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Users have complex information needs

”In what year did Richard David James

win a Grammy?”
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Users have complex information needs

”In what year did Richard David James

win a Grammy?” ⇒ 2015
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E-commerce example

E-commerce marketplaces have to detect identical products from different shops
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KGs pose specific problems
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Flexible schema (usually) means:

Many entity types

different (number of) attributes

various relationship types

⇒ Challenging for classical entity

resolution systems
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Overview

1 Introduction to Entity Resolution on Knowledge

Graphs

2 Knowledge Graph Embedding-based approaches

3 Problems with KGE-based approaches
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Overview

1 Introduction to Entity Resolution on Knowledge

Graphs

2 Knowledge Graph Embedding-based approaches

3 Problems with KGE-based approaches

Disclaimer: Not comprehensive, only

overview!
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Entity Resolution on Knowledge Graphs

A KG is a tuple 𝒢 = (ℰ, ℛ, 𝒜, 𝒱, 𝒯) where:
ℰ is the set of entities

ℛ is the set of relation predicates

𝒜 is the set of attribute predicates

𝒱 is the set of attribute values

𝒯 is the set of triples

relation triple: (ℎ, 𝑟, 𝑡) with ℎ, 𝑡 ∈ ℰ and 𝑟 ∈ ℛ
attribute triple: (𝑒, 𝑎, 𝑣) with 𝑒 ∈ ℰ, 𝑎 ∈ 𝒜 and 𝑣 ∈ 𝒱
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Entity Resolution on Knowledge Graphs

Definition

Task: Given graphs 𝒢1, 𝒢2 find mapping ℳ = {(𝑒1, 𝑒2) ∈ ℰ1, ℰ2|𝑒1 ≡ 𝑒2}, where ≡ refers

to the equivalence relation

Variations:

Clean-Clean: both sources are

duplicate-free

Clean-Dirty: one source is duplicate-free

Dirty-Dirty: no source is duplicate-free

Multi-source

Incremental: Continuously integrate new

data without full recomputation
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Entity Resolution on Knowledge Graphs (Challenges)

Volume: KGs can be huge (e.g. 108 entities in Wikidata)

Variety: KGs usually have heterogeneous schemata

Velocity: KGs are usually updated continuously, necessitating ER solutions, that can tackle

this aspect

Many systems focus on one (or more) of these aspects, but there is no one-size fits all system
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General ER workflow

BlockingPreprocessing Pair-wise
Matching Clustering

source 1

source 2

source k

Data Sources Sets of Clusters

.

.

.
ER Workflow
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Blocking

ER complexity is quadratic a-priori (have to

compare all entities with each other)

Blocking avoids unnecessary matches by

e.g. only comparing entities with same

first character in specific attribute

first name last name

Johan Müller

Alicia Mühler

Sara Fink

first name last name

Johannes Müller

Alicia Mühler

Sara Fink
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Blocking

ER complexity is quadratic a-priori (have to

compare all entities with each other)

Blocking avoids unnecessary matches by

e.g. only comparing entities with same

first character in specific attribute

Plethora of approaches exist, for an overview

see Papadakis et al., “Blocking and Filtering

Techniques for Entity Resolution: A Survey”,

2020
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Matching

Based an attribute similarities create a

similarity graph

Many different similarity functions exist

(e.g. edit-distance, soundex, etc.)

(Supervised) machine learning approaches

can be used to learn match probabilities
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Clustering

Given a similarity graph find clusters of matching entities

Different clustering strategies perform well based on setting

For binary clean-clean matching: Hungarian algorithm1

For multi-source clean-clean: CLIP2

1
Jonker and Volgenant, “A shortest augmenting path algorithm for dense and sparse linear assignment problems”, 1987

2
Saeedi, Peukert, and Rahm, “Using Link Features for Entity Clustering in Knowledge Graphs”, 2018
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FAMER

FastMulti-Source Entity Resolution

Build on Apache Flink

Provides a variety of Blocking methods

Configurable similarity measures for pairwise matching

Several clustering algorithms to find matching entities

Saeedi et al., “Scalable Matching and Clustering of Entities with FAMER”, 2018
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FAMER's CLIP Clustering

