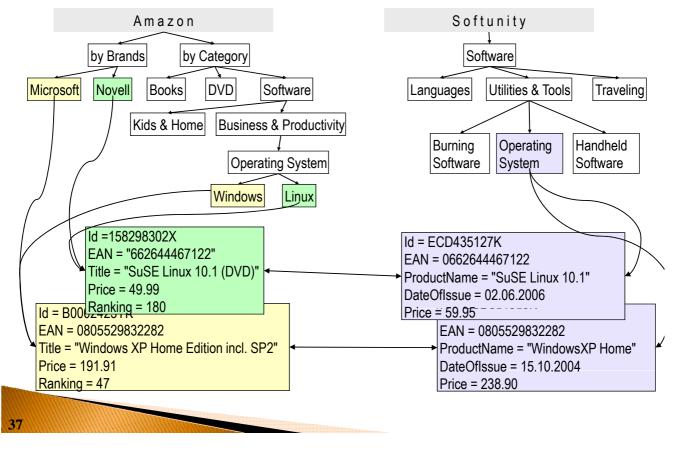

Results of instance-based Matchers

▶ Six match tasks → six reference mappings (manually created)

Instance- + metadata-based matching

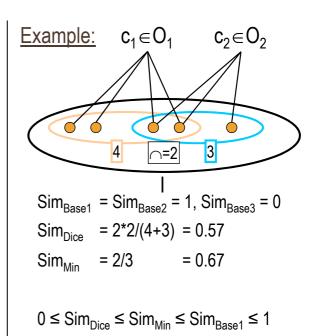
 Combination of three instance-based matchers (URL, name, description) and six metadata-based matchers

Agenda


- Ontologies
- Ontology Matching
 - ➢ Problem
 - > Match techniques and prototypes (e.g., GLUE)
- Instance-based matching in COMA++
 - Constraint- / Content-based Matching
 - Matching web directories
- Matching by Instance overlap
 - > Similarity measures
 - > Evaluation: Product catalogs, biomedical ontologies
- Stability of ontology mappings
- Conclusions

Matching by Instance Overlap *

- Use of instance overlap for ontology matching: two concepts are related / similar if they share a significant number of associated objects
- Different measures to determine the instance-based similarity
 - Base-K; Dice, Min, Jaccard …
- Extensions:
 - Consideration of indirect instance associations
 - Combination with other match approaches
 - Consideration of similar (but non-identical) objects


^{*} Thor, A; Kirsten, T; Rahm, E.: *Instance-based matching of hierarchical ontologies*. Proc. BTW, 2007 Kirsten, T, Thor, A; Rahm, E.: *Instance-based matching of large life science ontologies*. Proc. DILS, 2007

Example: Product Catalogs

Similarity Measures

- Baseline similarity Sim_{BaseK} $Sim_{BaseK}(c_1, c_2) = \begin{cases} 1 & \text{, if } N_{c_1c_2} >= K \\ 0 & \text{, if } N_{c_1c_2} < K \end{cases}$
- Dice similarity Sim_{Dice} $Sim_{Dice}(c_1, c_2) = \frac{2 \cdot N_{c_1 c_2}}{N_{c_1} + N_{c_2}}$
- <u>Minimum similarity Sim_{Min} </u> $Sim_{Min}(c_1, c_2) = \frac{N_{c_1c_2}}{\min(N_{c_1}, N_{c_2})}$

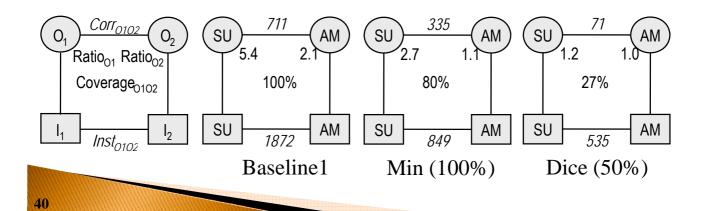
Approximate Evaluation Measures

- Computation of precision & recall needs a perfect mapping (reference alignment)
 - Laborious for large ontologies
 - > Might not be well-defined
- Syntactic measures to "approximate" recall / precision
- Match coverage: fraction of matched categories

