INTEGRATED SOLUTIONS TO CONCURRENCY CONTROL AND BUFFER INVATLIDATION
IN DATABASE SHARTNG SYSTEMS

Friwrd Raim

Urdversity of Faiserslautern, FB Infonmatik
Postlfach 3049, D-6750 Eeiserslautern, West Germany

Abstract

In the near future large transaction processing
systems will have %o meet hipgh regquirenents
concerning throughput, mesponse Limes, avallabilicy
and modular growth. A posaible architecture for
such high performtnoes systems 15 Detabase Sharing
(PB-sharing) where multiple locsely or closely
eoupied procassors share access to a alngle set of
databeses, This paper addrgsses the problenms of
eoncurreney fcontrol and buffer invalidation that
are both introduced by the DE-sharing architecture,
Concurrency contrel [s reguirsd to control the
processars” acacasen to the shared databasa. The
buffer invalidation problem, on the other hand,
results from the exlstence of & datrbase buffer at
egch procesgor, Modll'ication of & pape within one
buffer Lharelore lnvalldates sll coples of the same
page atored in othar progeasors” bull'ers, We show
how eff'ective solutlons to hoth problems are
[ezaible by extending the synohronization componsnt
te control bullfar levalldatlons, toe, This 1
cemonatreted by two decmnmtralized approacnes from
which one iz baaed on losking whille the othep
reiles on opbimistio synchronization.

1. Imtroduction

Fubures tranaaction processing systems for large
applications ms in benking or reservation
processing will nave to meet hlgh performance and
avallabtlity requirements. Such DBE-bassd systems
must be papable of high transactlon rates (e
1000 short transactions per second) with equivalent
response times comparcd to present systems |4 L
Another key regulirement 1 extensibility of the
system (modular growthl.

It has heen clearly recognized that these demands
carewt be fulfilled by database mansgement systems
(DRMS} on wniprocessors or cipghtly eoopled multi-
processcrs. The Increase of proceseing power of
these monclithic aystemz hes falled (cr will $831)
to mateh the reguired transastion rates.
Furthermore, those centrallyed systems provide poor
svailability and extensivilisy [T).

In order to satlsly the varicus transaction
processing requirements, twe basle approaches
calied [B-distribution end [B-sharing are proposced
[7]. These multiprocessor DENMS aonsist of a set of
antonomous processors Lhat are loosely or closely
coupled, Bach processor owns & local main memory
and a separele copy of operating system [0S} and
DEME. With looss coupling inter-proceassr-
communication ia exclualvely based on messapges,
wheress Ln closely coupled ayatems certaln
funoticns may be implomentad using a commen memory

CH2433. FEZ0000/04 1080100 & 1987 [ERR

partition |13]. The differsnsce botween DE-

distribution snd DB-sharinz results from the

assipnment of the dlsk drives Lo processors:

= In DBE-distribution systema cach processor owns
some Craction of the disk devices and the
databases stored on them. Accesses to non-local”
data require communication with the processor
owning the correspondirg database partition. This
apprcach iz used among othars by the TANDEM
NonStop system [1] and mary distributed databasc
systems such as 5% [19).

- In TE-sherine systems each processor s direct
accsss Lo the entire database. This requires Ghat
all processors are physteally close fep. in one
room) arnd permits a high-apeesd comnunication
eyztem {=g. 100 MO scc). Examples lor DE-sharing
gystems are the Date Sharing faciltity of IMSAS
[9], Computer Console’z Powen Systan [20], the
D03 project [17] and the AMORBA project |18,

A comparison between DR-distribution and NE-gharing
oan be found in [7] Here, wo concentrate oupselves
on loosely coupled DE-shardng ayatoms as depiobed
in Mg, 1. 58 globsl Ioad - contral locaked at one or
mere Iront-esnds distributes each ineomleg Srans-
action to one of the processors (transsction
roubingl. A transaction can be campletely execubed
at ons processor Decause edch CFD has direch ageesy
to all parts of the shared datebasels). This avoids
the necessity of 4 distributed 2-phase-comnit
protoccl s oreguired in DS-disbribution systems.

Terminals O . w o D

e Tramsacion Haoting

= I Load Contrel)

Communication I

srsien I [|
[| P2 [f=]

Processors

Exteinal

Hlorage

shated datahases

Figure 1: Strecture of a loosely coupled DBE-sharivg
system

Crne of the maln advantages of DBE-shart ng la
Plexibllity, Bitice each processor can access the
entire datnbase, tranaaction work may he
dynamleslly distributed among the processors
dccordirg to currsnt needs and gystem availability.
Additioral processers can he added without altering
She transactlon programs or the databese zchema,
fkewise, & processor failure doas not prevent the
surylving processors Crom acecessing the disks or
the termindls. Transactions in progress on = fatled
processor oan be redistributed automatically among
the ayvailable processors.
Haturally, the design of a LE=sharing systam
reguires naw or extended funoticns to be added,
compared to certralized TEMS:
The synehrenization conponent has to ceordinate
211 mccesses to the shured database in order to
pusrantee ssrialisability of the oxecuted trans—
setions. Since there Im no cemmon nemory,
synchronization requires message exchange among
the procesaors which is much more time consumLrg
than lock request handling In & contralized NEMS
teve & l'ew bundred instruotions for cach look
grant. or release}. Therefora, the concurrenay
control algorithm must mindmize the average
number af synchronization maosSages pepr
tranzaction. & survey of conceiveble swchroni-
zation techniques can be found in [12,16]

Tz recovery component Is pesponsible Sor systen-

wide logplrg and recovery. Faoh processor has te

malntain a local log used for transzcetion wnde an
wall as l'er orash recovery, Tn adéition, a global

log (e.ge lor mediz recovery) 1s constructed b

merging the loozl log dats, Orash pecovery 13

performed by the survivirg procsssors in order to

continue transaction processing. Uncommitbed
srensactions of the fzfled processor are rolled
bapt ard restarted on another processor.

