Dynamic Fusion of Web Data: Beyond Mashups

Erhard Rahm Andreas Thor, David Aumüller

http://dbs.uni-leipzig.de

24th September, 2007

Top VLDB '97 Pubs: Google Scholar's Top-5

DataGuides: Enable query formulation and optimization in semistructured databases

R Goldman, J Widom - Proc. of VLDB, 1997 - citeseer.ist.psu.edu
The recent database difficulties have been resolved. Please let us know if you
encounter any data corruptions. ... Citation: Context R. Goldman and J. Widom.
DataGuides: Enable query formulation and optimization in semistructured ...
Cited by 56 - Related Articles - Cached - Web Search

Vertical Data Migration in Large Near-Line Document Archives Based on Markov-Chain Predictions -

AKG Weikum - 1997 - vldb.org

Abstract Large multimedia document archives hold most of their data in near-line tertiary storage libraries for cost reasons. This paper de- velops an integrated approach to the vertical data migration he- tween the tertiary and ... Cited by 24 - Related Articles - View as HTML - Web Search - BL Direct

[PS] Garbage Collection in Object Oriented Databases Using Transactional Cyclic Reference Counting

S Ashwin, P Roy, S Seshadri, A Silberschatz, S ... - VLDB, 1997 - cse.iitb.ac.in Garbage Collection in Object Oriented Databases Using ... S. Ashwin 1 Prasan Roy 1 S. Seshadri 1 Avi Silberschatz 2 ... 1 Indian Institute of Technology, Mumbai 400 076, India sashwin@cs.wisc.edu f prasan,seshadri,sudarsha g ... Cited by 9 - Related Articles - View as HTML - Web Search - BL Direct

іспатіон) Optimization in semi structured data Q Formulation - 1997 - VLDB Cited by 2 - Related Articles - Web Search

ıсıтатıом Logical and physical versioning in main memory databases PBDWL Abraham, SSSR Rastogi, S Seshadri - 1997 - VLDB <u>Cited by 1 - Related Articles</u> - <u>Web Search</u>

Google Scholar's Top-5 (2)

[сітатіом] ^aVisual Data Mining, ⁰tutorial

DA Keim - Proc. Conf. Very Large Databases, 1997

Cited by 1 - Related Articles - Web Search

[сітатіом] Don't scrap it, wrap it! an architecture for legacy data sources MT Roth, P Schwarz - International Conference on Very Large Databases, 1997

Cited by 6 - Related Articles - Web Search

[сітатіом] Visual Data Mining, Tutorial Notes, Int

DA Keim - Conference on Very Large Databases, Athens, 1997

Cited by 1 - Related Articles - Web Search

լспатион Geo/EnvironmentalandMedicalDataManagement in the RasDaMan System P Baumann, P Furtado, R Ritsch, N and Widmann - Proc. 23rd Conf. Very Large Databases, 1997 Cited by 1 - Related Articles - Web Search

[сітатіом] Visual Data Mining, Conf

D Keim - On Very Large Databases (VLDB97), Athens, Greece, 1997

Cited by 1 - Related Articles - Web Search

... more GS quality problems

DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases - all 31 versions »

R Goldman, J Widom Proceedings of the 23rd International Conference on Very ..., 1997. Page 1. 1 DataGuides. Enabling Query Formulation and Optimization in Semistructured 1997 - www-db.stanford.edu

Databases * Roy Goldman Stanford University royg@cs.stanford.edu ...

Cited by 732 - Related Articles - View as HTML - Web Search - BL Direct

DataGuides Enable buery formulation and optimization in semi R Goldman, J Widom Proc. of VLDB, 1997 - citeseer.ist.psu.edu

Heterogeneous venue names

• How to query for "VLDB '97"?

... Document: Details DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases (1997) Roy Goldman, Jennifer Widom Citation: Context R ...

Cited by 56 - Related Articles - Cached - Web Search

PataGuides: Enabling Ouery Formulation and Optimization in Semistructured Databases بستا

G Roy, W Jennifer Proc. 23rd VLDB, 1997

[статіон] Dataguides: Enabling query formulation and optimization in semistructure databases, VLDB'97

R Goldman, J Widom 23rd International Conference on Very Large DataBase, Athens.

Cited by 4 - Related Articles - Web Search

итатиом **Dataguides: Enabling query** formulation and optimization R Golman J Widom - Proceedings of the Twenty-Third Internation Conference

Cited by 1 - Related Articles - Web Search

[сітатіом] DataGuides: Enabling Query Formulation and Optimizat

R Goldman - VLDB 1997

Cited by 1 - Related Articles - Web Search

Duplicates due to

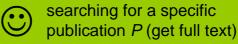
- Extraction errors (title, authors)
- Different titles
- Typos (author name)
- Heterogeneous venue names
- Missing / additional authors (!)

lan.

