

Object Matching for Improving Information Quality

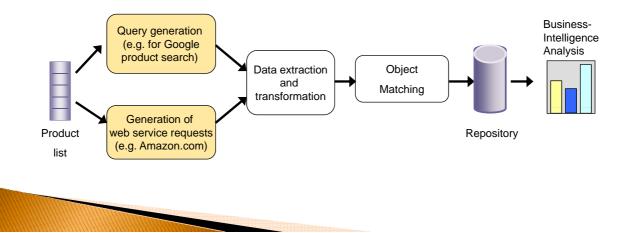
Frhard Rahm

http://dbs.uni-leipzig.de
http://dbs.uni-leipzig.de/wdi-lab

November 25, 2009

WDI-Lab

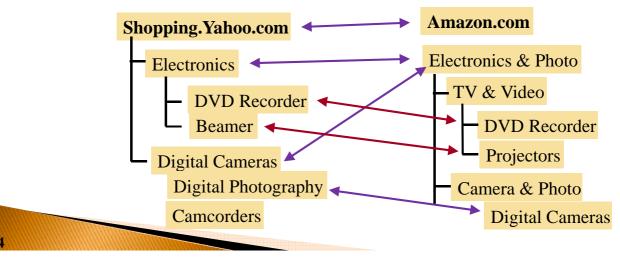
- Innovation Lab at Univ. of Leipzig on semantic Web Data Integration
- Funded by BMBF (German ministry for research and education)
 - > 2009: initial phase
 - Full funding starts in Jan. 2010 (10 full-time employees + students)


▶ Goals

- Semi-automatic, high quality data integration of heterogeneous (web) data
- Faster development of data integration solutions than with traditional integration approaches, e.g. data warehouses
- Make research approaches ready for the market

WDI-Lab: Working Groups (1)

Mashup/Workflow-like data integration


- > Framework to specify and execute workflows for data acquisition from web sources, data transformation, integration and analysis
- > Support for dynamic (runtime) data integration
- Research prototype: iFuice + extensions

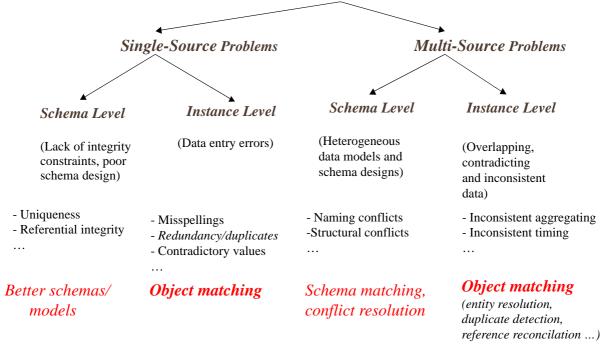
WDI-Lab: Working Groups (2)

Ontology and Schema matching

- Semi-automatic generation of mappings between related schemas (e.g., XML business schemas) or ontologies (e.g., product catalogs)
- Support for large schemas/ontologies
- Research prototype: COMA++

WDI-Lab: Working Groups (3)

- Object Matching (Entity resolution, Deduplication)
 - Effective strategies for matching related objects (entities, instances) from one or several sources
 - Offline matching (e.g. with data warehouse) and online matching (e.g., within mashup applications)
 - > Research prototypes: MOMA, FEVER



Agenda

- Introduction (Object Matching)
- FEVER platform for object matching strategies
 - > Architecture
 - Manually specified match strategies (operator trees)
 - > Training-based learning of match strategies
 - > Evaluation
- Dynamic object matching in mashups
 - > OCS (Online Citation Service)
- Instance-based ontology matching
 - > Approaches
 - > Support in COMA++
- Conclusions

Classification of data quality problems*

* E. Rahm, H. H. Do: *Data Cleaning: Problems and Current Approaches*. IEEE Techn. Bull. Data Eng., Dec. 2000

Object matching problem

- Identify semantically equivalent (matching) objects
 - > within one data source or between different sources
 - to integrate (merge) them, compare them, improve data quality, etc.
- Most previous work for structured (relational) data

Source1: Customer

Cno	LastName	FirstName	Gender	Address	Phone/Fax
24	Smith	Christoph	M	23 Harley St, Chicago IL, 60633-2394	333-222-6542 / 333-222- 6599
493	Smith	Kris L.	F	2 Hurley Place, South Fork MN, 48503-5998	444-555-6666