—- load control has to Cind an effective distri-
bution ol the current workload agalnst the =et of
svellable processors (branssction routing). No
procesgsor must be overloaded &nd the routing
should support synchrondsablon with wminimel
communication eost, To fulfill these tasks, the
losd conlrol must react dynemically to changes in
tbe workload eor within the systom sonfimiration
{e.g. orash or reintegration of a processor).
In {15] load control is diseussed in more detail,

In this paper we consider a fupcher probism of MR-
sharing systems, namely the tuffer invalidation
problem whilch ls intreoduced in the nest sschien,
Ther, wWe gilve seluticns Lo this problem by
extanding twe diffecent synohresdzation straterlos,
Minally, we summarize our proposals and disouss
zams rolated problens.

2. Buffer Invalidation Problem
Since data can only be manipulated in main memory,
part of the database has to be loaded into z main
storzge. area before processing and has to be
wWritlen back to dlsk after moddflostlon. For thla
purgase, the TEMS mainteing 4 so-oalled detabase
bulfer consiating of pspe Trames ol unifors Glme
the number of [rames can be selected as a OBMS
srameter, Since physicsl aceess 0 A pege on disk
such. more expensive than access to a B2ge in Lhe
buffer, a major goal of buffer management Is the

411

minimization ol

aize [2].

In a DE-shaping envivenmank minimizing diak

accesses la oven more important 1n opder to aveld

waiting situationas in Cront of a disk. Un-

Pertunately, the existence of a buffer in esch

procezsor leads to & buffsr invalldaticn proilens,

because multiple coples of a database Fafe EEy M-

2ide in multiple buffers at any glven Lime. Modi-

Fileation of any nopy will thus frvalidate all other

copiss. A solublon to this buffer Invalidasion

problem must mainly cope with bwo pednta:

1.) Invalidated cbjects in the buffers mist be dee
tected In order Lo avold asccsss o obeclete
dats.

2.) The new contents of modified objects must be
propagated to other processors when these
objects are pequestsd there.

The =oluticns to these problems strongly depend on

the method used l'or update propagotion to the

database on disk [FORCE or NOFORCE [B]). With a

paysieal I/0 l'or a given buffep

FORCE-stratepy all modificatfons of & trensaction
must be wreitben to the physical database before the

bransaction commits. In & DE-sharing aystem this
has the advantags that the valid copy of a page can
always be read from disk. Therelors, MORCE just
requires 5 solution to the sbove point 1 (avoicdsnee
of access to invalidated coples), However, forcing
medified pages to disk at EDT is overly expensive
and results ln seriocus performance Impacks.
Response times of update transmations Are fLon-
slderably Ilnereased snd page modifications of
different traneastions cannot be asoumilated i8 4.
To make FORGE mcceptable in a DE=sh&ring
efvironment, one could extend the storsge hierarchy
by introdueing a non—volatile globyl datzbase
buffer to which the modified pages are forced cut.
Such an optimization leads to a elosaly coupisd DB~
sharing system [13],

With NOFORCE, on the other hand, a transacticn
usually updates only the objeats in the tlocsl)
datsbase buffer; the pages on disic mre cbsolete, in
genersl, In 4 DB-zharing environment this
complicstes the Lrestment of bulfer lhvalidacion
afnee it must be determined where the ourterns copy
of a page can be found, Whereas FORCE implies an
exchange of modified pages across the shamsd disgks,
with NOFORCE modified objects can also be
transntited via the 1nter—processer conneckions.,
With & Bgh-spesd communication gyatem this should
be considerably [aster provided that cverload
altustions ecan be avoided,

In a DB-zhardng aystem where a NOFOHCE-scheme
sheuld be applied (together with updite-ln-place
[8]), 1t must be ensured Lhst a bleak {page! B an
disk mey only be overwritten by a processor owning
the most recent copy of 3 (o.g, the proceascr that
has performed the las:t modification of Bl.
Otherwlse, 1t could happen that the valid cooy an
disk Iz overwrltten by sn chsolate veraion; I the
valid copy has only been on disie, an lnconsistency
of the database would heve been produced,

A general solutlen to buffer invalidatlons is the
so-called broadenst approsch that usually works in
combination with & thr]?CE-‘EEvategy. Te avold access
to invalidated objects In the database bulfers, the
identifiers of modified chjects are brosdeast
belors committing the modilying transasticn, S0,
obsolete coples can be detectad and are dizcerded

from tha buffers. With FORCE, the wvalid copy of &
database paps can then bo read rom disk

The brozdeast eolution 15 & simple and general
epproach but it sullfers Trom two severs woealmesses:
Pirst, the FORCE-ztrategy is In general not
acceptable for high perlformance DBYME (see above).
Jecond, the broadezst sclution regulires a large
mumber of notlfy meszages that increase as a squars
fimetion of the nunber off progessors.