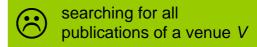
Top VLDB'97 Pubs: MS Libra's Result

- 🔁 DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases (1997) (citation: 187)
 - 🦓 Roy Goldman Jennifer Widom
- 🔼 Optimizing Queries across Diverse Data Sources(1997) (citation:163)
 - 🦓 Laura M. Haasj Donald Kossmann, Edward L. Wimmers, Jun Yang
- 🔼 To Weave the Web(1997) (citation: 128)
 - 🦓 Paolo Atzeni <u>Giansalvatore Mecca Paolo Merialdo</u>
- 🔼 Selectivity Estimation Without the Attribute Value Independence Assumption(1997) (citation: 100)
 - 🔏 Viswanath Poosala | Yannis E. Ioannidis
- 🔁 STING : A Statistical Information Grid Approach to Spatial Data Mining(1997) (citation:88)
 - 🔏 Wei Wang Jiong Yang Richard R. Muntz

... similar problems


- 🟂 DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases (1997) (citation: 187)
 - 🤽 Roy Goldman Jennifer Widom
- 🗖 DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases (1977) (citation: 170)


🔏 Jennifer Widom Roy Goldman

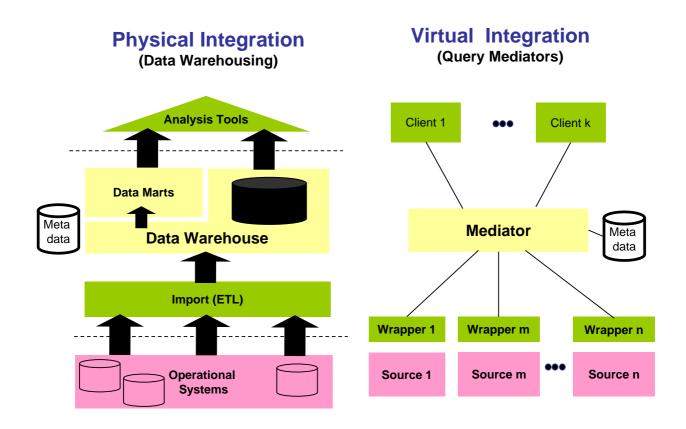
Jennifer Widom received her Bachelors degree in 1982 and her Computer Science Ph.D. in 1987.

- 🔼 dataguides: enable query formulation and optimizat semistructured databases(1997) (citation:9)
 - 🦥 r. Goldman 🛚 j. Widom
- 🔁 DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases (1998) (citation:6)
 - 🦓 r. Goldman j. Widom
- 🔼 DataGuides: Enabling Query Formulation and Optimiza-ti Semistructured Databases (1998) (citation: 2)
 - 🔏 Roy Goldman Jennifer Widom

searching for all publications of an author A

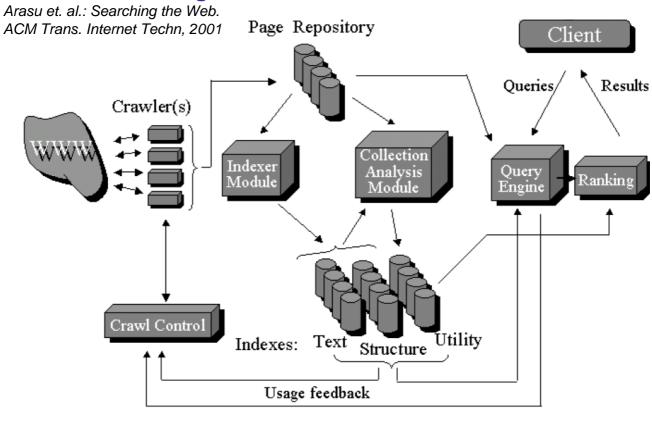
Top VLDB '97 Publications: Desired Result

	Title	Authors	Venue	Year	Citation ▼
4	DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases.	Roy Goldman, Jennifer Widom	VLDB	1997	795
4	M-tree: An Efficient Access Method for Similarity Search in Metric Spaces.			1997	598
4	STING: A Statistical Information Grid Approach to Spatial Data Mining.	Wei Wang, Jiong Yang, Richard R. Muntz	VLDB	1997	386
4	Optimizing Queries Across Diverse Data Sources.	Laura M. Haas, Donald Kossmann, Edward L. Wimmers, Jun Yang	VLDB	1997	366
4	To Weave the Web.	Paolo Atzeni, Giansalvatore Mecca, Paolo Merialdo	VLDB	1997	249
4	Selectivity Estimation Without the Attribute Value Independence Assumption.	Viswanath Poosala, Yannis E. Ioannidis	VLDB	1997	220
4	A Foundation for Multi-dimensional Databases.	Marc Gyssens, Laks V. S. Lakshmanan	VLDB	1997	204
4	Algorithms for Materialized View Design in Data Warehousing Environment.	Jian Yang, Kamalakar Karlapalem, Qing Li	VLDB	1997	178
4	Fast Computation of Sparse Datacubes.	Kenneth A. Ross, Divesh Srivastava	VLDB	1997	165
4	Data Warehouse Configuration.	Dimitri Theodoratos, Timos K. Sellis	VLDB	1997	155