Source2: Client

(CID	Name	Street	City	Sex
Ī	11	Kristen Smith	2 Hurley Pl	South Fork, MN 48503	0
	24	Christian Smith	Hurley St 2	S Fork MN	1

Duplicates in (integrated) web sources

Canon VIXIA HF S10 Camcorder - 10 30p - 8.59 MP - 10 x optical zoom

Flash card, 32 GB, 1y warranty, F/1.8-3.0

The VIXIA HF S10 delivers brilliant video and photos through a Canon exclusive 8.59 megapixel CMOS image sensor and the latest version of Canon's advanced image

★★★★★ <u>12 reviews</u> - <u>Add to Shopping List</u>

\$975 new

from 52 sellers 🏬

Compare prices

Canon (VIXIA) HF S10 VIS Dual Flash Memory Camcorder

Canon HF S10 iVIS Dual Flash Memory Camo PECIAL SALE PRICE: \$899 Display both English/Japanese + we supplu all English manuals in English as PDF. ...

\$899.00 new Made in Japan Online

Canon VIXIA HF S10

Dual Flash Memory High Definition Camcorder The Next Step Forward in HD Video Canon has a well-known and highly-regarded reputation for optical excellence, Add to Shopping List

\$999.00 new Performance Audio 2 seller ratings

Canon VIXIA HF S100 Flash Memory Camcorder

***Canon Video HF S100 Instant Rebate Receive \$200 with your purchase of a new Canon VIXIA HF S100 Flash Memory Camcorder. (Price above includes \$200 Add to Shopping List

\$899.95 new Arlingtoncamera.com 5 seller ratings

Canon Vixia Hf S10 Care & Cleaning
Care & Cleaning Digital Camera/Camcorder Deluxe Cleaning Kit with LCD Screen
Guard Canon VIXIA HF S10 Camcorders Care & Cleaning. Add to Shopping List

\$2.99 new shop.com

★★★☆☆ 38 seller ratings

Duplicates in web sources (2)

A survey of approaches to automatic schema matching O - > psu.edu O [PDF]

E Rahm, PA Bernstein - the VLDB Journal, 2001 - Springer The VLDB Journal 10: 334-350 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100057 ... A survey of approaches to automatic schema matching ... Erhard Rahm 1 , Philip A. Bernstein 2 ... 1 Universitat Leipzig, ... Cited by 1818 - Related articles - All 58 versions

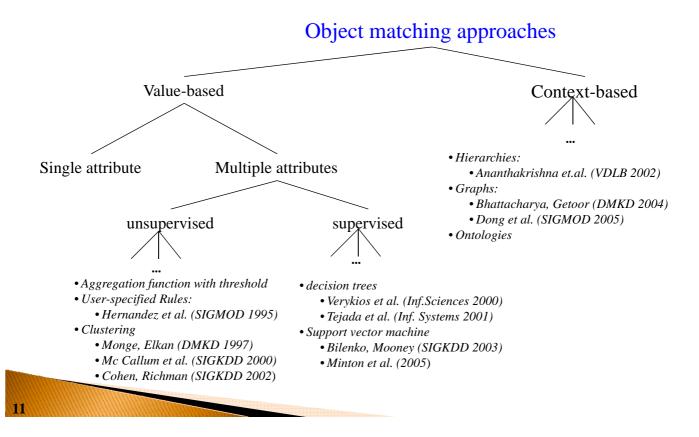
ительну A survey of approaches to automatic schema matching PA Bernstein 👂 Rahm - VLDB Journal, 2001

Cited by 19 - Related articles

[сітатім] Asurveyof approaches to automatic schema matching E Rahm, PA Bernstein - VLDB Journal, 2001

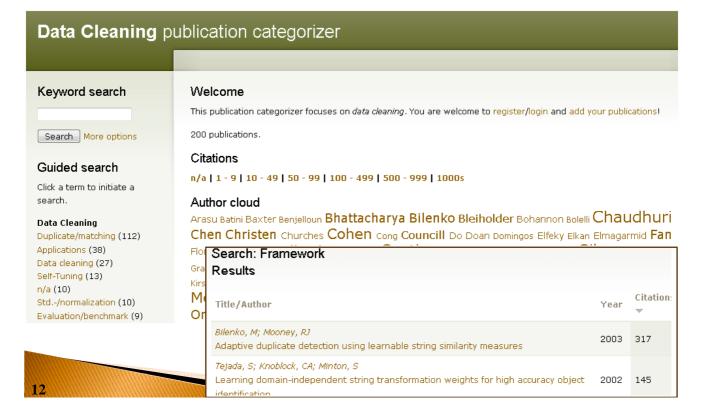
Cited by 2 - Web Search

Duplicates due to


- Order of authors
- Extraction error (title, author)
- Different titles!
- Typos (author name) etc.

