

SCALABLE MATCHING OF REAL-WORLD DATA

Erhard Rahm

Hanna Köpcke, Lars Kolb, Andreas Thor http://dbs.uni-leipzig.de

Object Matching

(entity resolution, deduplication ...)

2

Identification of semantically equivalent objects

- within one data source or between different sources
- □ to integrate (merge) them, compare them, improve data quality, etc.
- Original focus on structured (relational) data

Source1: Customer

Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	М	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222- 6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

Source2:	CID	Name	Street	City	Sex
Client	11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
	24	Christian Smith	Hurley St 2	S Fork MN	1

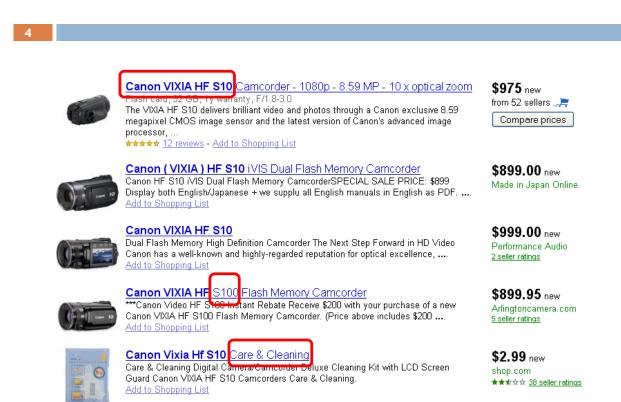
Duplicates in (integrated) web sources: Publication references

3

A survey of approaches to automatic schema matching E Rahm, PA Bernstein - the VLDB Journal, 2001 - Springer The VLDB Journal 10: 334–350 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100057 ... A survey of approaches to automatic schema matching ... Erhard Rahm 1 , Philip A. Bernstein 2 ... 1 Universitat Leipzig, Institut fur Informatik, 04109 Leipzig, Germany; (e-mail: rahm@ ... Cited by 2658 - Related articles - All 87 versions

[спатлом] A survey of approaches to automatic schema matching R Erhard, AB Philip - VLDB Journal, 2001 Cited by 25 - Related articles

[СІТАТІОN] A survey of approaches to automatic schema matching PA Bernstein, E Rahm - VLDB Journal, 2001 Cited by 17 - Related articles - View as HTML


[CITATION] AA survey of approaches to automatic schema matching <u>E RRhm</u>... - The VLDB Journal, 2001 Cited by 2 - Related articles

[статтом] Bernstein P 八 A Survery of Approaches to Automatic Schema Matching <u>E Rahm</u> - The International Journal on Very Large Da — Cited by 2 - Related articles

Duplicates due to

- Order of authors
- Confusion of first and
 last names
- Extraction errors
- Typos
-

Duplicates in web sources: Product offers

Outline

Motivation

- Existing Frameworks and their Performance
 - Qualitative comparison [DKE'10]
 - Quantitative comparison [VLDB'10]

Matching of Product Offers

- Challenges
- System design with use of extracted features (e.g. product codes)
- Evaluation
- Parallel Matching in the Cloud
 - Blocking-based Object Matching with MapReduce
 - Load Balancing
 - Block-Split Approach
 - Experimental Results
 - Dedoop tool
- Conclusions & Future Work

Existing Object Matching Approaches

6

- Many tools and research prototypes
- Blocking to reduce search space
 - Group similar objects within blocks based on blocking key
 - Restrict object matching to objects from the same block
 - Alternative approach: Sorted Neighborhood

Combined use of several matchers

- Attribute-level matching based on generic or domain-specific similarity functions, e.g., string similarity (edit distance, n-gram, TF/IDF, etc.)
- Context-based matchers
- Learning-based or manual specification of matcher combination

ER Frameworks 1 (non-learning)*

7

	BN	МОМА	SERF	DuDe	FRIL
Entity type	XML	relational	relational	relational	relational
Blocking key definition	-	-	-	manual	manual
partitioning disjoint overlapping	-	-	-	Sorted Neighborhood	Sorted Neighborhood
Matchers	attribute, context	attribute, context	attribute	attribute	attribute
Matcher combination	numerical	workflow	rules	workflow	workflow

* Koepcke, H.; Rahm, E.: Frameworks for entity matching: A comparison. Data & Knowledge Engineering, 2010

ER Frameworks 2 (learning-based)

	Active Atlas	MARLIN	Op. Trees	TAILOR	FEBRL	Context- b. F.work	FEVER
Entity type	relational	rel.	rel.	rel.	XML, rel.	rel.	rel.
Blocking key definition	manual	manual	manual	manual	manual	manual	manual
partitioning disjoint overlapping	hashing	canopy clustering	canopy cl.	threshold Sorted Neighb.	SN	canopy- like	several, SN, canopy
Matchers	attribute	attr.	attr.	attr.	attr.	attr., context	attr.
Matcher combination	rules	numerical, rules	rules	numerical, rules	numerical	numerical, rules	workflow
Learners	decision tree	SVM, dec. tree	SVM- like	probab. dec. tree	SVM	diverse	multiple,SVM, dec. tree,
Training selection	manual, semi-autom.	manual, semi-autom.	manual	manual	manual, automatic	manual	manual, semi- autom.