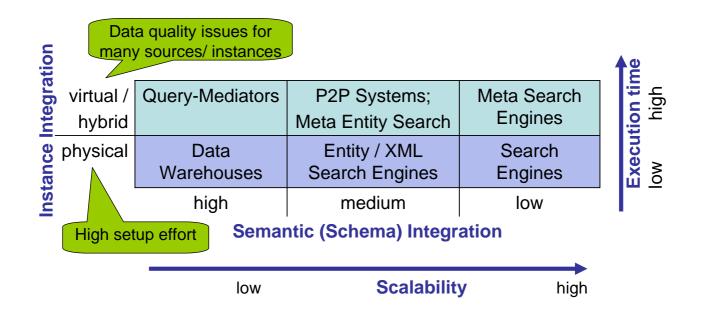

Top VLDB '97 Publications: Desired Result (2)

	Title	Authors	Venue	Year	Citation ▼
	DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. R Goldman, J Widom: DataGuides: Enabling 732 Query Formulation and Optimization in Semistructured Databases (1997) R Goldman, J Widom: Dataguides: Enabling query 4 formulation and optimization in semistructured databases. VLDB'97 (1997) R Goldman, J Widom: DataGuides: Enable query 56 formulation and optimization in semistructured databases (1997) R Golman, J Widom: Dataguides: Enabling query 1 formulation and optimization in semistructured databases R Goldman: DataGuides: Enabling Query 1 Formulation and Optimization in Semistructured Databases, R. Goldman, J. (1997) R Goldman, J Widom: Dataguides: enabling 1 querying formulation and optimization in semi-structured databases, VLDBâ??97 (1997)	Roy Goldman, Jennifer Widom	VLDB	1997	795
÷	M-tree: An Efficient Access Method for Similarity Search in Metric Spaces.	Paolo Ciaccia, Marco Patella, Pavel Zezula	VLDB	1997	598
4	STING: A Statistical Information Grid Approach to Spatial Data Mining.	Wei Wang, Jiong Yang, Richard R. Muntz	VLDB	1997	386
÷	Optimizing Queries Across Diverse Data Sources.	Laura M. Haas, Donald Kossmann, Edward L.	VLDB	1997	366

Agenda


- Motivation
- Data Integration Systems
 - Overview
 - Workflow-based data integration
- Mashups
 - Overview
 - Tools: classification & examples
 - Open problems
- iFuice-based integration workflows
 - Overview
 - Query strategies: Example: Online Citation Service
 - Dynamic object matching: The MOMA approach
- Summary

"DB World"



"IR World"

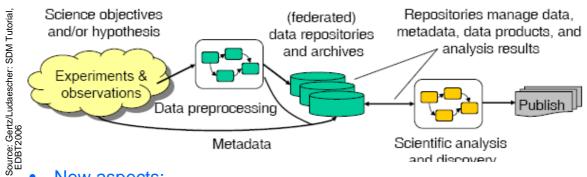
General search engine architecture

Integration "Sextant"

(Some) Problems of current data integration approaches

- Setup time too high: crawling; schema mapping / integration ...
- Current data integration approaches are query-focussed: search engine queries, query mediators, warehouse access
- Queries are not enough: complex data integration problems cannot easily be solved in 1 query / search
 - What is the most cited XSym paper so far?
 - Which famous scientists lived close to the VLDB 2007 venue
- Data quality for heterogeneous/dirty web data and query results
- Execution time for dynamic fusion of larger data sets

Workflow-like data integration


- "You only have three hours how far can you go to solve a data integration problem?"
- Reuse + Combine existing (data) services within data integration workflows
 - Reuse existing services
 - Reuse existing data integration systems, e.g. search engines, query mediators, warehouses
 - Combine query/service results within a workflow
 - Perform data cleaning and data transformation
 - Perform data analysis
- Must be supported by a flexible data integration framework
- Workflow-like data integration complements query-based data integration

Workflow-based Integration

Examples

Offline: ETL processes for Data Warehouses

- Online: Workflows for analyzing biological data

- New aspects:
 - Combine ETL and analysis workflows (on-demand information extraction)
 - Share and reuse existing data services and tools
 - Reuse existing (entity) search engines
 - Easy development and use of workflows (-> Mashups)

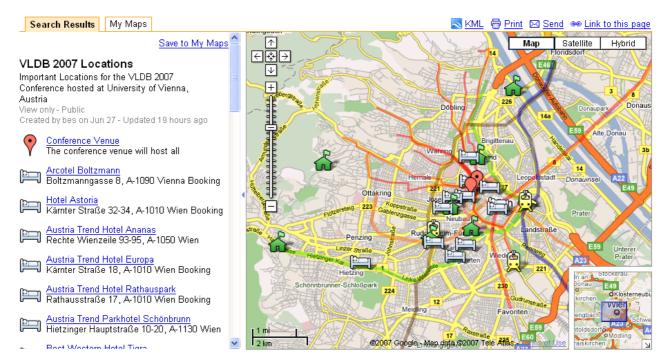
Comparison: Query- vs. Workflow-based DI