[PDF On matching schemas automatically O

E Rahm, PA Bernstein - VLDB Journal, 2001 - db15.informatik.uni-leipzig.de ... Erhard Rahm, University of Leipzig, Germany Philip A. Bernstein, Microsoft Rese Redmond, WA, USA Abstract Schema matching is a basic problem in many ... Zitiert durch: 149 - Ähnliche Artikel - HTML-Version - Alle 2 Versionen


[статоч] A survey of approaches to automatic schema matching R Erhard, AB Philip VLDB Journal, 2001

Object matching approaches

Online Bibliography

http://dc-pubs.dbs.uni-leipzig.de

Object matching frameworks*

- Support combination of several match techniques
- Manual construction of combined strategies
 - > BN, MOMA, SERF ...
- Learning-based frameworks
 - FEBRL, MARLIN, TAILOR, Active Atlas ...
- Problems
 - > Evaluation results not conclusive
 - > High tuning effort needed
 - Dependency on training data for learning-based approaches

13

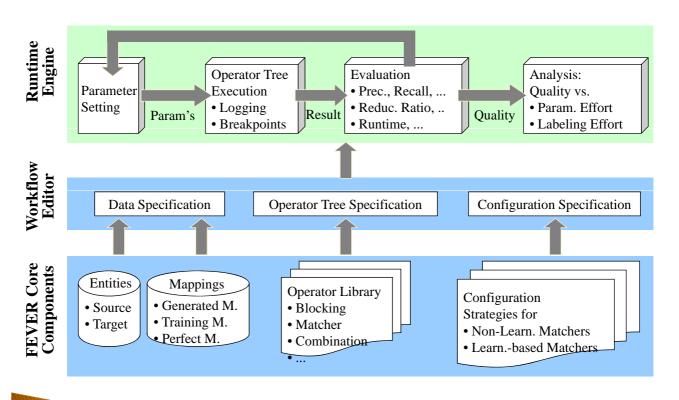
* H. Köpcke, E. Rahm: Frameworks for Entity Matching: An Overview.

Data and Knowledge Engineering, 2009

Agenda

- Introduction (Object Matching)
- FEVER platform for object matching strategies
 - > Architecture
 - Manually specified match strategies (operator trees)
 - > Training-based learning of match strategies
 - > Evaluation
- Dynamic object matching in mashups
 - > OCS (Online Citation Service)
- Instance-based ontology matching
 - > Approaches
 - Support in COMA++
- Conclusions

FEVER Framework



- > FEVER = Framework for EValuating Entity Resolution
- Platform for configuration and evaluation of entity resolution (object matching) algorithms and strategies
- > Key features:
 - > Flexible specification of object matching workflows
 - Semi-automatic parameter configuration (e.g., similarity thresholds)
 - Support for training-based matching to reduce manual tuning effort
 - > Comparative evaluations of different match approaches

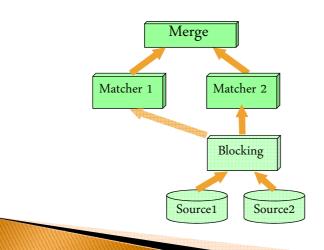
Köpcke, H.; Thor, A.; Rahm, E.: *Comparative evaluation of entity resolution approaches with FEVER*. Demo, Proc. VLDB, 2009

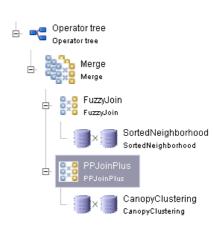
15

Architecture of FEVER

Match results

- Match results are represented as instance mappings (correspondences) between 2 sources
 - Mappings can be stored for re-use


Source1	Source2	Sim	
p ₁	p' ₁	1	
p ₂	p' ₁	0.9	
p_3	p' ₃	0.8	

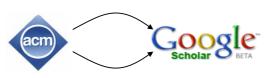

- Matchers also operate on mappings
 - > Cartesian product between input sources
 - > Output of previously executed matchers/operators

17

Operator tree

- > Describe workflows implementing a match strategy
 - Leaves: data sources
 - inner nodes: operators (for blocking, matching etc.)
- Execution in post-order traversal sequence
- Match result = Result of root operator