Observations from [DKE'10]

 Numerous frameworks with similar functionality regarding blocking and matchers
Primarily attribute-level matching for relational sources
Manual selection of matchers / attributes
Manual specification of blocking keys
Frequent use of training-based match strategies
Mostly manual training
Most popular learners: SVM, decision tree
Heterogeneous, non-conclusive evaluations

- Different datasets and methodologies
- Missing specification details, e.g. on training
- Unclear scalability to larger datasets

VLDB 2010 evaluation: Match tasks

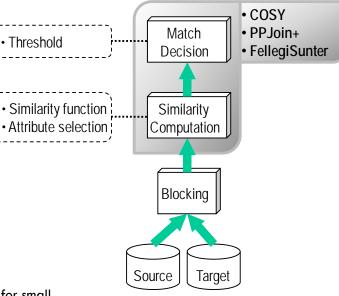
1	0	
L	U	

Match task		Source size (#entities)		Mapping size (#correspondences)			
Domain	Sources	Source 1	Source 2	Full input mapping (cross product)	Reduced input mapping (blocking)	perfect match result	
Bibliographic	DBLP-ACM	2,616	2,294	6 million	494,000	2224	
	DBLP-Scholar	2,616	64,263	168.1 million	607,000	5343	
E-commerce	Amazon- GoogleProducts	1,363	3,226	4.4 million	342,761	1300	
	Abt-Buy	1,081	1,092	1.2 million	164,072	1097	

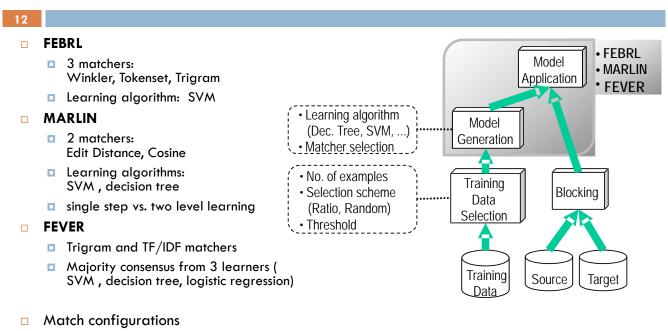
[VLDB'10] Koepcke, Thor, Rahm: Evaluation of entity resolution approaches on real-world match problems. PVLDB 2010

[VLDB'09] Koepcke, Thor, Rahm: Comparative evaluation of entity resolution approaches with FEVER. PVLDB 2009

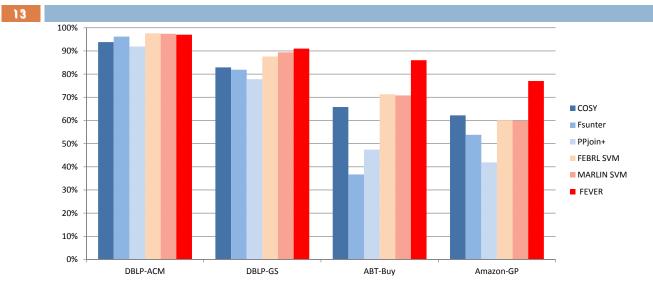
Framework for **EV**aluating Entity Resolution


Non-learning approaches

11


- COSY (commercial system)
 - Black box similarity function
 - Overall and attribute level thresholds
- PPJoin+
 - Similarity functions: Cosine, Jaccard
 - Threshold

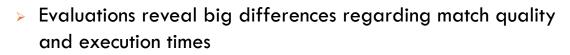
FellegiSunter (FEBRL)


- Similarity functions: TokenSet, Trigram, Winkler
- Similarity threshold
- Match configurations
 - Use of 1 or 2 attributes
 - Use of FEVER to optimize thresholds for small subset of input data (500 object pairs)

Learning-based approaches

- Use of 1 or 2 attributes
- Small training size (max. 500 object pairs with balanced matches/non-matches)

Quality (F-Measure) Comparison


- Bibliographic tasks are simpler than E-commerce tasks
- Learning-based approaches perform best, especially for difficult match problems
 - SVM most promising learner
 - FEVER benefits from majority consensus of 3 learners
- COSY relatively good / PPJoin+ limited to 1 attribute

Efficiency results

	Blocked (s)	Cartesian (s)	
COSY	1 - 44	2- 434	
FellegiSunter	2 – <mark>2,8</mark> 00	17 - >500,000	
PPJoin+	<1 - 3	<1 - 7	
FEBRL SVM	99-480	1,400 - >500,000	
MARLIN SVM	20- <mark>380</mark>	2,200 - >500,000	

- PPJoin+ and COSY very fast, even for Cartesian product
- FellegiSunter slowest non-learning approach
- Learning-based approaches very slow
 - require blocking

Observations

- Effective approaches: Learning-based approaches, COSY (partly)
- Fast approaches: COSY, PPJoin+
- > Weak points:
 - > Combination of several attributes requires higher tuning/training effort
 - E-commerce tasks could not be effectively solved. More sophisticated methods are needed there
 - > Scalability to large test cases needs to be better addressed