	Query-based	Workflow-based
User defines	Query	Workflow
Building blocks	Sources	Services for ETL, Query/Search and Analysis
Access Flexibility	High	Restricted
Development Time	High ("End-user System")	Medium (Framework + Workflow)
Specific to	Source(s) / Domain	Task / Problem

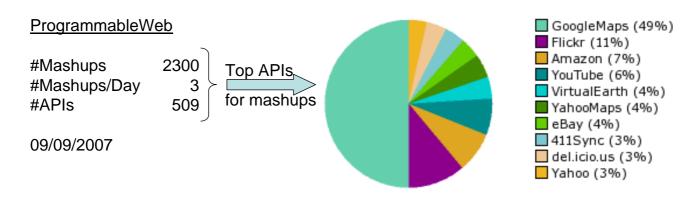
Agenda

- Motivation
- Data Integration Systems
 - Overview
 - Workflow-based data integration
- Mashups
 - Overview
 - Tools: classification & examples
 - Open problems
- iFuice-based integration workflows
 - Overview
 - Query strategies: Example: Online Citation Service
 - Dynamic object matching: The MOMA approach
- Summary

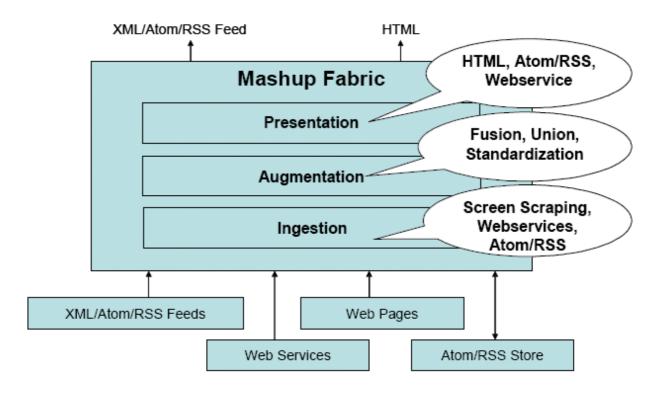
Mashups - a light-weight data integration approach


- "A web mashup is a web page or application that combines data from two or more external online sources." (ProgrammableWeb)
- "A mashup is a web application that combines data from more than one source into an integrated experience." (Wikipedia)
- "Mashups are an exciting genre of interactive Web applications that draw upon content retrieved from external data sources to create entirely new and innovative services." (Merrill: Mashups: The new breed of Web app)

Mashup Example: Forbes List

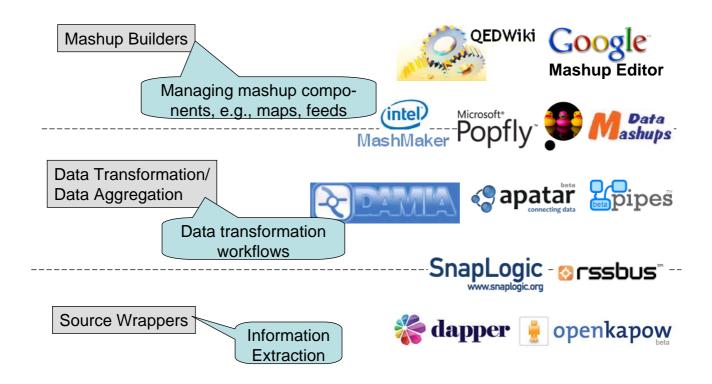

VLDB Locations

 Displays conference venue of VLDB 2007 as well as nearby hotels, train stations, airports, ...

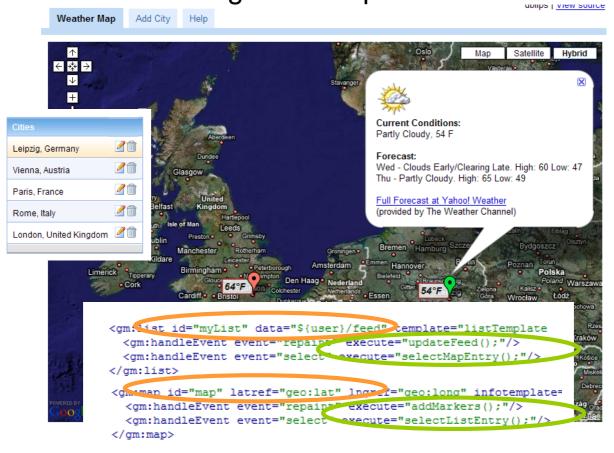


Mashups: Driving forces

- AJAX (Asynchronous Javascript and XML)
 - Desktop-like look-and-feel of Web applications
- Development tools, e.g. Google Web toolkit
- Visual development tools without programming need
- Increasing number of Web services (APIs)
 - Easy access to "interesting" content and services
 - 50% of mashups use Google Maps