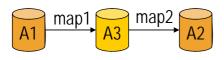

Manual match strategies: operators


- > Blocking: Sorted Neighborhood, Canopy Clustering, ...
 - ✓ Necessary to reduce search space from Cartesian product to more likely matching object pairs
- > Attribute matchers (on preselected pair of attributes):
 - > string similarity (TFIDF, Jaccard, Cosine, Trigram, ...)
 - PPJoinPlus, EdJoin
 - > External implementations, e.g., Fuzzy Lookup (MS SQL Server)
- > Context matchers (e.g., Neighborhood matcher)
- > Combination of match results: Merge, Compose

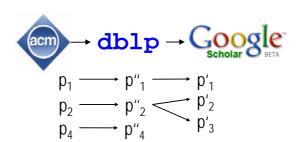
19

Match Strategies: Merge & Compose

map1

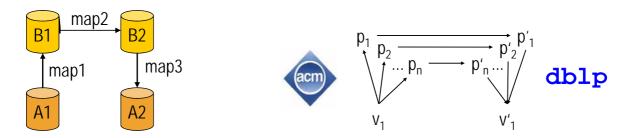

Title Matcher

Author Matcher


map2

Overcome short-comings (e.g., precision or recall)

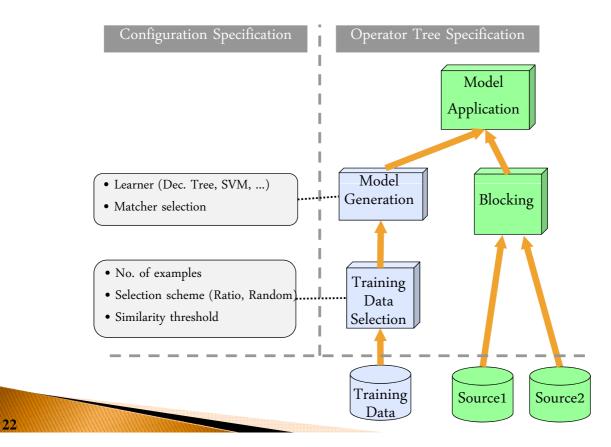
2. Compose



· Efficient re-use of mappings

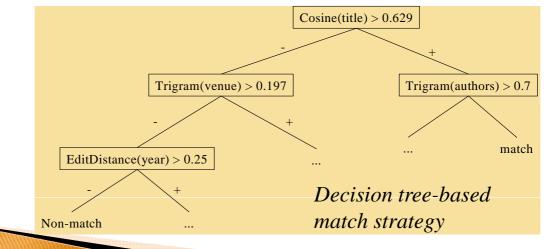
20

Match Strategies: Neighborhood



- Combine match mappings with general object relationships
- ▶ Bibliographic example: Conference@DBLP Conference@ACM
 - Attribute matching suffers from highly different values
 - "Two conferences are the same if they share a significant number of publications."
 - Reuse of match result for publications
- Very effective in experiments

Thor, A.; Rahm, E.: MOMA - A Mapping-based Object Matching System. Proc. CIDR, 2007


21

Learning-based match strategies

Learning-based match strategies (2)

- Use of training data to find effective matcher combination and configuration (supervised learning)
- > Learners for model generation in FEVER:
 - Decision Tree, Logistic Regression, SVM
 - Multiple learning approach

Training Selection

- Training data: set of object pairs with manually labelled match/mon-match decisions
 - # training pairs should be low (limit manual effort)
- Training pairs should be non-trivial
 - Similarity above a certain threshold
- Selection approaches in FEVER
 - RANDOM: randomly select n object pairs above a similarity threshold t for labeling
 - > RATIO: reduce *n* randomly selected pairs (above sim. threshold *t*) so that at least a fraction *ratio* (<=0.5) of matching <u>or</u> non-matching pairs are in the training set
 - ✓ ratio 0.4: 40%/60% matches/non-matches (or vice versa)
 - ✓ Balances positive and negative training

Evaluation

- 7 real data sources:
 - Bibliographic: DBLP, ACM Digital library,

GoogleScholar (GS)

E-commerce: Abt.com, Buy.com, Amazon.com,

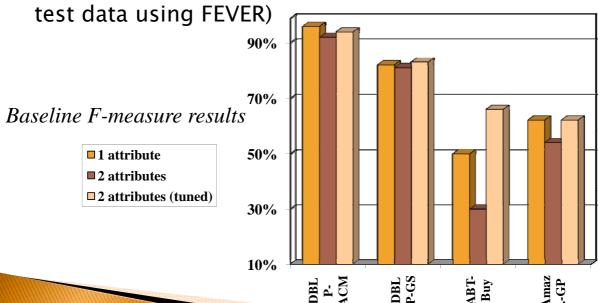
Google Product Search (GP),

- from 1,100 to 64,000 objects per source
- 4 match tasks
 - publications: DBLP-ACM