Outline

16	
	Motivation
	Existing Frameworks and their Performance
	Qualitative comparison [DKE'10]
	Quantitative comparison [VLDB'10]

Matching of Product Offers

- Challenges
- System design with use of extracted features (e.g. product codes)
- Evaluation
- Parallel Matching in the Cloud
 - Blocking-based Object Matching with MapReduce
 - Load Balancing
 - Block-Split Approach
 - Experimental Results
 - Dedoop tool
- Conclusions & Future Work

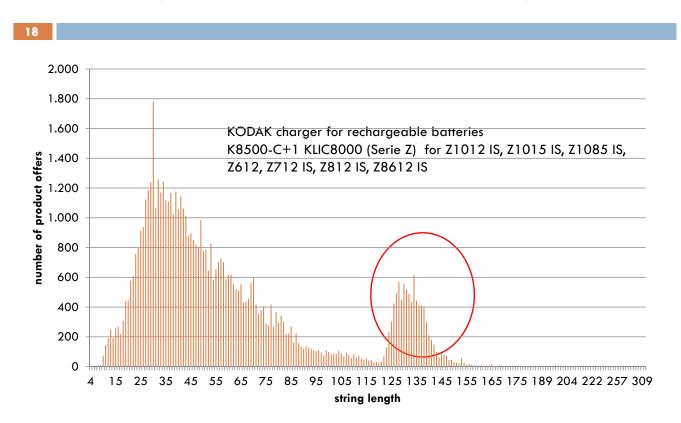
Matching product offers: challenges

- huge number of offers (many products, many shops)
- many similar but different products
- □ heterogeneous, shop-specific product categorizations
- □ frequent changes of products and offers
- □ few available attributes, not well structured
- product ids (EAN, UPC, GTIN) often unavailable (or misleading)
 <u>Canon VIXIA HF \$10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom</u>
- poor data quality ...

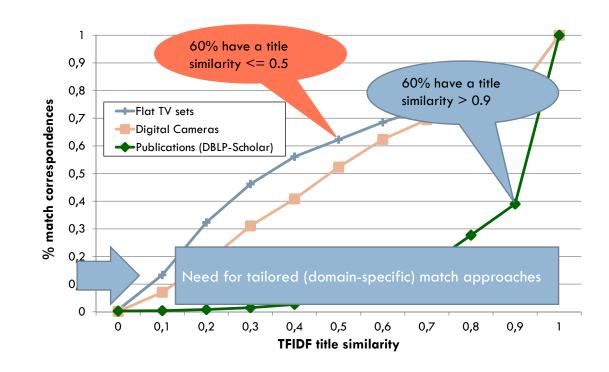
Canon VIXIA HF S10 Camcorder - 1080p - 8.59 MP - 10 x optical zoom Flash card, 32 GB, 1y warranty, F/1.8-3.0 The VIXIA HF S10 delivers billiant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image processor, ... ****** 12 reviews - Add to Shopping List

Canon (VIXIA) HF S10 iVIS Dual Flash Memory Camcorder Canon HF S10 IVIS Dual Flash Memory Camcorder:SPECIAL SALE PRICE: \$899 Display both English/Japanese + we supplu all English manuals in English as PDF. Add to Shopping List

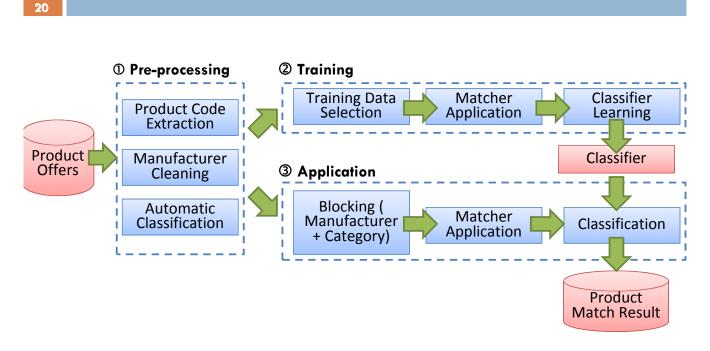
Canon VIXIA HF S10 Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video Canon has a well-known and highly-regarded reputation for optical excellence, Add to Shopping List


Ca Can

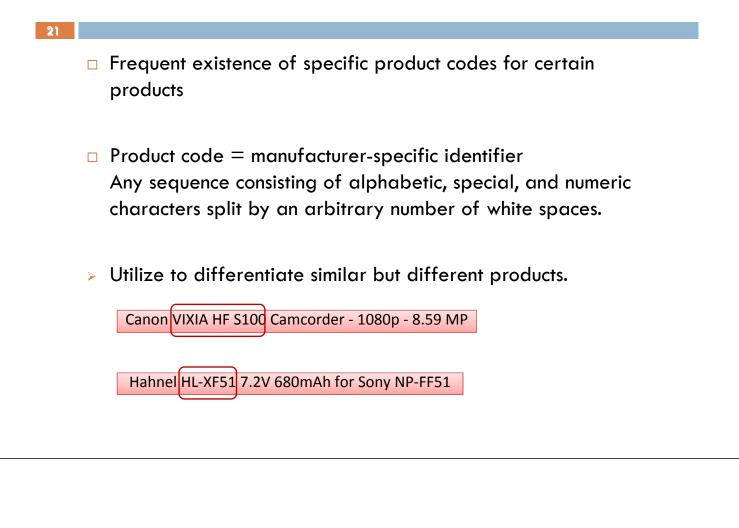
Canon VIXIA HF S100 Flash Memory Camcorder ***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200 **\$899.00** new Made in Japan Online