Produces

Source�consistent clusters

No overlap

Prioritize links based on

Link strength

Strong, Normal, Weak

Link degree

Similarity value
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Some Other Selected Entity Resolution Tools

DeepMatcher3: Uses deep learning with various different techniques

to aggregate pre-trained word embeddings of attributes

LIMES4: Relies on triangle equality to avoid blocking while still preventing unnecessary

comparisons

JedAI5: Build on Spark, provides schema-agnostic blocking schemes which can also be

applied to RDF data

WInte.r6: Modular framework enabling the integration of multiple (web) data sources

3
Mudgal et al., “Deep learning for entity matching: A design space exploration”, 2018

4
Ngomo et al., “LIMES: A Framework for Link Discovery on the Semantic Web”, 2021

5
Papadakis et al., “JedAI3 : beyond batch, blocking-based Entity Resolution”, 2020

6
Lehmberg, Bizer, and Brinkmann, “WInte.r - A Web Data Integration Framework”, 2017
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Entity Alignment with Knowledge Graph Embeddings
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Knowledge Graph Embeddings (KGEs)

Transform entities into a dense vector

If successful:

similar entities close in the embedding

space

relational information retained

dbr:Jordan_Peele

dbo:Film

"Get Out"^^xsd:String
dbr:Get_Out

dbr:Allison_Williams

Em
bedding
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Entity Alignment with KGEs Overview

KG1

KG2

interaction

Structure Embedding

Attribute Embedding

KG Embedding Module

Bootstrapping

Alignment Module

seed
entity

alignment

(seed)
relation

alignment

(seed)
attribute 

alignment

Training

Inference Module

Aligned
Entities
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Structure embedding: translation-based

locatedIn

For triple (ℎ, 𝑟, 𝑡) minimize

𝑓(ℎ, 𝑟, 𝑡) = ||h + r − t||
This function scores the

plausibility of a triple (true triples

should have value of 0)

Corrupted triples (for which

either ℎ or 𝑡 is replaced) should
score high

Bordes et al., “Translating embeddings for modeling multi-relational data”,

2013
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Structure embedding: translation-based
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Translation-based

Simple translational model incapable of modelling one-to-many relationships

Many extensions: e.g. TransR7 uses relation-specific spaces

Kazemi and Poole8 show that translational models operating in euclidean spaces are

severely limited in types relations they can learn

This shortcoming is for example addressed by HyperKG9, which operates in the hyperbolic

space and is more expressive than previous translational models

7
Lin et al., “Learning Entity and Relation Embeddings for Knowledge Graph Completion”, 2015

8
Kazemi and Poole, “Simple embedding for link prediction in knowledge graphs”, 2018

9
Kolyvakis, Kalousis, and Kiritsis, “Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion”, 2020
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Tensor-factorization

KG as 3-order tensor

Score plausibility of

triple (ℎ, 𝑟, 𝑡) as
𝑓(ℎ, 𝑟, 𝑡) = h𝑇Wt

Graphic of RESCAL taken from Maximilian Nickel’s page

Nickel, Tresp, and Kriegel, “A three-way model for collective learning on multi-relational data”, 2011
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Tensor-factorization

RESCAL’s representation of relations as matrices is costly

DistMult10 restricts the relation matrix to a diagonal matrix (but can only model symmetric

relations)

ComplEx11 extends DistMult in the complex domain and enables modeling of asymmetric

relationships

SimplE12 represents each entity with two independent vectors via canonical polyadic

decomposition. This model is more efficient than e.g. ComplEx, but fully expressive

10
Yang et al., “Embedding entities and relations for learning and inference in knowledge bases”, 2015

11
Trouillon et al., “Complex Embeddings for Simple Link Prediction”, 2016

12
Kazemi and Poole, “Simple embedding for link prediction in knowledge graphs”, 2018
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Graph Convolutional Networks (Intuition)

Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, 2017
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Graph Convolutional Networks (Intuition)

Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, 2017
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Graph Convolutional Networks (Intuition)

avg

Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, 2017
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Graph Convolutional Networks (Intuition)

avg

Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, 2017
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Graph Convolutional Networks (Intuition)

avg

Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”, 2017
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Relational Graph Convolutional Networks

Schlichtkrull et al., “Modeling Relational Data with Graph Convolutional Networks”, 2018