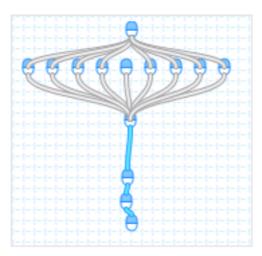


The Big Picture: Mashup Fabric*

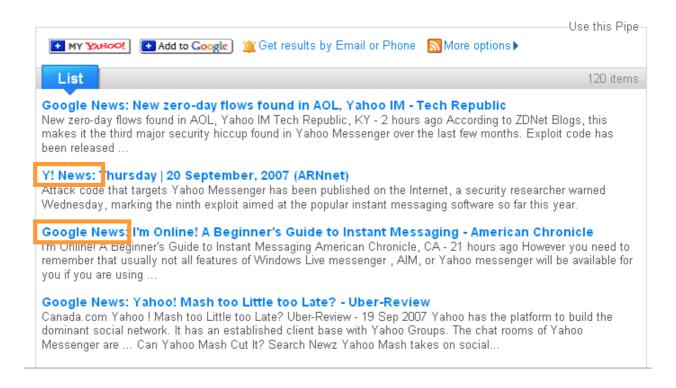


^{*} Jhingran: Enterprise Information Mashups: Integrating Information, Simply. Keynote at VLDB'06

Mashup Tools: Overview



Yahoo Pipes



- Composition tool to aggregate, manipulate, and mashup web content, especially RSS feeds
 - Pipe = data transformation workflow
 - Visual specification
- Example: Aggregated News Alert

- User input: keyword(s)
- Parallel search at
 - Yahoo! News
 - MSN Live News ...
- Merge
- Sort by date
- Deduplication (unique title)
- Output

Yahoo Pipes: Aggregated News Alert (2)

IBM DAMIA

- Similar to Yahoo! Pipes
- Modules
 - Sources: URLs, Excel files
 - Operators (see right)
- Example: Aggregated News

Dapper: Google News as RSS feed

- "Get any content from the web"
 - Information extraction from any website into XML, RSS ...
- Automatic detection of parts ("blocks") of the same structure
 - e.g., several news entries, news headline, ...
- → User selects "blocks" for extraction

Mashups: Characteristics

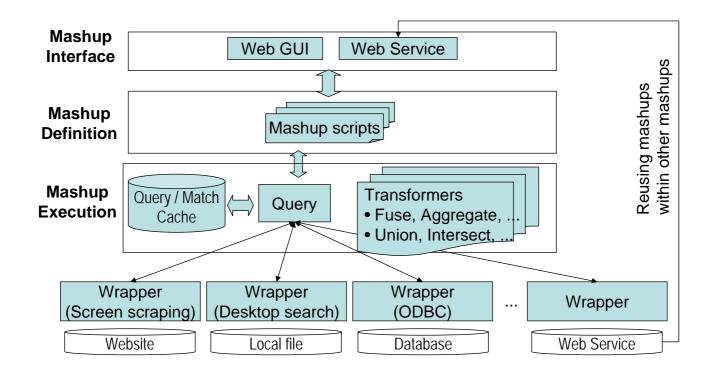
- Easy and fast development
 - Visual programming (drag & drop) or integration with power development environments (e.g., Eclipse)
- Service-oriented paradigm
 - Sharing and reuse of web services
- Web2.0 interfaces
- Standardized XML-based data formats, e.g. RSS, SOAP/REST (data exchange)
- Simple processing workflows
- Simple instance-based data integration
 - Geographical coordinates
 - Keywords (e.g. names)
- Simple keyword queries dominate (no query transformation)
- Limited result postprocessing (primarily merge instead of match)

Mashups: Query example

- Keyword queries
- "Merge instead of match"

Mashups: Open Problems

- More complex queries, e.g. for heterogeneous entity search engines (-> query transformation)
- Data quality
 - Precision and recall depend on developer's choices (source selection, query formulation)
 - Typos, missing/wrong attribute values (e.g., due to extraction errors)
 - Duplicates, i.e., sources contain multiple instances for the same (real world) object
- Performance for large data volume (automatic optimization)
- Semantic repository of services
 - Service description & service disvovery
- Support for business applications, e.g. security restrictions

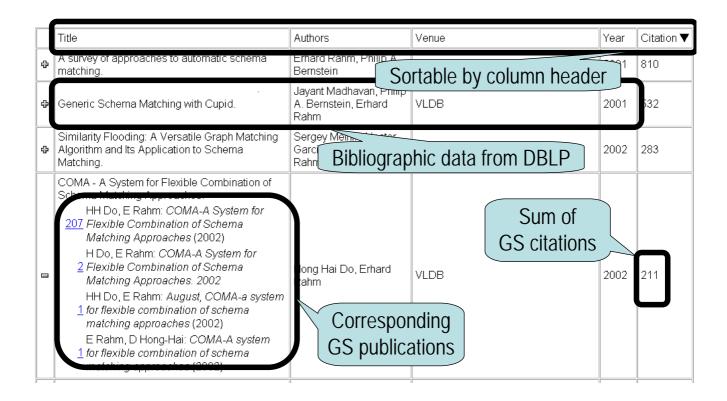

Agenda

- Motivation
- Data Integration Systems
 - Overview
 - Workflow-based data integration
- Mashups
 - Overview
 - Tools: classification & examples
 - Open problems
- iFuice-based integration workflows
 - Overview
 - Query strategies: Example: Online Citation Service
 - Dynamic object matching: The MOMA approach
- Summary