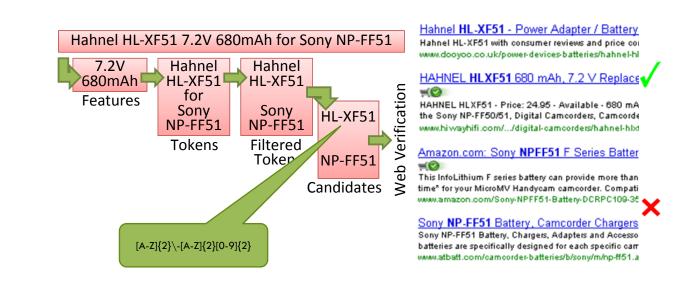

\$999.00 new Performance Audio <u>2 seller ratings</u>

\$899.95 new Arlingtoncamera.com


Heterogeneous and verbose strings

Standard string matcher fail

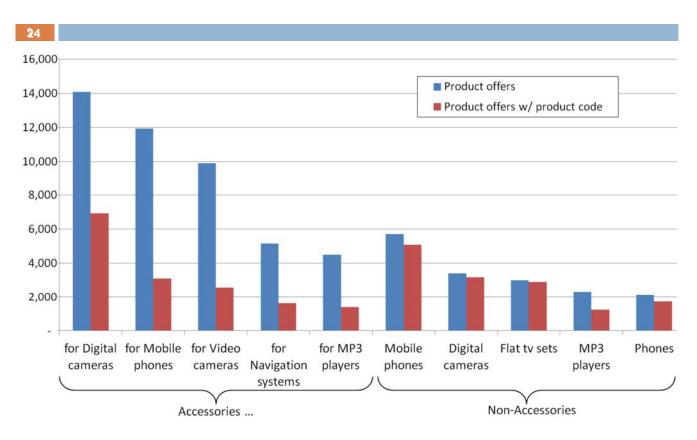

System design*


* Koepcke, Thor, Thomas, Rahm: Tailoring entity resolution for matching product offers. Proc. EDBT, 2012

19

Product code

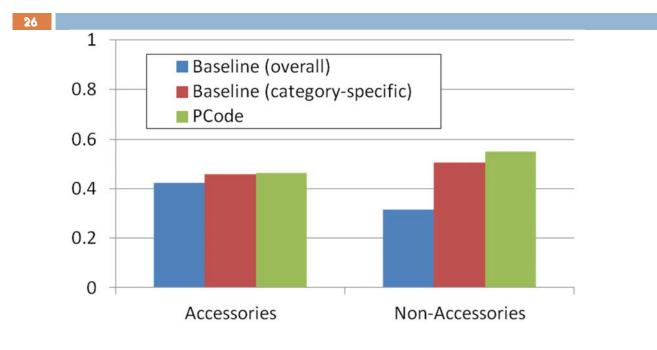
Product code extraction



Evaluation dataset

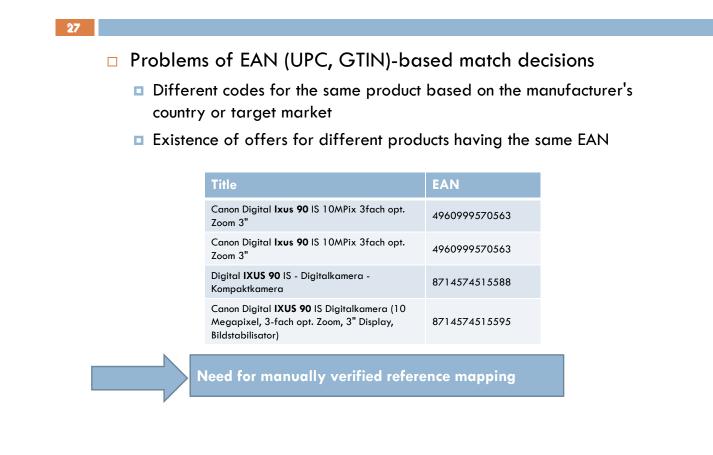
- 102,182 offers for electronic products and accessory products
- □ 71 product categories
- Few attributes:
 - □ Title, description, manufacturer, price
- No clean product reference set
- Offer to offer matching
 - much more challenging than offer-to-product matching

Product code extraction



Quality of product code extraction

25


	Precision	Recall	F-Measure
Overall	79%	56%	66%
Non-Accessories	79%	64%	71%
Accessories	79%	48%	60%
Mobile Phones	93%	86%	89%