In the next two zectlons we show that much more
effective aolutions ere leaaible in cooperaticn
with concurrency control. This is demonstrated by
two promising sychronization strateglies that both
rely on decentralized control. First, the primary
copy approach based on locking 1= Investigated In
secticn 3, an algorithm that permits a close
aenoperatlon with lcad control. In sectlon 4 an
optimistlie strategy 18 desoribed that 15 attractive
for requiring only one symahranizetion messams (for
vaildation) per transastlcn. Throughout thess
gections we assume, I not otherwige stated, =2
HIFDRCE-stratezy for updake propagation; of course,
the sclutlona ean 21lso ba Adepbted to &8 PORCE-policy
whera the axehenges of modified pagess is simplified.
It is alsg mesumed that asynohronizatiion tnkes place
o page (block) level, A eoordinated aclutlon %o
eoneurrengy control and bulfer invalldatlon was
alsc preposed in [3 |, however, for 2 centraliged
locking schema.

3. Primary Copy Locking (PCL)

In this approach the synohronlzation essponsibllity
15 distributed smong all processors. Therelore, the
datsbase 1z logleally partltioned into N dlgjoint
parts and each of the N prucessorz performs the
global synehronizsetion Mor one partlition. &
processor 1s said o have © Drilmary copy
authority (RCA) for its partition [151. AS Fig. 2
shows, eagh lock mansger maintaing a global lock
table (OLT) Lo contrcl the ocbjects of 1ts partition
ard a losal lock table (LLT to keep Information
about granbad or reguested locks Tor local Lrans—

ackiors. =
LLT LLT
GLTY | ! GLT2
mossage
subsystem

T3 A Pe
LLT | JLLT
GLT3 GLT4

Wipurs Z: Prlnary Copy Tocking (N = 43

PCL has the cbvious advantage that lock requests
from progessor P withdn the partition controlled by
P z&n be mamnaged locally, regardless of axternal
cantention. Lock requests for 2 partition of
angther progessor are sent to the authorised
processor, To minimize the number of auch “leng”
lock requesta, loed conteel cEn use the current POA
distributlon to route a transsction to that
processor where most of the required dats can be
sgynchronized leocally. Furthermeore, the routing

412

anrategy =nd the PCA distrlbutlon can be adaphed
af'tep the crash or relntegretlon of 4 procesasor, an
if the load profile has changed significently.

The structure of blogk entrfes in the TIT and in
the GLT 2= well az a detaliled description of the
synchronization protocol 1fself can be Mound in
[14}. Here, we give two alternatives Tor
conteolling buffer invalidationg wlthin 2 MOFORCE-
environtent. Both solubiona ube additicnal
infermetion in the GLTh and avold extra messapes an
far az possibla,

Timestamp sclution

In this salutd on, & timestamp Is assigned to each
block pert=ining to the most resent madificstion of
any object in the block. To control buffsr in=
vialldaticns, the primacy copy scheme 1la extendsd 1n
tha following polnta:

1. For each medified block the resdponsible loak
manager Heens A block entry in s QLT where the
timestampy of the latest modifization 1= stopsd
in en additiomal fleld.

Modlfied blocks are trensmltted to the PCA-
proceasor together with the relense meszzge (oe
the ¥-lock., Thlas has the effeat that the valild
verslon of 4 bleak can always be found st the
POA-processor or on disk 1f the block was
written out by the FCA-proceseor,

Belore a logk request is issued 1% 1s checked
whether or not the correspondirg block resides
in the local buffer, Il so, then the tikestanp
is alzo gent wikh the lock request to Shs FOA-
lock manager. Using this timestamp information,
the PCA-procedaor can dstermine whather the
local eopy 1z up-to-date. IC nob, the valild copy
is transmitted together with the look response
n".‘-esksme or it le told that it can be resad fron
disk.,

In the example in Pig. 3, the PCA for blosk B 1s
asaigned to procegscr B2 It Is asfumied that block
B was most recently changed nt time by 4
transaction T that was executed 4% 8 processor P35
not showtr in Fig, 3. Together with the release aof
the X-lcck on B, T has =lso tranamitted the
modified block contRining the new tinest=mp 2 to
processor P2, The modificztion time t2 iz stored In
the block entry of B in GLT2, and the block ia
wrltten Into P2's buffer. fssume now, that n
tranaantion at Fl wants to access block §oand Ehat
A oopy of B with timestamp t1 (£l < £2) resides In
the buffer of Pl, Slnge the lock request message
also contains this timestamp tI, P2 can detect the
burfer invalidation using the bleock entry of B In
its OLT. The velid copy of B ¢an b¢ tranzmitted to
Pl within the lock responze messape when the look
request is satiallapla,

i-

|
el

P1 P2
GLTZ _
B t2] ..]
<4 o
tHer, B
Bu erB k2 uffer

Fipgure 3: Timestamp solutlon (exampls)

Although the timestamp solution doss net reguire
extra compunlcation, the release messages for X-
locks ang the look r*raurmruara messages (in esse of
bulTzar invalldation) are considsrably Longer bthan
in the basic PCL—schene. Therelors, bthe communi-
cation overhead may only be ftolerable i fthe POA
diztribution tamether with transaction routing can
azsure that most blcok sccesacs are directed to the
Logal perbition.

In erder $o get a fesling for th
pandwidine, we meke 5 comrze 5%
“typical’ environmens {1000 Lransactlons per
gecand, 0% update transaction, 10 locks per trans-
actlon. It 1a assuned that rﬂ‘h update fransactlon
modiffiss 4 blocks in aversge snd that the block
is 4 ¥B:; lock reguest and loock response
Jl"u] i comprise 100 bytes sach. Tahle 1
2‘1 f':‘“ Lhe rasulling bandw gt regquirements for the
threes dominabing message fypes and for thres
dilflerent shares of locsl access (20, 50 and 80%).
Hote, thal the lock responss mes ﬁabe\r‘ can e hﬂb-op
Lhan 100 bykes I they are used to transmit
medified blocka, The fregquency 0?‘ these cases de-
pends: on the amount of uffer invalldations which
iz alza deftermmined by the ftransseticon routling. In
the figures of Table 1 it iz assumed Shab such
“large” look response messages ars necesasary Dop
.54 of the locks in the case where 80% of the
apceazes gre loeal snd 1% {2.5%) 17 this share is
A0S (POED.