Information Fusion with iFuice [RTA+05]

- Generic data integration platform for structured and unstructured data sources
 - Query / search / id-based data access
- Workflow-like data integration with operator-based programming model
 - Generic high-level operators for use within script programs
 - Example: query traverse, map, union, aggregate,
- Utilization of instance-level mappings
 - Correspondences between object instances
 - Represent semantic relationship ("is same", "is associated to")
- Metadata repository for data sources and services
 - Semantic object (e.g., Author, Publication) and mapping types
- Iterative query strategies
- On-the-fly object matching

Mashup Framework: Architecture


Iterative query strategies

- Problem: Simple queries may result in poor quality (precision/recall)
 - Search engines return top-k "best effort" results
 - Are the first 50-100 hits sufficient?
 - Does the ranking reflect the applications needs?
- Query Strategy
 - Set of subsequently executed queries
 - Goal: find a relevant set of instances with a minimal number of queries
 - Balance between query costs (#queries) & result quality (#relevant instances)
- Users expect immediate results
 - Start with query strategy with only 1 or a few queries
- AJAX allows result refinement
 - Asynchronous execution of more sophisticated query strategies and (once finished) result update
- User interaction for additional queries if needed

Example: Online Citation Service* [TAR07]

- On-demand citation analysis
 - What are the most cited papers of conference X?
 - What is the average citation number of publications from author Y?
 - Frequent changes, i.e., new publications & new citations
- Idea: Combine publication lists, e.g. from DBLP or Pubmed, with citation counts, e.g from Google Scholar, Citeseer or Scopus
 - DBLP, Pubmed: high bibliographic data quality
 - GS: large coverage of citations counts
- Query problem: Given a set of DBLP publications → How to find the corresponding GS publications?
 - Query GS and match DBLP-GS
 - * http://labs.dbs.uni-leipzig.de/ocs

Online Citation Service: Result overview

OCS: Query strategies overview

- 1st query strategy: name (#queries = 1)
 - Query: author's/venue's name, e.g., 'author:E-Rahm'
 - Goal: find as many relevant pub's with only one query
- 2nd query strategy: title pattern (#qu.=#pubs/10)
 - Query: Disjunction of title patterns, e.g., 'intitle:"survey * approaches *
 * schema matching" OR ... '
 - Goal: Precise search for a limited set of publications
- 3rd query strategy: title keywords (#queries = #pubs)
 - Query: publication title, e.g., 'A survey of approaches to automatic schema matching'
 - Goal: Find a certain publication at the cost of many irrelevant search results

OCS: 1st query strategy "name"

Query strategy	Name
#Queries	1
#GS pubs	40
#DBLP pubs (matched)	35
#DBLP pubs (unmatched)	31
#GS citations (overall)	2395

	Title	Authors	Venue	Year	Citation ▼
ф	Optimizing Queries Across Diverse Data Sources.	Laura M. Haas, Donald Kossmann, Edward L. Wimmers, Jun Yang	VLDB	1997	359
ф	To Weave the Web.	Paolo Atzeni, Giansalvatore Mecca, Paolo Merialdo	VLDB	1997	244
4	Selectivity Estimation Without the Attribute Value Independence Assumption.	Viswanath Poosala, Yannis E. Ioannidis	VLDB	1997	220
4	A Foundation for Multi-dimensional Databases.	Marc Gyssens, Laks V. S. Lakshmanan	VLDB	1997	204
4	Algorithms for Materialized View Design in Data Warehousing Environment.	Jian Yang, Kamalakar Karlapalem, Qing Li	VLDB	1997	178

OCS: 2nd query strategy "title pattern"

Query strategy	Name	Title Pattern
#Queries	1	8
#GS pubs	40	125
#DBLP pubs (matched)	35	59
#DBLP pubs (unmatched)	31	7
#GS citations (overall)	2395	5421

	Title	Authors	Venue	Year	Citation \	▼
÷	DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases.	Roy Goldman, Jennifer Widom	VLDB	1997	795	
4	M-tree: An Efficient Access Method for Similarity Search in Metric Spaces.	Paolo Ciaccia, Marco Patella, Pavel Zezula	VLDB	1997	598	
_G	STING: A Statistical Information Grid Approach to Spatial Data Mining.	Wei Wang, Jiong Yang, Richard R. Muntz	VLDB	1997	386	
æ	Optimizing Queries Across Diverse Data Sources.	Laura M. Haas, Donald Kossmann, Edward L. Wimmers, Jun Yang	VLDB	1997	366	
G.	To Weave the Web.	Paolo Atzeni, Giansalvatore Mecca, Paolo Merialdo	VLDB	1997	249	