Baseline vs. Product code matching

- Generic string matching on title and description attributes
- EAN-based reference matching

Limitation of EAN-based reference mapping

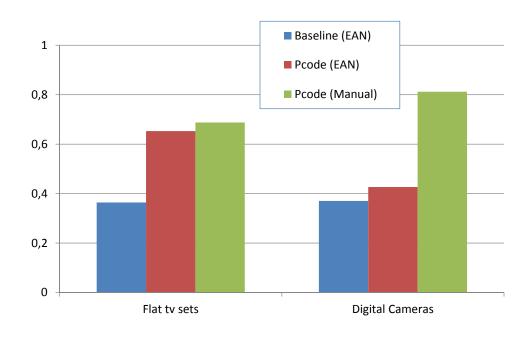
EAN-based vs. Manual reference mapping

28

	Title	EAN
	Canon Digital Ixus 90 IS 10MPix 3fach opt. Zoom 3"	4960999570563
	Canon Digital Ixus 90 IS 10MPix 3fach opt. Zoom 3"	4960999570563
	Digital IXUS 90 IS - Digitalkamera - Kompaktkamera	8714574515588
	Canon Digital IXUS 90 IS Digitalkamera (10 Megapixel, 3-fach opt. Zoom, 3" Display, Bildstabilisator)	8714574515595
5		

EAN-based reference mapping

- 3 clusters
- 1 correspondence


Manually determined mapping

- 1 cluster
- 6 correspondences

Category	Mapping	#Clusters	Average Cluster size	#Corres- pondences
Flat TV sets	EAN-based	1,222	2.5	5,293
	manual	1,103	2.7	6,509
Digital cameras	EAN-based	1,087	3.1	8,375
	manual	504	6.8	32,571

EAN-based vs. Manual reference mapping (evaluation results)

29

Observations

30

- Product matching requires tailored ER approaches
- Key characteristics of proposed approach
 - Comprehensive preprocessing and data cleaning
 - Pattern-based extraction and web-based verification of product codes
 - Category-specific, learned match strategies
- □ Limitations of EAN-based reference mappings for evaluation
- Future work:
 - Utilizing further extracted features
 - Matching offers to products

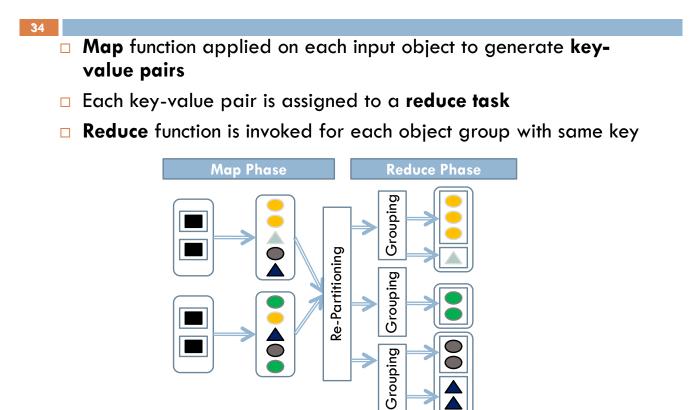
Outline

Motivation Existing Frameworks and their Performance Qualitative comparison [DKE'10] Quantitative comparison [VLDB'10] Matching of Product Offers Challenges System design with use of extracted features (e.g. product codes) Evaluation Parallel Matching in the Cloud Blocking-based Object Matching with MapReduce Load Balancing Block-Split Approach Experimental Results Dedoop tool

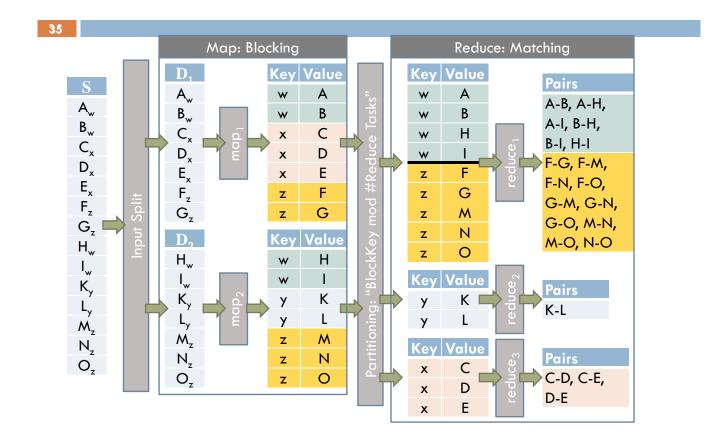
Conclusions & Future Work

How to speed up object matching?