Table 1 shows that the largest Fraction of tha
pegquired pandwidths s due Bo the relsase nessages
used for tranamission of modlfied blocks to the
PCA-processor. Althouph the total bandwidth
raguirenents gre 2%ill within thes bechnicall
Feasible range, overlead situations in the message
geyeten are rather likely, especlally with a low
gshare 2f local acceszes ob I gome datzbase
partitions &are much more Pregquently modilied than
ohhers,

He

& preguired
imation for &

share of logal acoesses

B0% SOE =07
Felsass messsmes 1.6 g i
Lock regquesh messages 0.2 05 0.4
Lock responst massises .24 0L F 1.4
Total .00] B85
Takla I: Bandwidbh reguiremsnts (in MBSs) 1 all

moediified biocks transmibted to the FoA-

DEGCeEEnrsg

B2

In erder to avold such possible botflensck
situvations, one can use a revised scheme whers Lhe
madilied blocks need nobt be propagsbed to the POA-
praceascr, In sucn a scheme, the nsme of The
proceasar that has performed the last block
modifiestion iz also stored in the GLT {besldes of
the timestamp)l. Thus, the wvalid pags can be
requasbed from this processor when 4 buller in-
validation 1s defected. Thnis may result in
additicnal meazages and Increased walting Cimes
untll the newest copy can be accessed; howsvep, the
Lotal bardwildth reguirements are significantly
recduced, Thne resson [or this Ls thal modifised BT
are only exchanged between processors ol demarnd,
fTee. when the Iatest copy is actusally needed in
another processor. 3ince these cases are supposed
o be rare (an szsumption that could be confirmed
oy fivest empirieal investigations), the additioral

413

rl:.-';u',-‘“ ghould be saceptable.

In the next solutlon to buller imwlidation in the
eontext of POL, this method for updat$e propagation
ts alaso applied and deseribed fn more detail.

Irralidation weotor soluticn

Triis scheme has toe ad"ﬁﬁtage that it ds no longer
necessary Lo atore a fCimestanp in every blo "k The
CUT does noet kespoa timestanp for nodified bBlosks,
but instead & so-called invalidation wveotor is
mainizined, Isnce, the POA-1ock manaZer mainly use
twe Clelds In the block entrdes of the GLT
aconttrol toffer imwalidations:

Lo

Mol bit:y (% imvalidation vector ¥)

t.»r‘,uezs-:ur that has pzeformed

the latest medilicsticn.

(¥ if no processor is specified, the walld page
can e locund on disk %)

: array [L.
WD FY TNG-PROCEAS0E

Tne Invalldation vector T indicates fTor each of the
I processors whethor an obsolets ocopy of the hlook
may reszlde In the processor’s buffer. ThRiz in-
formation can be maintalned bacause alfser the
modifieation of a block B &t & prosessor B, anly P
has a walld copy of B in its buffer: for sll
remélning processors g buffer invalldation 1s
possible, Therelors, when the Y¥-Jlock on B fs re-
leased the invalidation vecter for such a hlock B
5 g2t o "17 for all processors except far the
modilfying one.
Before a lock request is issued to the PCaclock
marndger, 1t is firstly checked whether the
corpzsponding block alresdy residss in the local
puffer, If 5o, then the invelidaticn wveobor &llows
the PCA-processor to decide whether or not this
cony ls Invalidated. If the requesting processor
has ne copy of the block of only an obsolste cne,
t”bt'n r1J:‘I1__IIﬁ:I"—|"_"0 EA30R speeifies the pr"'U._,'-‘_.&::uDI‘
where the velid copy may be ghtatned, AfSer the
propagatlion of the new copy of & blaoek to a
requesting processcer P, the POA-lock manager resets
IiP) to 0.
For 1llustrablon assums that processop P2 has the
PCA for block B, which was most recently changed by
processor F3, and Lhat processor P1 has an in-
validated copy of B in its buffee (Fiz. Y). In the
blaoek entry For B in the GLT of PP, P3 is kent as
the processor having performed the last modifi=
catilon of B The Invalidstion wvesctor T = 110
indliestbes that P1 and P2 (but not P3) may bave dn
obsolate copy of B in their buffsare.
Whern now P1 issuss a lock reguest message Tor block
B to P2, 1t 1s told that there 1s a copy of B in
Fl's huffer. Using the invalidaticn vector, P2
recognizes that the cooy in Pl 1z chesolete and that
Lbs correct verslon of B has to be propagated to PL
1f the lock is grantsble (a propsgation alss would
ha necessary 17 F1 nas no copy of B in 1ts buffer).
Since F2 does not know whather the valid blogk 1=
an diske or only in the buller of P3, a message is
sent to P (propagstlon demand) in order So sreen
-1 vcr*r*er‘l. propagation. P3 sends the lock response
¢ Pl glong with the vwlid block or with the demerd
‘LrJ read the block from disk, At P2, the
irwslidation wyector Uor B is changed to I = D10.
It should be clear that only with three different
processors P1, P2 and P3 this procedure has to go
through, A mogd partiticoning and lozd balancing

P1 P2
—_.l TR
lock request messane g:i
™ |li=110

loek rapagalion
faspons demand
MEEsAgR message

P3

UETer
E

Pigure 4: Invalldatlon wector solution (axanmple)

mechanism, however, should schdeve that most (read
or update) accesses of blocks are dome abt the PCA-
processors, resulting in simpler treatmsnt amd less
communicaticon Jdelay for most lock requesats. For
example, the simplest case would be Pl=P2=pPj for
avelding all messages; if P2=P3, the propagation
domand would not ba necesszary and if Pl1=P3, the
lock request message could be saved.