OCS: 3rd query strategy "title keywords"

Query strategy	Name	Title Pattern	Title Keywords
#Queries	1	8	7 7
#GS pubs	40	125	125
#DBLP pubs (matched)	35	59	59
#DBLP pubs (unmatched)	31	7	7
#GS citations (overall)	2395	5421	5421

	Title	Authors	Venue	Year	Citation ▼
4	DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases.	Roy Goldman, Jennifer Widom	VLDB	1997	795
4	M-tree: An Efficient Access Method for Similarity Search in Metric Spaces.	Paolo Ciaccia, Marco Patella, Pavel Zezula	VLDB	1997	598
ф	STING: A Statistical Information Grid Approach to Spatial Data Mining.	Wei Wang, Jiong Yang, Richard R. Muntz	VLDB	1997	386
	Optimizing Queries Across Diverse Data Sources.	Laura M. Haas, Donald Kossmann, Edward L. Wimmers, Jun Yang	VLDB	1997	366
a	To Weave the Web.	Paolo Atzeni, Giansalvatore Mecca, Paolo Merialdo	VLDB	1997	249

Illustration of OCS mashup execution

User selects author from list

01: \$DBLPPubs := query (DBLP, "author=[name]");

02: \$GSPubs1 := query (GS, "author:[name]");

03: \$Result1 := fuse (\$DBLPPubs/Pub/, \$GSPubs1/Entry/);

04: \$Result1 := aggregate (\$Result1, "[DBLP/Pub/NoOfCit]", "sum([./Entry/Citations])");

Result1 is displayed to the user

Start next script automatically

05: \$GSPubs2 := query (GS, \$DBLPPubs, "intitle:"[DBLP/Pub/Titlepattern]"");

06: \$Result2 := union (fuse (\$DBLPPubs/Pub/, \$GSPubs2/Entry/), \$Result1);

07: \$Result2 := aggregate (\$Result2, "[DBLP/Pub/NoOfCit]", "sum([./Entry/Citations])");

Result1 is replaced by Result2

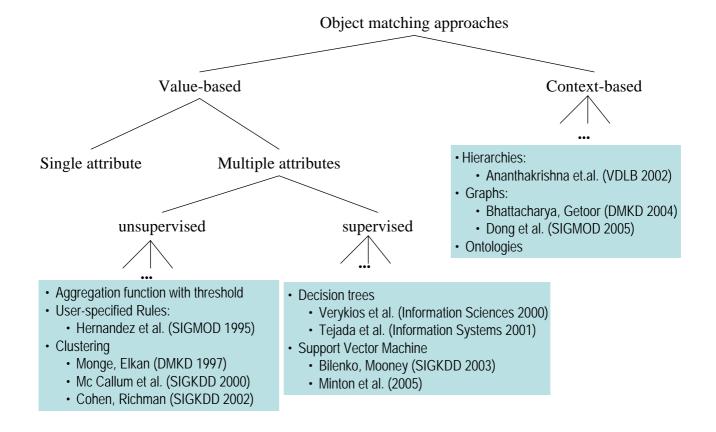
If user wants exhaustive search (e.g., by button click)→ start next script

08: \$DBLPPubs3:= query (\$Result2, "count([./Entry/Citations])=0");

09: \$GSPubs3:= query (GS, \$DBLPPubs3, "intitle:[DBLP/Pub/Title]");

10: \$ Result3 := union (fuse (\$DBLPPubs/Pub/, \$GSPubs3/Entry/), \$ Result2);

11: \$ Result3 := aggregate (\$Result3, "[DBLP/Pub/NoOfCit]", "sum([./Entry/Citations])");


Query strategies: Summary & Future Work

- Iterative query strategies are a flexible approach for querying search engines
 - Heuristics for getting a maximum number of relevant object instances with a minimum number of queries
 - Allow approximated results as well as result refinement
- Evaluation and optimization of query strategies
 - Example: 'name' strategy often good for authors but not for venues
 - Dependency on instance values "E-Rahm" [⊕] vs. "J-Smith" [⊕]
- Automatic generation of query strategies
 - Can we automatically determine the relevant attributes (and their transformations) that should appear in the queries?
 - Generic approaches desirable

On-the-fly object matching

- Object matching is important part of data integration
 - prerequisite for information fusion
 - Example: group together multiple Google Scholar entries
- Goals
 - seamless integration in data integration workflows
 - effective & efficient

Many object matching approaches ...

Many data cleaning frameworks ...

Research prototypes

- AJAX (Galhardas et al., VLDB 2001)
- IntelliClean (Lee et al., SIGKDD 2000)
- Potter's Wheel (Raman et al., VLDB 2001)
- Febrl (Christen, Churches, PAKDD 2004)
- TAILOR (Elfeky et al., Data Eng. 2002)
- MOMA (Thor, Rahm, CIDR 2007)
- **–** ...