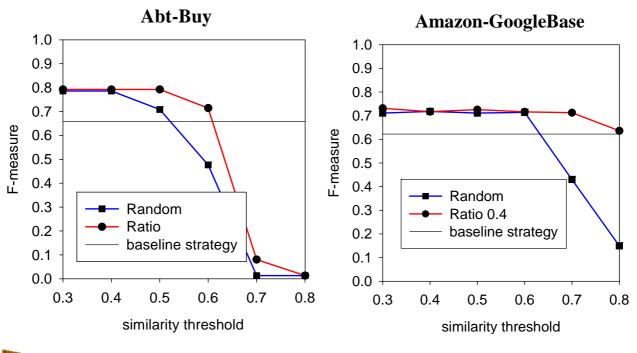
DBLP-GS

E-Commerce: Abt-Buy

Amazon - GP

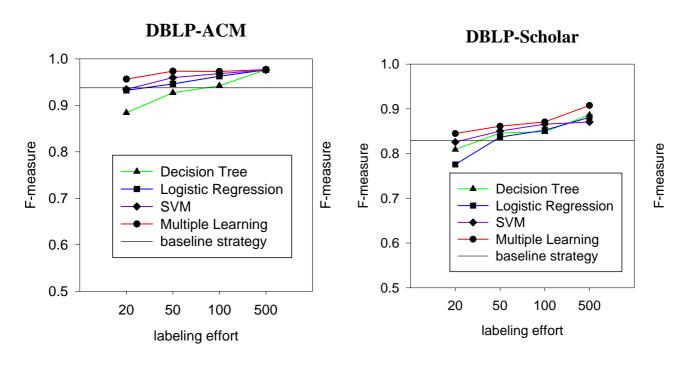

- Perfect mapping:
 - manually determined for bibliographic tasks
 - use of UPCs for E-commerce data

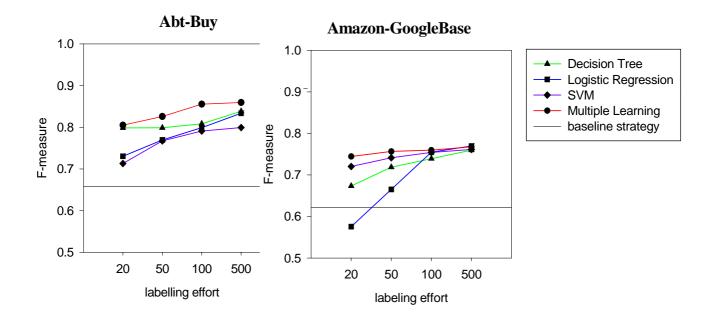
25


Baseline results

- Use of MS Fuzzy Lookup for comparison
- ▶ Similarity on 1-2 attributes

Default setting for similarity threshold vs. manually tuned settings (varying more than 1000 settings on


Random vs. Ratio training selection


E-commerce tasks, labeling effort 50

4//

Learner comparison (1)

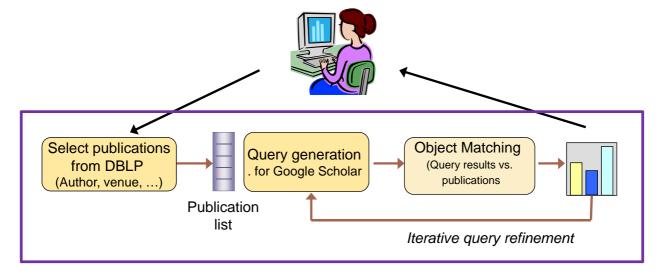
Learner comparison (2)