Gather features of neighboring nodes

Aggregate for each relation type seperately

Accumulate resulting representation in

(normalized) sum

Send result through activation
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EA approaches relying only on structure

MTransE13 uses linear transformation to move entities into same embedding space

Rely on TransE scoring

Alignment function measures (dis)similarity between triples of the two graphs:

𝑓𝑎𝑙𝑖𝑔𝑛(𝑡𝑟1, 𝑡𝑟2) = ||𝑀𝑒ℎ1 − ℎ2|| + ||𝑀𝑟𝑟1 − 𝑟2|| + ||𝑀𝑒𝑡1 − 𝑡2||

13
Chen et al., “Multilingual knowledge graph embeddings for cross-lingual knowledge alignment”, 2017
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EA approaches relying only on structure

BootEA14 uses bootstrapping to introduce likely entity matches as training data:

Given two (likely) matching entities 𝑒1, 𝑒2

Swap entities in triples with their counterpart and add these new triples to graph

E.g. for a triple (𝑒1, 𝑟, 𝑡) add new triple (𝑒2, 𝑟, 𝑡)

Model tries to minimize loss from TransE scoring (including generated triples) and a specific

alignment loss based on distance of entity embeddings

14
Sun et al., “Bootstrapping entity alignment with knowledge graph embedding”, 2018
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EA approaches including attribute information

AttrE15 introduced the use of attribute values

Align predicates based on string similarity

Use scoring function for attribute triples

For attribute values use either

averaged character embedding

aggregated character embedding by LSTM

aggregated n-gram character embedding (worked best)

Minimize distance between structure and attribute embedding of an embedding

15
Trisedya, Qi, and Zhang, “Entity Alignment between Knowledge Graphs Using Attribute Embeddings”, 2019
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EA approaches including attribute information

MultiKE16 uses three different views for entity embeddings

relation-view: based on TransE (modified with logistic loss)

name-view: for specific ”name property” a concatenation of pre-trained word/character

embeddings is sent through an autoencoder

attribute-view: Use a CNN over attribute-value matrix instantiated with word-embeddings

of attribute predicates and their values

For relation/attribute predicates soft alignment is used to find counterparts across KGs,

based on similarity of relation/attribute embeddings (above a certain threshold)

Similar to BootEA, a triple swapping strategy is used to generate more triples with known

matches (or soft aligned)
16

Zhang et al., “Multi-view knowledge graph embedding for entity alignment”, 2019
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Problemswith KGE-based approaches
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The hubness phenomenon

Main focus of KGE research was creation

Alignment of KGEs usually relies on

Nearest Neighbors

With increasing dimensionality:

few points are nearest neighbors (NN) of

many points

many points are NN of no points

⇒ hubness negatively affects alignment quality
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Hubness reduction (HR)

Different ideas:

Centering

Repair asymmetric relationships

Overview: Feldbauer and Flexer, “A comprehensive empirical comparison of hubness reduction

in high-dimensional spaces”, 2019
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kiez

Open-source python library (github.com/dobraczka/kiez)

for hubness-reduced nearest neighbor search

(for entity alignment (with knowledge graph embeddings))

Obtain kNN
candidates

Primary Distances
S ➝ T

Primary Distances
T ➝ S

Hubness
reduction kNN

Source KGE

Target KGE

SecondaryDistances
S ➝ T

Obraczka and Rahm, “An Evaluation of Hubness Reduction Methods for Entity Alignment with Knowledge Graph Embeddings”, 2021
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kiez

Open-source python library (github.com/dobraczka/kiez)

for hubness-reduced nearest neighbor search

(for entity alignment (with knowledge graph embeddings))

Hubness reduction methods:

Local Scaling Schnitzer et al., 2012

NICDM Schnitzer et al., 2012

CSLS Lample et al., 2018

Mutual Proximity Schnitzer et al., 2012

DisSimLocal Hara et al., 2016

(Approximate) Nearest Neighbor Method:

Sci-kit learn Pedregosa et al., 2011

BallTree Omohundro, 1989

KDTree Bentley, 1975

Bruteforce

NMSLIB: HNSW Malkov, 2018

NGT Iwasaki, 2016

Annoy (github.com/spotify/annoy)

Faiss Johnson, Douze, and Jégou, 2017
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Non-iterative contextual dissimilarity measure