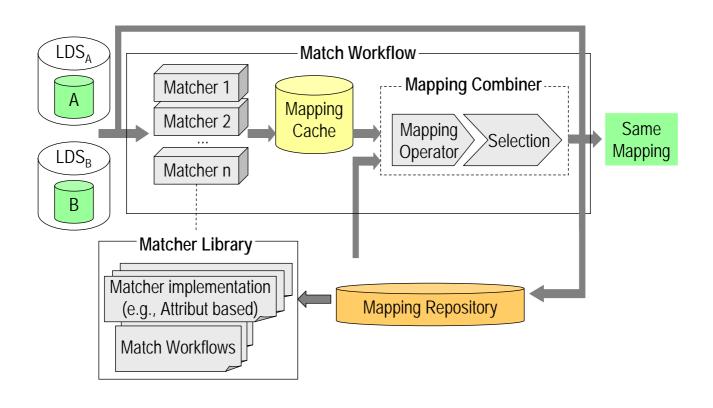
Commercial solutions

- DataCleanser (EDD), Merge/Purge Library (Sagent/QM Software), MasterMerge (Pitnew Bowes) ...
- MS SQL Server 2005: Data Cleaning Operators (Fuzzy Join / Lookup)

– ...

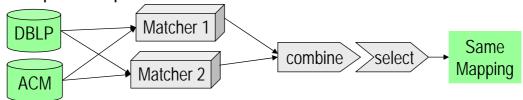
MOMA Overview [TR07]

- MOMA = <u>Mapping based</u> <u>Object <u>Ma</u>tching
 </u>
- Object consolidation framework
 - Matching objects from 2 sources
 - Generation of instance mappings (correspondences)


Special case: duplicate detection within 1 source (generation of self-mapping)

- Key features
 - Extensible matcher library
 - Mapping combination
 - Construction of match workflows
 - Storage of mappings for reuse in other match problems

same-mapping for authors


 Note: similar objectives than in schema matching, e.g. in COMA / COMA++

MOMA Architecture

Match Workflows

- Coordinated execution of matchers and combination of mappings
 - single-attribute matcher (e.g. based on specific string similarity function)
 - multi-attribute matcher (hybrid matcher)
 - context matcher ...
- Example: Independent matcher execution

■ Implemented as *iFuice* scripts

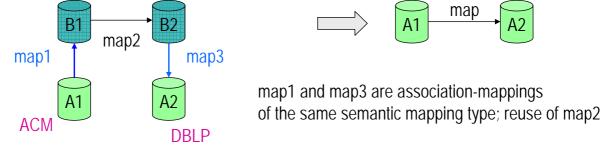
```
$M1 := attrMatch ($DBLP, $ACM, "[title]", TFIDF, 0.9);

$M2 := attrMatch ($DBLP, $ACM, "[year]", EditDistance, 0.7);

$Union := union ($M1, $M2, avg);

$Result := select ($Union, 0.8);
```

Match Strategies


Merge same-mappings

Compose same-mappings

 Compose same- and association-mappings (Neighborhood matcher)

OCS Match Strategies

Interactive approach, i.e., user selects match thresholds

Title	Year	Authors	relaxed
<u>80%</u>	+/- two years	<u>50%</u>	†
<u>85%</u>	+/- one year	<u>60%</u>	
90%	equal year	<u>70%</u>	
<u>95%</u>		<u>80%</u>	
<u>100%</u>		<u>90%</u>	₩
	-	<u>100%</u>	restrictive

 Aggregated result is adjusted automatically based on match definition

Match strategies: Summary & Future Work

- Match strategies are a flexible approach for matching instances of different sources
 - Interactive result adjustment
 - Reuse of existing mappings (efficient matching)
 - Match refinement by applying multiple match strategies
- · Optimization of match strategies
 - Which matchers?
 - Which attributes?
 - What are the best thresholds?

Agenda

- Motivation
- Data Integration Systems
 - Overview
 - Workflow-based data integration
- Mashups
 - Overview
 - Tools: classification & examples
 - Open problems
- iFuice-based integration workflows
 - Overview
 - Query strategies: Example: Online Citation Service
 - Dynamic object matching: The MOMA approach
- Summary

Summary

- Mashups are a light-weight approach for dynamic workflowbased data integration
 - Fast development times
 - Sharing and massive reuse of existing services
 - Proliferation of tools
 - Business potential
- Mashups need more sophisticated data integration support
 - Generic data integration framework for mashups
- Challenging problems
 - Performance quality tradeoffs (recall, precision, data cleaning)
 - Automatic generation of queries → iterative query strategies
 - On-the fly object matching → mapping-based match strategies
 - Automatic identification of suitable (query) services

– ...

References

- [RTA+05] Rahm, Thor, Aumueller, Do, Golovin, Kirsten: iFuice - Information Fusion utilizing Instance Correspondences and Peer Mappings. Proc. WebDB, 2005
- [TAR07] Thor, Aumueller, Rahm: *Data Integration Support for Mashups*. Proc. of IIWeb, 2007
- [TR07] Thor, Rahm: MOMA A Mapping-based Object Matching System. Proc. of CIDR, 2007