E-commerce tasks, Ratio training selection

29

Evaluation observations

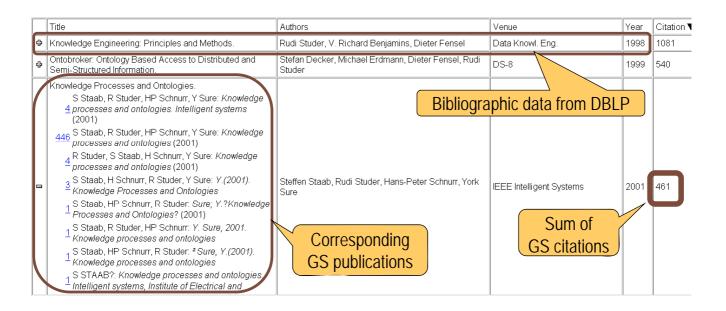
- Match configurations with several matchers are difficult to tune manually with current implementations, e.g. MS Fuzzy Lookup
- Learning-based match strategies can clearly outperform manual match strategies even with small training data, especially for challenging tasks
- Ratio is a simple and effective approach for training selection providing a balanced number of matching and non-matching object pairs
- Multiple learning approach effectively combines several basic learners


Agenda

- Introduction (Object Matching)
- FEVER platform for object matching strategies
 - > Architecture
 - Manually specified match strategies (operator trees)
 - > Training-based learning of match strategies
 - > Evaluation
- Dynamic object matching in mashups
 - > OCS (Online Citation Service)
- Instance-based ontology matching
 - > Approaches
 - ➤ Support in COMA++
- Conclusions

OCS Mashup Example

- On-demand citation service (OCS)*
 - > What are the most cited papers of conference X or author Y?
 - > Frequent changes, i.e., new publications & new citations
- Idea: Combine publication lists, e.g. from DBLP or Pubmed, with citation counts, e.g from Google Scholar, Citeseer or Scopus
 - > DBLP, Pubmed: high bibliographic data quality
 - GS: large coverage of citations counts
- Query and match problem: Given a set of DBLP publications → How to effectively find corresponding GS publications?
 - * http://labs.dbs.uni-leipzig.de/ocs


OCS Workflow

- Automatic generation of search queries, e.g. on author, venue, title (pattern)
- Dynamic object matching for search results

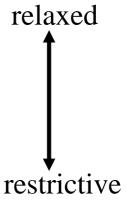
33

Online Citation Service: Result overview

OCS example: Top conference papers

OCS result for venue WWW 2007

- Found 247 GS publications for 211 DBLP publications
- No GS publications found for 19 DBLP publications.
- Overall: 230 DBLP publications having 4561 citations.
- Average: 19,8 citations per publication.
- H-Index: 38
- Match configuration: 80% title similarity, max. 1 year(s) difference, 50% author similarity.

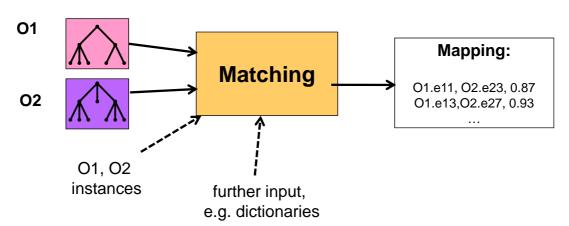

	Title	Authors	Venue	Year	Citation ▼
Ф	Yago: a core of semantic knowledge.	Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum	www	2007	196
Ф	The complex dynamics of collaborative tagging.	Harry Halpin, Valentin Robu, Hana Shepherd	www	2007	164
÷	Optimizing web search using social annotations.	Shenghua Bao, Gui-Rong Xue, Xiaoyuan Wu, Yong Yu, Ben Fei, Zhong Su	www	2007	134
÷	Google news personalization: scalable online collaborative filtering.	Abhinandan Das, Mayur Datar, Ashutosh Garg, ShyamSundar Rajaram	www	2007	107
4	Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography.	Lars Backstrom, Cynthia Dwork, Jon M. Kleinberg	www	2007	106
÷	Analysis of topological characteristics of huge online Social networking services. Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, Hawoong Jeong		www	2007	104
4	The two cultures: mashing up web 2.0 and the semantic web.	Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, Denny Vrandecic	www	2007	101

35

OCS Match Strategy

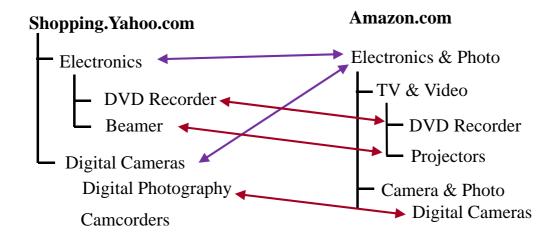
Interactive approach, i.e., user selects match thresholds

Title	Year	Authors
80%	+/- two years	<u>50%</u>
<u>85%</u>	+/- one year	<u>60%</u>
90%	equal year	<u>70%</u>
<u>95%</u>		<u>80%</u>
<u>100%</u>		<u>90%</u>
		<u>100%</u>