 $MatchCoverage_{O_1} = \frac{|C_{O_1-Match}|}{|C_{O_1}|} \in [0...1] \qquad InstMatchCoverage = \frac{|C_{O_1-Match}| + |C_{O_2-Match}|}{|C_{O_1-Inst}| + |C_{O_2-Inst}|}$

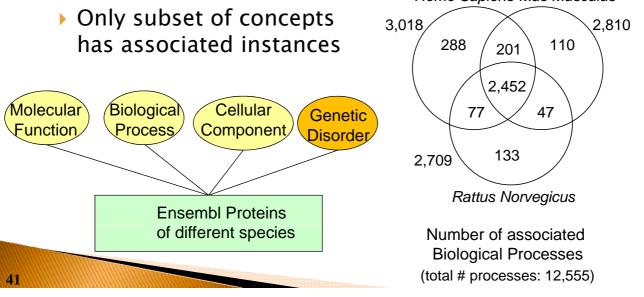
Match ratio: #correspondences per matched concept

$$MatchRatio_{O1} = \frac{|Corr_{O1-O2}|}{|C_{O1-Match}|} \ge 1 \qquad CombinedMatchRatio = \frac{2 \cdot |Corr_{O1-O2}|}{|C_{O1-Match}| + |C_{O2-Match}|} \ge 1$$

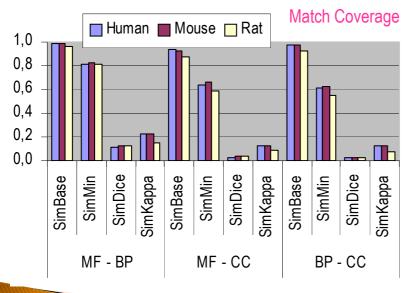

Goal: high Match Coverage with low Match Ratio

Results for Product Catalog Matching

- Amazon (AM) vs. Softunity (SU)
- Baseline1: max. Match Coverage, high Match Ratios


- Sim_{Min}: good Match Coverage, moderate Match Ratios
- Sim_{Dice}: low Match Coverage, low Match Ratios

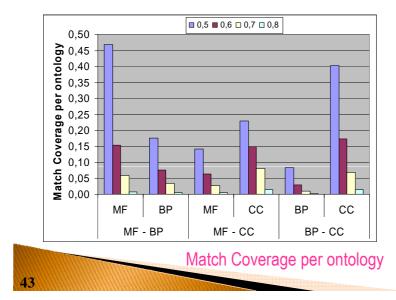
	SU	AM
# concepts (product categories)	470	1,856
# concepts having instances	170	1,723
# instances (products)	2,576	18,024
# direct associations	2,576	25,448
# associations / # instances	1	≈ 1.4
# Instances / #concepts	≈15	≈15


Life Science Match Scenario

- Ontologies
 - > 3 subontologies of GeneOntology
 - > Genetic disorders of OMIM
- Instances: Ensembl proteins of 3 species, i.e. homo sapiens, mouse, rat Homo Sapiens Mus Musculus

Match Results for GO tasks

- Sim_{Base}: high Match Coverage (99%) w.r.t. concepts having instances, very high Match Ratios
- Sim_{Dice}: low Coverage (< 20%) and low Match Ratios</p>
- Sim_{Min}: good Coverage (60%–80%) with moderate Match Ratios

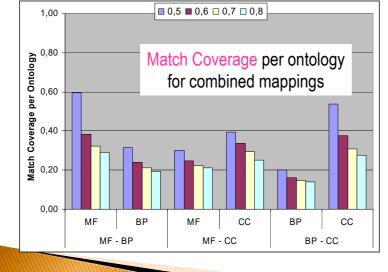

Match Ratios per ontology

	MF ·	BP			
	MF	MF BP			
Base	20.4	17.0			
Min	4.4	4.0			
Dice	1.3	1.2			

(Match Ratios for Homo Sapiens, MF-BP task)

Metadata-based GO Matching

- Simple matcher on concept names
- Relatively low Match Coverage (however w.r.t. all concepts including instance-free concepts)
 - No correspondences for similarity ≥ 0.9
 - Low similarity thresholds (e.g. < 0.6) too imprecise</p>