4, gptimistic synchronization

With optimlstie concurrency control (Q0C), any
trepmpotion conslsbs of a resd phase, a valldatlon
phase, ard a possible write phase [10). Turdng the
read phase A transsctlon performe =11 updates
within a private buffer not acceszible by other
transactions. The wvalidztion ha&s Lo guarantas
gerializabllisy of the bransactlons; conlliet
regolutlon relies on transaction abort, The write
phase 1s only required for update transactlons
which have successfully v=lidated. In that phase,
sufl'iclent log dats hss to e lorced to a sale
place and the modifications are made visible to
othar transactlons [update propogation).

In |5] two kinds of 000 schemes zre distinguiszhed:
Firet, the backward-orisnted approach (BOCC),
sriginally Inteoduced in [10], and second, the
erward crlented method {(FOCC). fHore, we only
congdder the FOOD alternative providing some clear
advantages over the BOOC scheme (5]

With FOOO, only update transactlons have to
yalidate, Serializability is gusranbesd by chacking
whether there 15 an overlsp between the write act
of a validating transaction and the current read
set of any transaction not yet Tinished. For con-
Flict reaolution, FOCC offers several altermatives
[5], for instance a kill or an abort poliey. With
the latter, the valids=ting Sransucticn is abortsd
in cuse of conflict, whersas with the lormer all
eonflicting trensactlons are &borted.

In Dh-sharing systems & P0CC-1ike synchronization
is applicsble using = (logicall boken ring topol

of the processors. Each processor gan vallcate
transactions in its master phase only (i.e. when
the processor holds the token) guaranteeling that at

414

any peint in time no mere than one validation
performed In the system, Valldstion againet Joosl
transactions can be done with the zane technigques
as In centralized systems; fop validation against
not-local transactions, the write sets of loeally
validated transactions {(remember, coniy update
transections must validate) are sent along with the
token (in 8 so-called buek) to the other
processors. 4 processor muat then check 211 local
transacticons against these write sets In the buck
after receipt of the boken.

In such a scheme, the simplest trestment of Luffer
invalidation =snd concurrency control 1s possible if
the kill polisy fs used for global conl'lict
resolution. Therefore, we firat dlaguss this case
belore the impacts ol more complex resclution
atrategiss are Investigatad.

=

K11l polic
TF the K11 policy is used lor confliot resolution
ggalinat external transactlons, &n updste tran=-
action can bte commitied as soon as 1T s suecsss
Tfully validated at the loesl processoer, bhecause
ceonflicts at externel nodes ere resclved by
aborting the conilicting transactlons. Therefore,
the transsction does not need Go welt uankil its
write set bas completed the ring oirculation. Using
the Idll policy the master phase of & procoasor P
mainly eonzists of the following stepe that shouid
run within a critiecal section:
1, Global weligation.
The write setz in the buck originating from
external transactlions are oheoked agalnat the
read snd write acts of tpansactlons eurrently in
progress at Po I a confliet ooours the local
transsotion is aborted (k1ll polioyl.

2. Loeal validation.
Local update trensacticon: hﬁerE Finlished bhelic
read phases {and having survived globsl
validation in step 1) are valildate:d sgalnst
local transsctions. For this the k11l policy or
any other resolution scheme can be applied.

3. (pdate propegation.

The updates of exterral transactions l'or which a
global welidation has been perforned In step 1
must now be made visible at processcer P. The
mechanlsn for that which alsn vemoves
inval ldated pages from s buffer is explained
below. More details about the synchronlzation
protocol 1iself and why thla achems gusrantess
gerializability can be found in [6).
In order to keep the mester phane shopt, the write
sets of locglly wvalideated transactlons are
foprwarded within the buek to the naxt prosassor
before these tpansseblons heve complefed thelr
wrilte phases (short master phases ire extremely
importent in this achema, ses |6]|). This is
necsgsary since the write phasas requirse at lsast
one phwsical I/0 to the log. Nevertheless, for
proper synchronization update propagation must
asaure that no modification is visible to other
transactions before the COMMIT-record is written fo
th=e Jog.
For local transsotions, this can e aghleved as in
cefitralized systems. The modifled pages being kept
In the private bufler of the updating transaction
are made visible as socn as sufficient log data 1s
written to a safe place, For thls purpose, the
modified hlocks are copled fran the private buffer

loeal databsse buffer within a critical
aeation, Externzl btransactions cannct acoess
uncommivied medifications, too, since only the
write sebts but not the data 1tsell are transmitbbed
within the bucks. If an extermal transaction wants
to access such & modifisd page, sn expliclt request
1s requireé (“propagate—con-demand’), Slnce the page
is not propagated €o the reauesting processor untll

Lhe modificaticn iz committed, external btrans-

petions cannot see “dirty data”. Tn order to allow

4 lust exchange of modified pages, direct communi-

catlon betweon any tweo processcrs should be

poasible {e,g. Ly pointto-point egrmections).