<text>


- Split match computation in sub-tasks to be executed in parallel
- Exploitation of cloud infrastructures and frameworks like Map/Reduce

MapReduce



- Dataflow defined by map and reduce functions
 - **a** map: $(\text{key}_{in}, \text{value}_{in}) \rightarrow \text{list}(\text{key}_{tmp}, \text{value}_{tmp})$
 - reduce: $(\text{key}_{\text{tmp}}, \text{list}(\text{value}_{\text{tmp}})) \rightarrow \text{list}(\text{key}_{\text{out}}, \text{value}_{\text{out}})$
- MapReduce framework hides messy details
 - Automatic parallelization
 - Robustness, e.g., handles node failures
 - Scalability
 - ••••

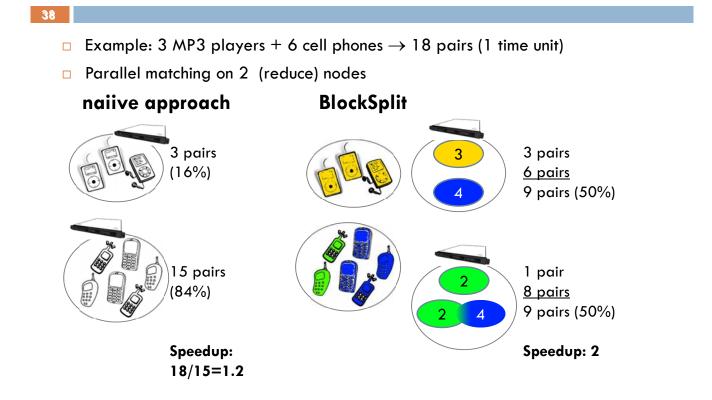
MapReduce

Blocking + MapReduce: Basic scheme

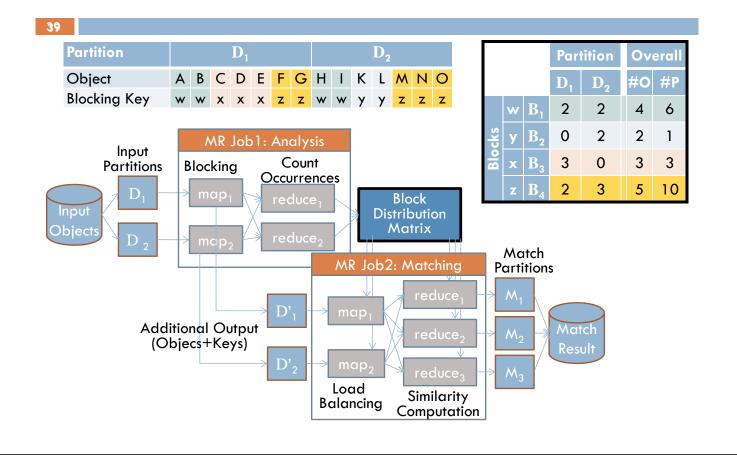
Load Balancing

36

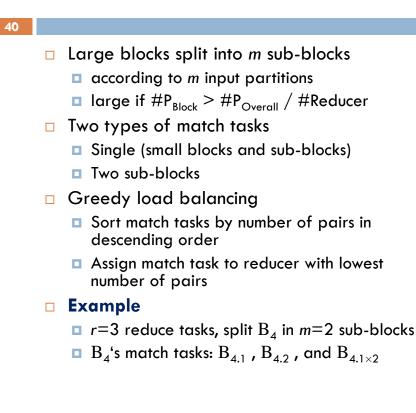
- Data skew leads to unbalanced workload
 - Large blocks prevent utilization of more than a few nodes
 - Deteriorates scalability and efficiency
 - Unnecessary costs (you also pay for underutilized machines!)


Key ideas for load balancing

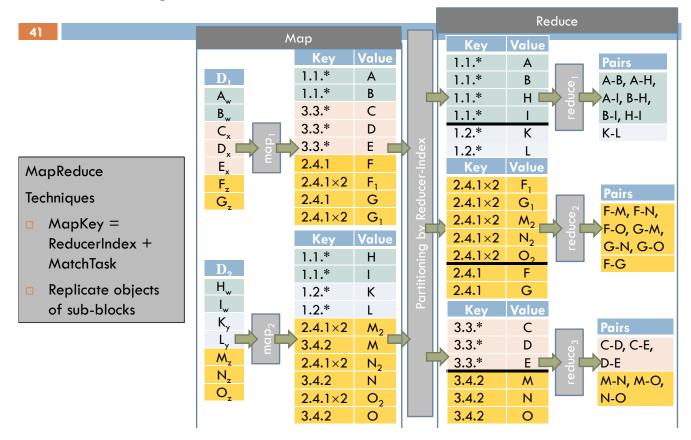
- Additional MR job to determine blocking key distribution, i.e., number and size of blocks (per input partition)
- Global load balancing that assigns (nearly) the same number of pairs to reduce tasks


Load Balancing Approaches

- 37
- Load balancing strategies for parallel object matching with general blocking [ICDE'12]
 - BlockSplit: Split large blocks into sub-blocks
 - **PairRange:** Global enumeration and tailored distribution of all pairs
- □ Variation for Sorted Neighborhood [CSRD'12]
- [ICDE'12] Kolb, Thor, Rahm: Load Balancing for MapReduce-based Entity Matching. Proc. Int. Conf. on Data Engineering, 2012
- [CSRD'12] Kolb, Thor, Rahm: Multi-pass Sorted Neighborhood Blocking with MapReduce. Computer Science - Research and Development, 2012