	MF - BP					
	MF BP					
0.5	4.4	6.9				
0.6	2.4	2.9				
0.7	1.4	1.4				
0.8	1.1	1.1				

Match Ratios per ontology

Results for Match Combinations

- Combinations between instance- (Sim_{Min}) and metadata-based match approach
 - Union: Increased Match Coverage an Match Ratios
 - Intersection: Low Match Coverage (<1%)</p>
- Low overlap between instance- and metadatabased mappings

Match Ratios per ontology (Name threshold 0.7)

	MF - BP					
	MF	BP				
C	4.1	3.7				
\cap	1.0	1.0				

(Sim_{Min} = 1.0, Homo Sapiens)

Impact of Annotation Provenance

Automatically vs. manually assigned annotations

Example: Annotations in Ensembl (July 2008) – 46,704 proteins

	17729 18% 22951 28			
Automatically assigned	82466	82%	57824	72%
Manually assigned	17729	18%	22951	28%
Sum	100195		80775	

- Ontology mappings for Base3,Min
 - Restriction to manual annotations returns small mappings of likely improved quality

		Corr _{BP_MF}	C _{BP}	
	Base3	21386	1939	1393
Ø	Min ∩ Base3	3275	1107	1107
man	Base3	3835	899	533
Е	Min ∩ Base3	758	435	285

		MC _{BP}	MC _{MF}	MR _{BP}	MR _{MF}
all	Base3	0,13	0,17	11,0	15,4
e	Min ∩ Base3	0,08	0,13	3,0	3,0
man	Base3	0,06	0,06	4,3	7,2
m	Min ∩ Base3	0,03	0,03	1,7	2,7

Agenda

- Ontologies
- Ontology Matching
 - Problem
 - > Match techniques and prototypes (e.g., GLUE)
- Instance-based matching in COMA++
 - Constraint- / Content-based Matching
 - > Matching web directories
- Matching by Instance overlap
 - > Similarity measures
 - > Evaluation: Product catalogs, biomedical ontologies
- Stability of ontology mappings
- Conclusions

Evolution of Life Science Ontologies

- Continuous evolution of ontologies (many versions)
- Evolution analysis of 16 life science ontologies:
 - > Average of 60% growth in last four years
 - Deletes and changes also common

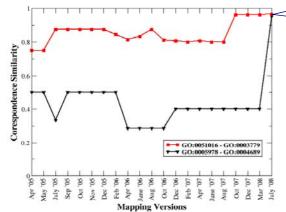
Ontology	size	$ C _{start}$	$ C _{last}$	grow _{C , start, last}
NCI Thesaurus		35,814	63,924	1.78
GeneOntology		17,368	25,995	1.50
Biological Process	10.000	8,625	15,001	1.74
Molecular Function	large	7,336	8,818	1.20
Cellular Components		1,407	2,176	1.55
ChemicalEntities		10,236	18,007	1.76

www.izbi.de/onex

		Full period (May. 04 - Feb. 08)						Last year	r (Feb. 07	- Feb. 08)	
	Ontology	Add	Del	Obs	adr	add-frac	del-frac	obs-frac	Add	Del	Obs
"monung	NCI Thesaurus	627	2	12	42.4	1.3%	0.0%	0.0%	416	0	5
	GeneOntology	200	12	4	12.2	0.9%	0.1%	0.0%	222	20	5
	Biological Process	146	7	2	16.2	1.2%	0.1%	0.0%	133	10	2
	Molecular Function	36	3	2	6.8	0.4%	0.0%	0.0%	69	7	3
	Cellular Components	18	2	0	8.9	1.0%	0.1%	0.0%	19	3	0
	ChemicalEntities	256	62	0	4.1	1.8%	0.5%	0.0%	384	67	0

Hartung, M; Kirsten, T; Rahm, E.: Analyzing the Evolution of Life Science Ontologies and Mappings.

Proc. 5th Intl. Workshop on Data Integration in the Life Sciences (DILS), 2008


Stability of Ontology Mappings

- High change rates in
 - > Ontologies
 - Instances

- > Annotations (instance-concept associations)
- Ontology mappings (between versions of two ontologies) also change frequently, especially for instance-based match approaches
 - > correspondences may disappear in newer mapping versions
- Consideration of instance overlap or metadatabases similarity may not be sufficient for determining "good" ontology mappings

Stability of Ontology Mappings

 <u>Standard match approaches</u> only consider information about current ontology versions and ignore evolution history

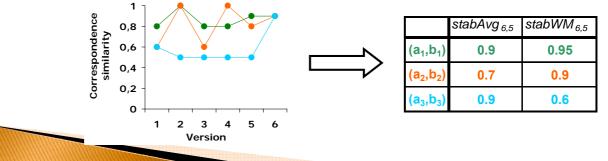
Is the **black** correspondence as good as the **red** one?