𝑁𝐼𝐶𝐷𝑀(𝑑𝑥,𝑦) =
𝑑𝑥,𝑦

√𝜇𝑥𝜇𝑦

Schnitzer et al., “Local and global scaling reduce hubs in space”, 2012
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Non-iterative contextual dissimilarity measure

𝑁𝐼𝐶𝐷𝑀(𝑑𝑥,𝑦) =
𝑑𝑥,𝑦

√𝜇𝑥𝜇𝑦

mean distance to

the k-nearest neigh-

bors

Schnitzer et al., “Local and global scaling reduce hubs in space”, 2012
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Experiment setup

16 aligment tasks:

KG samples from DBpedia, Wikidata, YAGO

different densities, sizes and even cross-lingual settings

Sun et al., “A Benchmarking Study of Embedding-based Entity Alignment for Knowledge

Graphs”, 2020

15 KG embedding approaches

⇒ 240 KGE pairs
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Evaluation Metric

hits@k:

suited for kNN-based tasks

counts proportion of true matches in kNN

We use k=50, because we retrieve 50 nearest neighbors

Because absolute hits@k value is largely determined by KGE approach:

look at improvement

compare against no HR with same KGE
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Hubness reduction (with exact NN) improves alignment
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Improvement in hits@50 compared to no hubness reduction.

Aggregated over KGE approaches and datasets.
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Hubness reduction with ANN can improve alignment

NICDM DSL CSLS LS MP gauss MP emp
hubness
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algorithm
Annoy
NGT
NMSLIB_HNSW
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Improvement in hits@50 compared to baseline (no HR with exact NN).

Aggregated over KGE approaches and datasets.
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Speed comparison (large datasets)
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Speed comparison (large datasets) only Faiss
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Hubness-reduced nearest neighbor search

Verdict:

Hubness reduction improves alignment results

Using Faiss with NICDM gives improvements at virtually no cost w.r.t speed

For larger datasets Faiss’s HNSW implementation can be used

⇒ Hubness reduction largely offsets decrease in alignment quality when using approximate

nearest neighbor algorithm while still retaining speed advantage
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How to givemore prominence to attribute values?

KGE-based approaches heavily emphasize graph structure

There is usually no direct attribute similarity calculated between entities
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EAGER: Embedding-assisted Entity Resolution for KGs

Obraczka, Schuchart, and Rahm, “Embedding-Assisted Entity Resolution for Knowledge Graphs”, 2021
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Experiment Setup

Investigate performance of combination trough ablation study

→Three different inputs for EAGER:

OnlyEmb: Only use embeddings

OnlySim: Only use attribute similarities

SimAndEmb: Use both
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More problemswith KGE-based approaches

For a critical look:

Leone et al., “A Critical Re-evaluation of Neural Methods for Entity Alignment”, 2022

Most approaches are evaluated on datasets with (unrealistic) 1-to-1 assumption

Approaches are costly and have problems scaling

Currently no way of handling unseen entities

Authors adapted PARIS17 to incorporate seed alignment and could generally outperform

SOTA KGE-based methods

17
Suchanek, Abiteboul, and Senellart, “PARIS: Probabilistic Alignment of Relations, Instances, and Schema”, 2011
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Future directions for KGE-basedmethods

Combinations of KGE-based methods and techniques from record linkage can be

fruitful (see results from EAGER or other worka)

Usage of KGE-based methods as blocking strategy has not been explored yet

Many benchmark datasets consist mostly of ”easy” matches, use-cases with low lexical

similarity across matches might be where KGE-based methods shine

Making KGE-based methods more scalable is a must

Unsupervised KGE-based methods are still rare

a
Qi et al., “Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and Semantic Embedding”, 2021
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What did we learn?

Data integration has been a long studied field and KGs pose

specific challenges (especially volume & variety)

”Classical” ER tools rely mostly on attribute similarity for

match decisions

Basic intuition behind KGEs was presented

KGE-based methods rely mostly on graph structure and

incorporate attribute information via pre-trained word

embeddings

KGE-based methods have still much room for improvement,

but combining ”old” and new methods might be a fruitful

future direction

Contact:

obraczka@informatik.uni-

leipzig.de

github.com/dobraczka

dobraczka

Thank you for your attention!
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