 Aggregated result is adjusted automatically based on match definition

Agenda

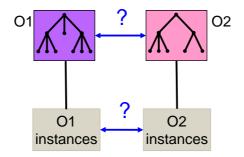
- Introduction (Object Matching)
- FEVER platform for object matching strategies
 - > Architecture
 - Manually specified match strategies (operator trees)
 - > Training-based learning of match strategies
 - > Evaluation
- Dynamic object matching in mashups
 - > OCS (Online Citation Service)
- Instance-based ontology matching
 - > Approaches
 - ➤ Support in COMA++
- Conclusions


37

Ontology Matching / Alignment

- Process of identifying semantic correspondences between 2 ontologies
 - Result: ontology mapping
 - Mostly equivalence mappings: correspondences specify equivalent ontology concepts
- Variation of schema matching problem

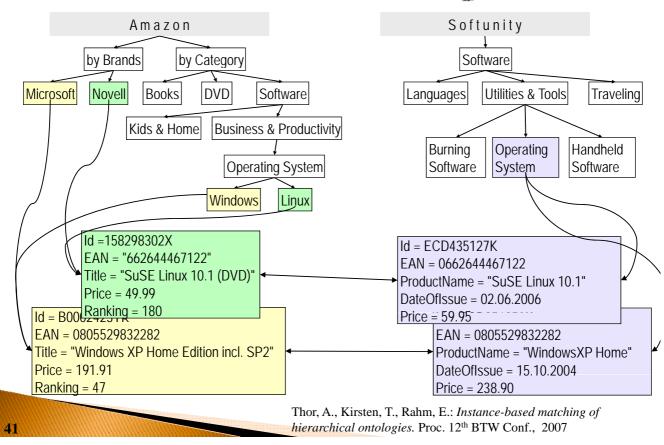
Matching of Product Catalogs

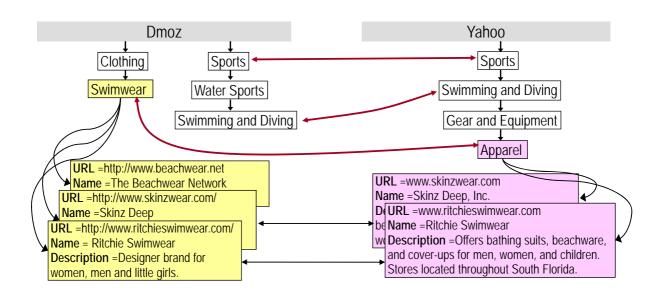


- Ontology mappings useful for
 - Improving query results, e.g. to find specific products
 - Automatic categorization of products in different catalogs
 - Merging catalogs

39

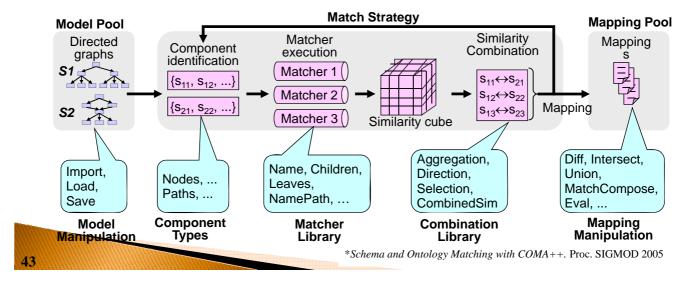
Instance-based matching


- semantics of a concept/category may be better expressed by the instances associated to category than by metadata (e.g. concept name, description)
- ▶ Categories with most similar instances should match
 - Requires shared or similar instances for most/all concepts

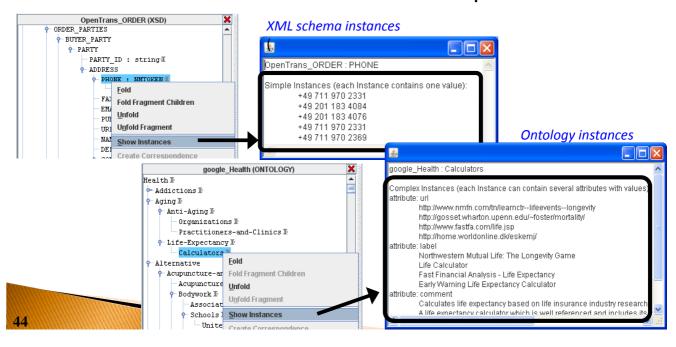

Two cases

- ontologies share instances
- ontologies do not share but have similar instances