Possible instabilities of match correspondences due to evolution of ontologies and/or related data source

 Idea: Consider the evolution of a match correspondence to assess its stability/quality in the current version

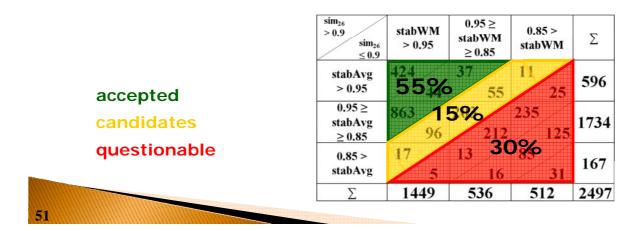
> ^k Thor, A; Hartung, M; Gross, A; Kirsten, T; Rahm, E.:*An Evolution-based Approach for Assessing Ontology Mappings - A Case Study in the Life Sciences.* Proc. BTW, 2009

Stability Measures


Average Stability

49

$$stabAvg_{n,k}(a,b,m) = 1 - \frac{1}{k} \cdot \sum_{i=n-k}^{n-1} |sim_{i+1}(a,b,m) - sim_i(a,b,m)| \in [0,1]$$


- Weighted Maximum Stability
 - Proximity of similarities in the last versions compared to the current version

$$stabWM_{n,k}(a,b,m) = 1 - \max_{i=1...k} \left[\frac{|sim_n(a,b,m) - sim_{n-i}(a,b,m)|}{i} \right] \in [0,1]$$

Stability Evaluation

- Setting
 - Mapping GO Biological Processes to Molecular Functions
 - Instance based matching (using Ensembl source)
 - ▶ Result: 2,497 correspondences (Base3 ∩ Min≥ 0.8) which existed in the last 5 versions
- Selection of correspondences based on similarity and stability

Conclusions

- Instance-based match approaches
 - Important since instances reflect well semantics of categories
 - Availability of usable instances may be restricted to subset of concepts (consideration of indirectly associated instances helpful)
 - Need to be combined with metadata-based techniques
- Correct ontology mappings NOT limited to 1:1 correspondences
- High change rates for ontologies/instances may result in unstable ontology mappings
- Matching based on shared instances
 - Different similarity measures to consider instance overlap
 - Especially applicable in bioinformatics (frequent annotations)
- Instance-based matching in COMA++
 - 3 basic instance matchers (constraint-based, content-based) not requiring shared instances
 - Flexible combination with many metadata-based approaches and different match strategies

Some Areas for Further Work

- Evaluation and validation of large ontology mappings
- Combined study of ontology matching and instance (entity) matching
 - Correspondences based on instance similarity not equality
 - Entity matching utilizing category similarity
 - > Automatic instance categorization
- Scalable instance match approaches based on machine learning
- Ontology Evolution
- Ontology Merging

Online Bibliography

http://se-pubs.dbs.uni-leipzig.de

References

- Aumüller, D., Do, H., Massmann, S., Rahm, E.: Schema and ontology matching with COMA++. Proc. ACM SIGMOD, 2005
- Hartung M, Kirsten T., Rahm E.: Analyzing the evolution of life science ontologies and Mappings. Proc. DILS 2008. Springer LNCS 5109
- Kirsten T., Thor A., Rahm E.: Instance-based matching of large life science ontologies. Proc. DILS 2007. Springer LNCS 4544
- Massmann, S.; Rahm, E.: Evaluating Instance-based matching of web directories. Proc. 11th Int. Workshop on the Web and Databases (WebDB), 2008
- Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal, 10(4): 334–350, 2001.
- Thor A., Hartung M., Groß A., Kirsten T., Rahm E.: An evolutionbased approach for assessing ontology mappings – A case study in the life sciences. Proc. 13th German Database Conf. (BTW), 2009
- Thor, A., Kirsten, T., Rahm, E.: Instance-based matching of hierarchical ontologies. Proc. 12th German Database Conf. (BTW), 2007