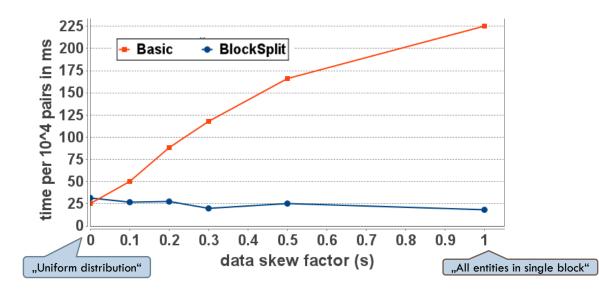


Load Balancing for MR-based Object Matching


BlockSplit

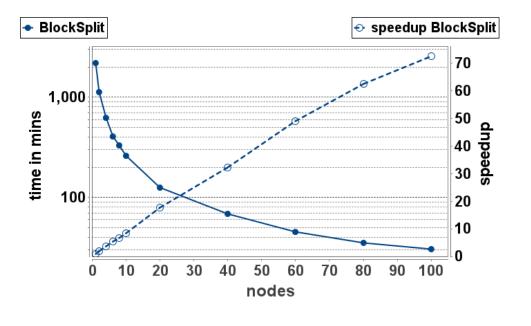
			Partition		Ov	erall
			D ₁	D ₂	#0	#P
	w	B ₁	2	2	4	6
cks	у	B ₂	0	2	2	1
Bloc	x	B ₃	3	0	3	3
	z	B ₄	2	3	5	10

		#P	Reducer
	B ₁	6	
S	B _{4.1×2}	6	
Block Tasks	B ₃	3	
ock	B _{4.2}	3	
B	B ₂	1	
	B _{4.1}	1	


BlockSplit: MR-Dataflow

Evaluation: Data Skew

42


- Evaluation on Amazon EC infrastructure using Hadoop
- Matching of 114.000 product records
- BlockSplit robust against data skew

Evaluation: Scalability

BlockSplit is scalable

43

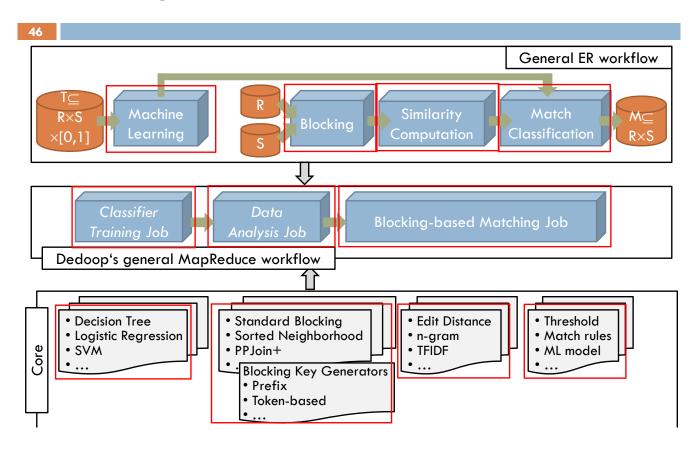
Dedoop: Efficient Deduplication with Hadoop

 Parallel execution of Entity Resolution workflows with Hadoop Browser-based workflow specification Support for powerful match strategies Many blocking and matching techniques Learning-based match strategies 	4	44
Redundancy-free matching for multi-key blocking		
 Automatic generation and submission of corresponding Map-Reduce-Workflows 		
 Support for automatic Load Balancing strategies, e.g. Block-Split Progress Monitoring 		

Dedoop (2)

45

Significant simplification


 Significant simplification compared to the specification and use of "hard coded" MapReduce workflows

- Many MR jobs with tailored map, reduce, part, sort, and group functions
- Specification of key, value, input format & output format classes
- Packaging in single jar archive (=Kernel)
- Workflow execution: hadoop -j ar Kernel . j ar <params>

Tedious file handling for input / output

- Copy input data to DFS: hadoop dfs -copyFromLocal localfile remotedir
- Copy output data from DFS to local disk further processing
- Simplification of ernormous parameterization effort
 - Specification and order of MapReduce jobs ("driver classes")
 - Some workflows require preprocessing jobs (classifier training, IDF index creation)
 - Output/input directories (job_{i+1} consumes output of job_i)
 - Blocking key generation functions, Similarity metrics, and attributes
 - Different handling of different input sources

Dedoop Overview

Browser-based workflow specification

✓ Hadoop Cluster	V Workflow Definition	
Running Cluster Launch EC2 Cluster Namenode : hdfs://gkpc3.informat	Generator : PrefixBlockingKeyGenera Attributes : dblp_authors Length : 4	
Jobtracker : gkpc3.informatik.uni- WebUI port : 50030	Classification : Weighted Average / Threshold Machine Learning	
Isconnect	0.75 Threshold :	
 Hadoop Distributed File System 		
Name * Size	÷ -	
 i put_data i paktikum i DBLP.bxt 362.37K i GoogleScholar.bxt 8.83MB i quality_perfect.csv 238.41K i train_500_1.bxt 15.01KE i map_reduce i output 	0.3 Metric : TFIDFSimilarity Attribute : dblp_authors Weight : 0 0 1 Metric : Levenshtein Attribute : dblp_tble Weight : 0.7 Equally weighted	
e 💋 test	Match Quality Very Evaluate match quality Gold Standard : hdfs://gkpc3.informatik.uni-leipzig.de/input_data/quality_perf	iit