The welte sets in the buck are used to implement

auch A propagate-on-demand scheme for updnte propa-

gatlon as well a5 to detsct buller Invalidatlons,

In the above step 3 of a procesaor’s master phase,

the following actions are performed [or each block

B that elongs to any wrdte set in the buck:

1. If a copy of B resides in the local buffer it 1s
discurdad for being obsolete.

2, An entry for B 1= inserted or adapted in a data
structure called MODIFIED-BLOCKS-TARLE {MBI).
Thee MBT which may be organized as a hash table
contalng an entey for each modified block where
the processar is specified that had perlormed
the last update of the block.

Avtlon 1 ensures thzt no invalildated obJecta can

be ag¢essed fn the local bufTer. The MAT, updated

by aecblon 2, indicates. from which processor a

medified page must be demanded,

In arder to acesas hlock B, a transactlon T must

now spply the followirg procedurs:

Into the

I (178 private buffer contalns a acpy of T THEN
eccess this oopy;
ELSE [10;
IF (the local dastabsse buffer holds a copy of B)
THEN access this copy;
ELSE IF (Lre local MET keeps an entey for B)
THEN request a copy of B from the processcr
vhers B was modified most pecently:;
FI3E mad B Crom disk;
B

II' neither T"s private buller nor the local
datebage buffer holds 2 copy of B, the MBT is
checked whether B was modifled by an external
transagtlion, If so, the blosk is demanded Crom the
progessor where B was modified; otherwise, B can be
read from disk,

In order to keop the numbar of entries within the
MHD auesplably amall, the processors keep teack of
Lhe papes, which have been locally modllled most
recently, that sre writfen to the database on disk
due to buffer replacement decislons, The ldentifier
of thass pages are sent to all processors within
the next buck and 21low te remove the corresponding
entriez ['rom the METs.

This simple and effective solution to buffer
invalidation and update propagation 18 only
dpplicable i a pura kill strategy i= used for
conflist resciution. Unfortunately, the ki1l policy
18 not appropriate in many cases becauzs [t leads
to a high abort rate especlally for long trans-
metlons |11). Therefore, we discuss now which
extensions of the scheme are required when more
lMexible resgolution stratogles are used,

415

Other strategies for conflict peasiution

If not a k111 pollcy is applied, a locally
validated transactlon can still be abortod by other
processcrs. Therefore, the fate of an updats
iransaction 15 not determined wntil 1ts write =st
has completed one ring circulation. Since response
Eime 1s increazed by the time reguired for this
circulatlon, it is evan more imporant to keep the
master phases ghort, Furthermars, 1t is A2fFicule
to reach medular grawth ginee each additicnal
processor 1s likely to lnorease pesponse times.
The above described method for update propagation
must alas be adapted beeause the wreite sets 1n the
tuel Indleate only poasible modifications sincs Lhe
transaction may 4till be sborted by ancthep
processor, Acoordingly, 1t L8 still undetermined
whether or not & local copy of a block that belcnps
Lo a write set within the buak is getting chbsolete.
In erder to deal with these posaible modisicaticns
fhe block entries In the METs are extendsd to the
following structure:

HOCX-ID: hlock ldentifier;

HODTF ING-PROCESSON : rame of the processsr where
the last succeasful modifi-
catlon of the block was
parlormed ;

(* indicates whether or not

the block 12 subjest to =

‘posslble modification #);

TH-DOUBT: boolean;

POSSTRLE-UPDATRER ¢ name of bhe transaction not
yet cammitbed that wance o
modify the blocig

WATTIMNG-T,TST; 1let of lecal transsotions

that walt until IN-DOUET
Talaw,

As with the ki1l policy, the MED is updated cuaring
Lthe master phase after the global and locsl
validation. For each block B belorging to the write
set of 2 {local or external) transaction T thet hes
successfully valtdated nt a praceasor P, an entry
1 created or adapted In the MST of P. Within the
entry of B, IN-DOUET is set to “true® amé T i=
Stored as 2 POSSIALE-UPDATER. Slnce transactions
that were aborted at the local proecessor [or a2t a
precedicg processor) are not considered anymors,
there iz only one POSSIBLE-UPDATER for & block at
most. Local transactions that want to acosss a
block for which IN-DOUET holda, are delayed (within
the WATTTMU-LIST) until the fate of the tramsactics
kept as POSSIBLE-UPDATER 13 Mnown. With this
stratemy, 1L 1s ensured that always the most recent
Block can be provided, howover, for the price that
transactions are sometimes hlooked., & more
optimistie strategy would be to assume that the
medifying transsotions will suryvive and to access
their uncommitted modifications, With such &
strategy, however, & teansacticn T that has
accessed "uncertain” data camnoet commit unkil the
fate of all POSSIRLE-UPDATERS from which T has
received uncommitted data i= kncwn. T must be
Aborted If any of these POSSTELE-USDATERs has
failed, Tn the rest of this saction, we assume the
first {"pessimistic”) strategy where only committed
modifications are made accessible.