Use case 1: Product Catalogs



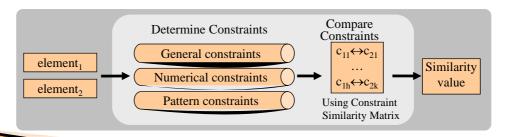
Use case 2: Web Directory Matching *



- Extends previous COMA prototype (VLDB2002)
- Matching of XML & rel. Schemas and OWL ontologies
- Several match strategies: Parallel (composite) and sequential matching; Instance-based matching; Fragmentbased matching for large schemas; Reuse of previous match results

Instance-based Matching in COMA++

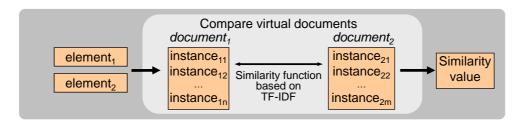
- Instance matchers introduced in 2006
 - Constraint-based matching
 - Content-based matching: 2 variations
- Coma++ maintains instance value set per element



Constraint-based Matching

- Instance constraints are assigned to schema elements
 - General constraints: always applicable Example: average length and used characters (letters, numeral, special char.)
 - Numerical constraints: for numerical instance values Example: positive or negative, integer or float
 - Pattern constraints: Example: Email and URL

"My@email.com" vs.
"Your@email.org"


- Use of constraint similarity matrix to determine element similarity (like data type matching)
- Simple and efficient approach
 - > Effectiveness depends on availability of constrained value ranges / pattern
- Approach does not require shared instances

15

Content-based Matching

- 2 variations
 - Value Matching: pairwise similarity comparison of instance values
 - Document (value set) matching: combine all instances into a virtual document and compare documents
 - Both approaches do not require shared instances
- Document matching
 - > 1 instance document per category or selected string category attribute (e.g. description)
 - > Document comparison based on TF-IDF to focus on most significant terms

Agenda

- Introduction (Object Matching)
- FEVER platform for object matching strategies
 - > Architecture
 - Manually specified match strategies (operator trees)
 - > Training-based learning of match strategies
 - > Evaluation
- Dynamic object matching in mashups
 - > OCS (Online Citation Service)
- Instance-based ontology matching
 - > Approaches
 - ➤ Support in COMA++
- ▶ Conclusions

47

Conclusions

- Object matching is a critical step for data quality and data integration
 - Offline and online data integration
- Effective match strategies combining several matchers are hard to find and tune
 - Very large number of possible combinations and configurations
 - High quality vs. efficiency tradeoff
 - Utilization of domain knowledge
- Learning-based approaches support semi-automatic generation of suitable match strategies
 - Requires suitable training selection (e.g. Ratio approach)
 - Multiple Learning approach is robust and effective (but slow)

Conclusions (2)

- Instance-based matching of ontologies facilitated by object matching
 - Instances can reflect well semantics of categories
 - Same/similar instances required in both ontologies
- Instance-based matching in COMA++
 - ▶ 3 basic instance matchers (constraint-based, content-based) not requiring shared instances
 - Flexible combination with many metadata-based approaches
- Correct ontology mappings NOT limited to 1:1 correspondences

49

Some Areas for Further Work

- Support for high efficiency and high effectiveness
 - > Performance techniques, e.g. parallel object matching
- Evaluation and validation for larger datasets
- Self-Tuning of context matchers
- Scalable instance-based ontology match approaches

References

- ▶ Köpcke, H.; Thor, A.; Rahm, E.: *Comparative evaluation of entity resolution approaches with FEVER.* Proc. 35th Intl. Conference on Very Large Databases (VLDB), Demo, 2009
- Köpcke, H., Rahm, E.: Frameworks for Entity Matching An Overview. Data and Knowledge Engineering, 2009
- Köpcke, H.; Rahm, E.: Training Selection for Tuning Entity Matching. Proc. 6th Int. Workshop on Quality in Databases and Management of Uncertain Data (QDB/MUD), 2008
- Massmann, S.; Rahm, E.: Evaluating Instance-based matching of web directories. Proc. 11th Int. Workshop on the Web and Databases (WebDB), 2008
- Thor, A., Kirsten, T., Rahm, E.: Instance-based matching of hierarchical ontologies. Proc. 12th German Database Conf. (BTW), 2007
- ► Thor, A.; Rahm, E.: MOMA A Mapping-based Object Matching System. Proc. of the 3rd Biennial Conf. on Innovative Data Systems Research (CIDR), 2007