Generic Schema Matching, Ten Years Later

Philip A. Bernstein Jayant Madhavan Erhard Rahm Microsoft Corp. Google Univ. of Leipzig

The Schema Matching Problem

The problem of generating correspondences between elements of two schemas

Basic Inputs to Matching Techniques

Constraints: data type,

keys, nullability

- Element names
- Schema structure

Other Inputs to Basic Matching

Synonyms

- Acronyms
- Code = Id = Num = No PO = Purchase Order
- Node = Server
- Zip = Postal [code]
 UOM = Unit of Measure
 - SS# = Social Security Number
- Data instances
 - Elements match if they have similar instances or value distributions

Many Apps Need Correspondences

- Data translation
- Data integration
- ER design tools
- Schema evolution

- Object-to-relational mapping
- XML message translation
- Data warehouse loading (ETL)

- A correspondence is just a relationship, with no semantics
- Correspondences can be directly useful
 - Schema merging, impact analysis, ...
- Or they can be semantically enriched
 - Clio project [Miller et al., VLDB 2000]
 - Translate correspondences into constraints on instances
 - Then translate constraints into an executable mapping

Example

Example (continued)

Books

= $\pi_{ID, BookTitle, FirstName+LastName, ListPrice}$ (BookInfo M AuthorInfo)

History

- 1994-98, I worked on Microsoft Repository
 [Bernstein et al, "The Microsoft Repository," VLDB 1997]
- I talked to many tool developers
 - They were all working with models of software artifacts and mappings between them
- This led me to propose Model Management
 - Bulk operators to manipulate models & mappings
 - Match, Merge, Diff, Compose, Invert, ModelGen, ...
 - [Bernstein, Halevy, Pottinger, SIGMOD Record '00]

Model Management Scenarios

- They're all multi-step
 - The first step usually generates a mapping: S-map-T
 - Then merge(S,T), diff(S,T), compose(S'-map-S, S-map-T)
- So the Match operator was the place to start.
 - Survey the literature
 - Develop new match algorithms
- We found existing work on schema matching was embedded in other multi-step solutions

Schema Matching is an Independent Problem

- It was one of our contributions
- There are now hundreds of papers on the topic
- The problem can't be solved perfectly because
 - It depends on the available information
 - It depends on the required accuracy
 - $^{\circ}$ It depends on the application and usage scenario
- So it's no wonder our paper is highly cited!

Outline

- Problem definition
- History what led us to the problem
- Summary of our 2001 paper (Jayant Madhavan)
- Approaches since 2001 & Future trends (Erhard Rahm)

Goals and Contributions

- Our original goals
 - Introduce schema matching as an independent problem and independent component
 - Provide a credible candidate algorithm and implementation as a basis for future work
 - Generic: independent of data model and target application

Our contributions

- Taxonomy of schema matching algorithms
- Schema-based hybrid matching algorithm
- Evaluation that compared multiple approaches

1

Cupid overview

Schema-based hybrid matching algorithm

Combines multiple approaches that use only schema (no instances)

Input: Two schema graphs Output: Similarity matrix and candidate mapping

- Linguistic matching: compare elements based on names
- Structure matching: compare elements based on relationships

Wsim = w * Lsim + (1 - w) * Ssim

Not the first to propose either linguistic or structure matching

September 1, 2011

Generic Schema Matching, Ten Years Later

Linguistic Matching

- Tokenization of names
 - ► PurchaseOrder → purchase + order
- Expansion of acronyms
 - ► UOM → unit + of + measure
- Clustering based on keywords and data-types
 - ► Street, City, POAddress → Address
- Linguistic similarity
 - Pair-wise comparison of elements that belong to the same cluster
 - ► Token similarity = f(string matching, synonymy score)
 - ► Token set similarity = average (best matching token similarity)
- Thesaurus: acronymns, synonyms, stop words and categories

Tree Match Algorithm

- Atomic elements (leaves) are similar
 - Linguistically and data-type similar
 - ▶ Their contexts, i.e., ancestors, are similar
- Compound elements (non-leaves) are similar if
 - Linguistically similar
 - Elements in their context, i.e., subtrees rooted at the elements, are similar
- Mutually dependent formulation
 - Leaves determine internal node similarity
 - Similarity of internal nodes leads to increase in leaf similarity

Bottom-up traversal of trees

September 1, 2011

Generic Schema Matching, Ten Years Later

Extensions for shared types, referential integrity, views, etc.