With thils scheme, all processors are infarmed about
Lhe f=ate of an update transsction T as soon 2s T
wWrlte set has completed coe rirg cireulation, If T

wag suceessful, all procsssors must be informed
that T& modifications are committed. For all
hipake belongping to T's wiite set, the entries In
the MET: 2re adapted [IN-DOUBT := “false”;
MODIFY LRG=-PROCEES0R processor where T was
executed). If T was aborted only the progessors
muat be notified thak are 38ill uninformed aboulk
T"g fate {in the processor wers T was aborbad and
in the suceessor processors ascording o the ring
topalogy, T's write sst was not inspected any
more). The nobtifications about T labe nesd not be
sant within the ouck; 1t seens advizable to inform
the other processors direstly (e.z. Sy using a
brozdeast facility or & polnt-to-point network) to
keep the time ‘uncertainty’ as shoet
posaible,

In aorder to ascess & block B a transactlon T has
row To oo through the Pollowing procedure;

ol fi

I (7% private buffer contalng & copy of B} THEN
aceess this copy;
FLEE TF (the local MBT kesps an sntry lor Bl
THEN D33
IF IF-DIUET {B} THEMN delay T until
IN-DOIET (B} = false;
FIEE send propagabion demand Lo MODIFYINO-
PROCESS0E (B
BHL:
ELSE read B feam the local database ouffer or
Trom dislkg

In contrast to the procedure with & kKill policy,
locsl database bulfer is hare not always
consulted in gasa T's private buffer dcoces nokb
contaln & copy of B, The reason for this 1s that
the local buffer may hold blocks that are subject
to 2 possibles modification.

The desaribed method for updibe propasation 13 naw
1lluztrated &y the example in Fig. 5. Fig. 54 shows
the sifuation where the most rscent copy of block B
resgides in the bulfers ol processors P1 and P3. In
the MBI at procezagr P2, P3 is kept as the
prooegsch whers the last auccessful modilication
wan performed and that no transaction has notilfied
a possinle modification (IH-DOUET “false’}.
fasume now, thab a transaction T at 71 wants bo
walidate and that B belongs to 1T7s welte set, After
the arrdvel of the foken st Pl, T is validated
smainst the write zs2ts in the buck and agalnst
locsl transachicns.

Suppase that T has survived these valldations.
Sines B belongs to T write set, an entry for B i=
erezated in P17s MET with IHN-DOUST = “trus” and
POESSTIELE-UPRATER = T. I"lg. 5b shows the situation
when T has 4180 been suceessiully validated at P2
and 73 and the buclk 1s on its way Crom B3 Lo Fl. In
that situation no trensactich 1n any processor
woiald be gllowed To socess plock B since it 1a leol

oy
wle

ta
as IN-DOUST in all MBTs. In Fig. 5¢, the situation
iz depicted when all progsssors have been informed
that T was succesaful, At Fl the new copy of B is
written fromn the private buffer of T into the loeal
dztabase buffer thereby overwriting the old copy of
B; the entry for B in the MET is not needed any
mare. AE P2 oand F3 the entrles of B in the NMETs are
adapted {IN-DOUET := false, MODIFYING=FHROCESSOR
F1); the copy of B at P3 is disciérded for beling
chaolete, IF T had falled to walidate at any of the

“seheme 1s used for synchronizstion, okt

4168

three processors, Lhan tha situation of Plg.
wolald have been reestablished.

Ly
o

P1 P2 F3
MET-
=}
lalse
—|Fa ——
B | bufiar . UL
o N a
ohen
& ¥]

a) Situation befors the token arlves af P1 where transaction T
with B ¢ WS {T) is waiting for wvalidation

P1 P2 P3
R MET, HE Ty

] 2

true truae

i || 25

TP T M

putfer buifer
‘ Toxen
e

by Shuation afer successivl Sirculation of T's write sat just
befare the token amrives again at P

£1 F2 F3
MEFTZ r-"BTa
B B
g |[Fal== S falee
A1 P
E_ buffer

)]

ch Siuation when all precessors are informed that T has beean
succassiully validaled
M™Meure B TTse of the HBETs during the walidation of

Eyt
a transasticn

5. Coneluding Hemarks
In this paper we hawe Investipsted the problems ol
conourrensy control and buffer Invalidation in DE-
sharing systems. 4 solution to the latier problem,
which is strongly related Lo the strategy for
propagating modified papes to dlsk (PORCE or
HNOFORCE], must detect cbsolete coples in the loeal
daftabase buffers and preovide method [or
exchanglng modlfied data between procsssors.
Since the peneral bhreadesst solutics (pregented In
gection 23 seems not to be tolersble in high
perlformance snvironments, we have developsd a
number of techniques that work in ccoperation with
one of the fwoe synchronization algorithnze discussed
gnd with & NOMRECE-strategy. 1T the primary copy
solafe coples
in the buffers can be detected by two basic
mechanisms: the use of fimestamps, cor, even babier,
by mzintaining invalidatlen wvectora. MICC-like
synehronlzation allows an elegant selution o
update propagation and buffer invalidation if a
pure Will policy can be used for conflicet
resolition. Otherwise, #Hccess to Invalidated
objects can also be avolded, however, transactlons

L

may be delayed 1" they want to accezs a block bedng
subjocl Lo a possible modificaticn,

for update propagetion betweon proceszors (wWith
WOFORCE) we have aiways sdyvised a “propagate-on-
derand’-scheme Instesd of transmitting all modifi-
eations to the PCA-processor (in case the primary
copy epproach [s used) or arourkl the tokan ring (in
the FOCC-alparithm). This is because the latter
sbrategy would imply much more messans overhesd (as
was ahown Por PCL 1n sectlon 3}, although only a
small fraction of the modifications i llkely to be
used Ln other processors than the modiLying ona.
With the propapate-on-demend scheme, on the obher
hend, enly when a modified page s actunlly nacded,
& request is sent Lo the processor keeping the
deslred page. The time required for such a pape
exehange via the communication system should
generally be much smeiler than & physical read from
disk. Furthermore, the mumber of these request
meassages can be kept small Il an eflfective
transaction couting 1= possible.