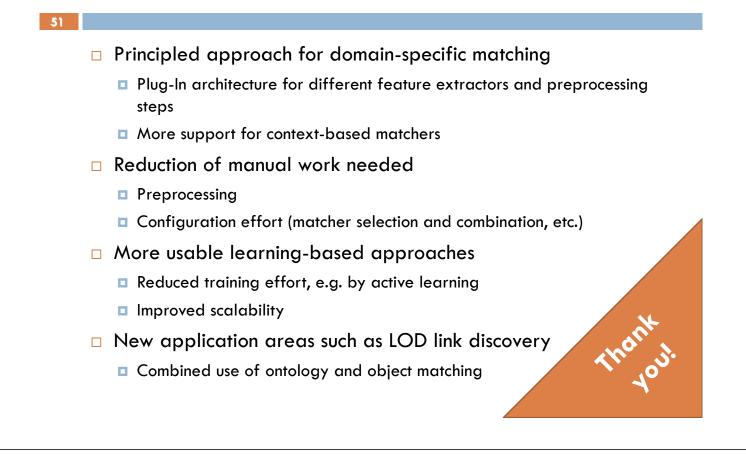
Workflow submission & progress monitoring

Hadoop Cluster Running Cluster Launch EC2 Cluster Namenode : hdfs://gkpc3.informat	Workflow Definition Classification : Weighted Average / Threshold Machine Learning 0.75	
Namenode : hdfs://gkpc3.informat		
	0.75	1.58
	Threshold :	
Jobtracker : gkpc3.informatik.uni-l	0 1	
WebUI port : 50030	÷ -	
	0.3	
🤝 Disconnect	Metric : TFIDFSimilarity Matribute : dbp_authors Meight :	
	0 1	
Hadoop Distributed File System	0.7	
ame * Size	Metric : Levenshtein Attribute : dbtp_ttie Weight :	
🗟 🃁 input_data		
praktikum DBLP.txt 362.37K	Equally weighted	
DBLP.txt 362.37K	- Match Quality	_
guality_perfect.csv 238.41K	Evaluate match quality	
train_500_1.txt 15.01KB	Gold Standard : hdfs://gkpc3.informatik.uni-leipzig.de/input_data/train_600_1	
E 📁 map_reduce		
E 🟳 output	Executing	1
E 📁 test	Job 1:	
	Job 2: O Map: Reduce: Reduce:	
	Job 3: O	

Outline

49

Motivation


- Existing Frameworks and their Performance
 - Qualitative comparison [DKE'10]
 - Quantitative comparison [VLDB'10]
- Matching of Product Offers
 - Challenges
 - System design with use of extracted features (e.g. product codes)
 - Evaluation
- Parallel Matching in the Cloud
 - Blocking-based Object Matching with MapReduce
 - Load Balancing
 - Block-Split Approach
 - Experimental Results
 - Dedoop tool
 - Conclusions & Future Work

Conclusions

50

- Challenge: Fast and effective object matching for large, real-world (dirty) datasets
- Many useful tools and frameworks, but improvements still needed
- Domain-specific approaches needed for challenging problems such as matching product offers
 - Extensive data preprocessing and cleaning
 - Extraction of match-relevant features such as product codes
 - Multiple match strategies, e.g. per product category
- Cloud-based parallel blocking and matching
 - Straight-forward utilization of MapReduce possible
 - ... but doing it efficiently requires some work
- Effective load balancing approaches such as Block-Split
- Dedoop tool for easy and efficient Hadoop-based matching

Future Work

References

52	
	Kolb, L.; Thor, A.; Rahm, E.: Dedoop: Efficient Deduplication with Hadoop. Proc. VLDB Endowment 5(12), 2012 (demo)
	Kolb, L.; Thor, A.; Rahm, E.: Load Balancing for MapReduce-based Entity Resolution. Proc. ICDE, 2012
	Kolb, L.; Thor, A.; Rahm, E.: Multi-pass Sorted Neighborhood Blocking with MapReduce. CSRD 27(1), 2012
	Koepcke, H.; Thor, A.; Thomas, S., Rahm, E.: Tailoring entity resolution for matching product offers. Proc. EDBT, 2012
	Koepcke, H.; Thor, A.; Rahm, E.: Evaluation of entity resolution approaches on real-world match problems. Proc. VLDB Endowment 3(1), 2010
	Koepcke, H.; Thor, A.; Rahm, E.: Learning-based approaches for matching web data entities. IEEE Internet Computing 14(4), 2010
	Koepcke, H.; Rahm, E.: Frameworks for entity matching: A comparison. Data & Knowledge Engineering, 2010