7

Evaluation

- Cupid compared with MOMIS/ARTEMIS @ Modena/Milano, DIKE @Calabria
- Canonical tasks and real world examples

Technical conclusions

- Linguistic matching with attention to detail does help
- Structure matching can identify non-linguistic matches
- Structure matching can disambiguate between seemingly identical structures in different contexts
- Ability to match across relational schemas, XML variants, possibly others

September 1, 2011

Generic Schema Matching, Ten Years Later

9

What we learned?

- Schema Matching Taxonomy
 - Provided a framework to describe future solutions and place them in comparison to other work
- Quantitative evaluation
 - Set a precedent for future papers
 - Very thankful to MOMIS/ARTEMIS and DIKE teams
- Making software available helps a lot
 - Possible even when developed in industry
 - We get requests for software even to this day

Follow up Techniques

- Using schema matching results as is: possible when matches only contribute implicitly end-user task
- For example, building a deep-web crawler [Madhavan+, VLDB'08]

Progress in many areas

- Match workflows
- New match techniques
- User interaction for Match
- Semantic matching
- Match techniques for large schemas
- Self-tuning match workflows
- Reuse-oriented matching
- Holistic (collective) schema matching
- Numerous match prototypes
- Evaluation of match tools
- Commercial tools

Schema matching is a multi-step process

New match techniques

Graph matching

> e.g., similarity flooding [Melnik et al, ICDE 2002]

Instance-based ontology matching

- > concepts with similar instances should match
- consider all instances of a concept as a document and utilize document similarity (e.g., TF/IDF) to find matching concepts

Usage-based matching

- villize query logs for hints about related schema elements (e.g., in join clauses) [Elmeleegy et al., ICDE 2008]
- Hamster approach for taxonomy matching [Nandi et al, VLDB 2009]

Instance-based ontology matching

- Concepts with most similar instances should match
 requires shared/similar instances for most concepts
- Mutual treatment of entity resolution (instance matching) and ontology matching
- Promising for link discovery in the Linked Open Web of Data

User interaction for Match

- GUI support to inspect and correct computed correspondences [Falconer et al., ISWC 2007]
- Incremental schema matching [Bernstein et al., VLDB 2006]
 Focused matching on user-selected element / subtree
- Provision of top-k matches per element for selection [Gal, J Data Semantics 2006]
- Collaborative schema matching using a wiki-like infrastructure to provide and improve mappings [McCann et al., ICDE 2008]

Semantic matching

- Discovery of mapping expressions

 e.g., room-price = room-rate * (1 + tax-rate)
 iMAP [Dhamankar et al., SIGMOD 2004]
- Conditional correspondences [Bohannon et al., VLDB 2006]

✓ e.g., if productType = "book" then S1.Invoice.Code =S2.ISBN

Match techniques for large schemas

- Low-level optimizations
 - > Optimized string matching
 - > Space-efficient similarity matrices
 - Database-based matching
- Parallel matching
 - > Inter-matcher and intra-matcher parallelism
- Partition-based matching (COMA++, Falcon-AO)
 - Reduced search space by matching only similar schema partitions/fragments
 - > Light-weight search for similar schema fragments

Partition-based matching in FALCON-AO

- Initially determine highly similar element pairs called "anchors"
- Only partitions that share at least one anchor are matched

Self-tuning match workflows

- Semi-automatic configuration
 - Selection of promising matchers
 - > Ordering of different matchers
 - Combination of match results
 - Selection of correspondences (top-k, threshold, ...)
- Initial tuning frameworks: Apfel, eTuner, YAM
- Use of supervised machine learning
 - > need previously solved match problems for training
 - > difficult to support large schemas
- Heuristic approaches
 - > Use linguistic and structural similarity of input schemas to select matchers and their weights (RiMOM)
 - Favor matchers giving higher similarity values in the combination of matcher results (QOM, PRIOR+, OpenII)

Reuse-oriented Matching

- Many similar match tasks → reuse previous matches
 Schema and mapping repository needed
- Example: reuse match results after schema evolution
 - compose previous match result S—T with mapping T-T' to solve new match task S—T'

Reuse-oriented Matching (2)

- First proposals for reuse at 3 mapping granularities
 - Reuse complete schema mappings, e.g. after schema evolution
 - > Reuse individual element correspondences, e.g. synonyms
 - Reuse mappings between schema fragments
- Fragment-level reuse most sophisticated
 - Populate repository by most relevant fragments and their mappings
 - Analyze schemas to be matched for fragment pairs in the repository
 - > Assemble and complement fragment mappings