To quantify the ussfulness of our proposals to
concurrency control 2od to the treatment of buffap
invalldations, we heve Implemented the primary copy
algorithm (with tnvalidation vectors) sz well as
the FOCC-scheme within a simulation system.
Although our sinmolations, deiven by real-life
cbject reference strings, are not yet completed, it
la slready safe bo say that the communication
cverhend 1s kept to a mindmim and that the “xchangs
ol pages goross the commundeation aystem peaulta in
o performance problems st all, A detailed
description of our simulatlons wnd an analysls of
the repeults are given in a ssquel to this paper.
The deaerlption of the integrated aclutions has
shown that coneurrency control and bulfer m e
ment must coeoperate much more than in centralized
gyatcma, For instance, the buffer manager must be
sble to process propsgation reguests in order to
aichange modified page= bhetween processors.
furthernore, the synchronizstion component can
cduse that pages that have been recognized es
obsclete are discarded From the buffer, In the
FOOC—schems, data 15 accessed via an MED that tell
whnere the valld cony ol 2 block is available.
fnother important noint not discussed thus Mar are
the Impllcations of a processcr arash. For
iratance, during recovery it may be noaesaary o
reconstruct some essentlal dats structurss (e..
legie tablea) in ordsr to properly continue
aynehranization and bul'fer contral, Furthermore,
with NOFORCE the redo of transactlona successfully
axecutad st the failsd procssacr is more
pumpllcated than in centraiized aystems, gince one
eammot alnply welte all after-imapes of thesa
transactlons from the log to the datebasze, This 1s
becauss one could then overwrite bhe valid copy of
A pege by un cbsolete after-image. Although & more
detallsd discussion of the recovery lmpacts of oup
algorithms s beyond the scope of this paper, one
can say that the Integrated solutions tend tn
conplicate pecovery protocols, This geems £ be the
prica for efficlency during normal processing.

417

References

Barr, A&.J.: Tranzssction MHoni toring in
FHCOMPASZ. Proe. VLDB, 155-165 (1081).
Effelsberg, W., Hirder, T.: Prineiples of
Database Sulfer Management. ACM TODS, 9 (i),
560-595 (1584).

Dias, D.M., Iyer, FAR,, Robinson, J.T., Tu,
P.3.: Deslgn and Analysia of Integrated Con—
surrency-Coherency Controls, IBM Research
Report. RO 11557 (1985),

aray, J. et al.: One Thousand Transactions per
fecond. Proe, IEEE Spring GompCon, San
Francisco, 96-101 (1985,

Hirder, T.: Obaervations on Optimistic
Concurrensy Centrol Schencs, Information
Systems 9 (2), 111-120 {1984).

Hrder, T., Peinl, P., Router, 4.: Optimistic
Concurrency Contirel in a Shared Databass
Environment. Depl. of Computer Science, Univ.
of Kaiserslautern/Stuttgars, preliminsry
version, {1985).

Harder, T., Rehm, E.: ¥ultiprocessor Databaze
Systems [or High Performance Transacticon
Systems, Informationstechnik, 28(4), 214-275
{1986), 1in Gerwan.

Hirder, T., Reuter, A.: Principles ar
Transactlion-Oriented Database Hecovery, &0N
Computing Surveys, 15(4), 287-317 (1983
Feene, W.N.: Data Sharing Overview, Tn: TMS 7S
VI, DBEAC angd Data Sharing User’s Oulds, Aelesan
2, G30-5911-C (1982,

Rung, H.T., Raoblnson, J.T.: On Optimistic
Methods lor Qoncurrency Coentral. ACM Tobs, A
{2}, 213-226 (1981),

Felinl, P., euter, A Dapleical Conparison of
Database Cancurrency Control Schemes. Fros, o0th
Int. Conf, on VLDBE, 97-108 (1683),

Rahm, E.: Concurrency Contrel in LB-gharing
Systems. Proc, 1fith Annual @I Conf., Springer,
Informatik Fachberichte 126, 617-632 {19861
Rafm, E: Closely foupled prchitectures for DBE-
sharing, Proc, 9th NTG/GL Conl. ca Conputer
ArchiZecture and Operatlng Systems, VDE Verlag,
166-180, (1986}, in German

Katm, E: Primary Copy Synchronization for 8-
sharing. Information Systems, 11(4), 275-286
{1986) .

neuter, A.: Load Control and Load Balzneing in
& Shared Database Management System. Proe. 2nd
Data Englneering Conf., 188-197 [1986),

Reuter, A,, Shoens, X.: Synchronization in a
Tatz Sharing Fnvircnment. TAM S8 Jose Rosearch
Leb., preliminapy version (19841,

Sekino, A. et al.: The IO - A New Approach to
Multisystem Data Snaring, Proc. Natfemal Comp,
Cont., 59-68 (1984).

Sheens, ¥. et al,; The AMORERA Project. Proc.
IZFE Spring Complon, 10P-105, (1985%.

12. Willfam, R. et al.: A% = An Overview of She
Architecture, in: Tmproving Database Usabllity
and Responsiveness, P, Scheuermann {ed.},
Academsic Press, 1-27 (1982).

West, J.C. et al.: FERPOS Pault—Tolerant
Transzctlon Processing. Proc. 3rd Symp. on
Reliabillty in Distributed Softwars and
Daisbase Systems, 186-194 (1983).

10,

1].

12.

i3.

1,

15,

16.

£0.

This work was Cinanoially supported by SIEMERS AG,
Muanich.