Holistic (collective) schema matching

- Matching between N schemas, e.g. web forms
 mostly simple schemas
- > Typical use case: creation of a mediated schema
- Holistic matching based on clustering of similar attributes (Wise-Integrator, DCM, HSM, ...)
 - > utilize high name similarity between schemas
 - > similar names within a schema are mismatches
- Probabilistic mediated schemas [Das Sarma et al., SIGMOD 2008]
 - Ranking of several clustering alternatives based on probabilistic mappings
 - > Fully automatic approach

Research match prototypes

NOMSCM OLA2 WiseLOM iMAP CMS CODI AOAS ClioAPFEL SKAT HelioSautoms OMEN CIDER Hovy X-som Dumas SEMINT SBI-NB SAMBO ONION DLP-OM GOMMAPORSCHE BLOOMSS-MatchRiMOM Dublin20Automatch Autoplex kosimapCMCPrompt Asematch ODD-Linker ProtoPlasmQOMOntoDNA GeRMeSMB OntoBuilder ProtoPlasmQOMOntoDNA AgreementMakerIF-Map QuickmigH-Match Falcon-AO BayesOWL SF TaxoMapCtxMatch2 SpicySmartMatcher Harmony Lily OntoMerge sPLMapOMAObjectCoref MapPSOGmo ASMOVPlasma CAIMANMapOnto TransScmYAM NBJLM aflood oMap COMA++ArtemisCtxMatch edna DSSimCOMA AMC XClustHCONECupid Ef2Match I-tree ASCO MDSM DELTA TOMAS AROMA N2R DCMFOAM LSD GLUE OCM Prior MOMIS DIKE MOA

Benchmarking Initiative OAEI*

- Yearly ontology matching contests since 2005
- Up to 17 participating systems per year
- Simple tests (Benchmark) and larger test cases (Anatomy, Directory)
- Improvements for Benchmark and Anatomy, but not for Directory

System	2007	2008	2009	2010
AFlood		\checkmark	\checkmark	
AgrMaker	\checkmark		+	+
AROMA		\checkmark	\checkmark	
AOAS	+			
ASMOV	\checkmark	\checkmark	\checkmark	\checkmark
BLOOMS				+
CODI				\checkmark
DSSim	\checkmark	\checkmark	\checkmark	
Ef2Match				+
Falcon AO	\checkmark			
GeRMeSMB				\checkmark
Kosimap			\checkmark	
Lily	\checkmark	\checkmark	\checkmark	
NBJLM				+
Prior+	\checkmark			
RiMOM	\checkmark	+	\checkmark	
SAMBO	+	+		
SOBOM			+	+
TaxoMap	\checkmark	\checkmark	\checkmark	+
X SOM	\checkmark			
Avg. F-measure	0.598	0.718	0.764	0.785

[Euzenat et al, OM 2010]

Anatomy test case

Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org

Match Prototype Comparison*

		Cupid	COMA++	Falcon	Rimom	Asmov	Agr.Maker	OII Harmony
year of introduction		2001	2002/2005	2006	2006	2007	2007	2008
Input	relational	٧	٧	-	-	-	-	V
schemas	XML	٧	٧	-	-	-	(√)	V
	ontologies	-	٧	٧	V	٧	V	V
OAEI participation		-	V	٧	V	V	V	-
compreh. GUI		-	V	(√)	?	?	V	٧
Matchers	linguistic	٧	V	٧	V	٧	V	٧
	structure	٧	V	٧	V	٧	V	٧
	Instance	-	V	-	V	٧	V	-
use of ext.dictionaries		٧	V	?	V	٧	V	V
schema partitioning		-	V	V	-	-	-	-
parallel matching		-	-	-	-	-	-	-
dyn. matcher selection		-	-	-	٧	-	-	-
mapping re	euse	-	V	-	-	-	-	-

*Rahm, E.: Towards large-scale schema and ontology matching. In: Schema Matching and Mapping, Springer-Verlag, 2011

Commercial schema matching tools

- Many GUI-based mapping editors to manually specify correspondences and mappings
- Initial support for automatic matching, in partiular linguistic matching
 - > Altova MapForce
 - >MS BizTalk Server 2010
 - SAP Netweaver
 - IBM Infosphere
- Many further improvements possible
 - Structural / instance-based matching
 - >Advanced techniques for large schemas

BizTalk 2010 Screenshot

Google Scholar: Paper counts

Remaining research challenges (1)

- Joint treatment of entity resolution and schema matching, e.g. for Linked Data
- More comprehensive mapping reuse
- Self–Tuning
- Improvements for
 - user interaction
 - Large-scale schema matching
 - Semantic matching
 - Holistic/collective schema matching ...

Remaining research challenges (2)

 Fully automatic schema matching for web applications

More match-based approaches for

- >Ontology/schema merging
- >Ontology/schema evolution

۶...