A RELIABLE AND EFFICIENT SYNCHRONIZATION PROTOCOL
FOR DATABASE SHARING SYSTEMS

Erhard Rahm

University Kaiserslautern, FB Informatik, Postfach 3049
D-6750 Kaiserslautern, West Germany

Abstract:

Database sharing (DB-sharing) refers to a loosely or closely coupled multiprocessor
architecture where all processors share a common database at the disk level. Such
systems primarily aim at high availability and high performance demanded by large
applications in online transaction processing. To achieve these goals a synchronization
technique is required that efficiently coordinates the processors' database accesses
and that also works properly after a processor crash. The described primary copy
algorithm seems to be a good candidate to meet these requirements since it permits
flexible adaption to changing working conditions. Besides of the basic protocol we
specify the recovery actions after a processor crash. Mechanisms are proposed that
allow to continue synchronization after a crash with little interference to transaction pro-
cessing. Furthermore, the required redundancy is provided with nearly no extra costs
during normal operation.

1. INTRODUCTION

High availability is a major demand in online transaction processing. Large applications in banking, inventory
control or flight reservation processing typically allow an outage of five minutes per year only /Gr85/.
Therefore, each major software and hardware component (processor, disk, controller, inter-processor
connections, etc.) should at least be duplicated to provide sufficient fault tolerance /Ki84/. Furthermore,
component failures have to be transparent to the users, modifications in the software/hardware
configuration should be performed online and the common database must be a consistent and up-to-date
reflection of the state of the business at any time. Kim has stated in /Ki84/ that loosely coupled multi-
processors where the common database is either partitioned among the processors (DB-distribution) or
shared (DB-sharing), offer the best framework for building a highly available system. in this paper we
concentrate ourselves on DB-sharing systems. A comparision between DB-sharing and DB-distribution can
be found in /HR86, HR87/; /Ki84/ and /Se84/ present systems that claim high availability.

Besides of high availability, a DB-sharing system also aims at high transaction rates with short response
times. Whereas current database management systems (DBMS) at best achieve about 200 - 300 (short)
transactions per second (tps) of the 'Debit-Credit'-type /An85/, high-volume transaction processing systems
require more than 1000 tps in the near future /Gr85/. The problem for a loosely coupled DB-sharing system
to reach these transaction rates (with acceptable response times) is the expensive communication with
messages, even if a high-speed communication system is used (process switches, send and receive
operations). To make communication more efficient, one could use a common memory partition (e.g. for
synchronization) resulting in a closely coupled DB-sharing system. Here, we only discuss loosely coupled
systems that provide better availability and expandability.

Fig. 1 depicts a loosely coupled DB-sharing system where all processors (DBMS) share access to a single
set of databases. In such a system, transactions can always be completely executed at one processor since
each CPU has direct access to the entire database (in particular, no distributed commit protocol is required).
A global load control located at one or more front-ends distributes each incoming transaction to one of the
processors (transaction routing). The direct attachment of the disk drives to all CPUs implies physical
contiguity of the processors, but it also permits a high-speed communication system (e.g. 10 - 100 MB/sec).
Examples of DB-sharing systems are the Data Sharing facility of IMS/VS /Ke82/, Computer Console's Power
System /We83/, the DCS project /Sek84/ and the Amoeba project /Sh85/.

A main advantage of DB-sharing systems is flexibility. Since each processor can access the entire database,
transaction load can be dynamically distributed among the processors according to current needs and



337

system availability. Additional processors can be added without altering the transaction programs or the
database schema. Likewise, a processor failure does not prevent the surviving processors from accessing
the disks or the terminals. Transactions in progress on a failed processor can be backed out and
redistributed automatically among the available processors.

Terminals Q e D
\ /

| =
Transaction Routing J
Front-end
ront-ends (Load Control)

Communication
system

P1 P2 PN PN
Processors

External
storage

shared databases

Fig. 1: Structure of a loosely coupled DB-sharing system

Naturally, the design of a DB-sharing system requires new or extended functions to be added, compared to
centralized DBMS:

- The synchronization component has to coordinate the processors' accesses to the shared database in
order to guarantee serializability of the executed transactions. Since there is no common memory,
concurrency control requires message exchange among the processors which is much more time
consuming than lock request handling in a centralized DBMS. Because these interprocessor
communications directly influence response times and throughput, the algorithm used for concurrency
control must minimize the number of synchronization messages as far as possible. Furthermore, the
synchronization algorithm has to provide sufficient resiliency to maintain consistency of the database even
in the presence of failures. The availability of the database has especially to be preserved across individual
processor crashes. A number of conceivable synchronization techniques for DB-sharing are surveyed in
/RS84,Rag6b/. Optimistic protocols are discussed in /Ra87b/.

- Buffer control is needed to manage the problem of buffer invalidation that results from the
existence of a local database buffer in each processor. An update operation modifies only the processor's
local copy of a database object; copies of the same object in other buffers are getting obsolete.
Therefore, accesses to such invalidated objects must be avoided and a method to propagate the new
contents of modified objects to other processors has to be supplied. If an update transaction writes its
modified pages to the database on disk before commitment (FORCE-strategy, /HR83/), then the latest
version of an object can always be read from disk. With NOFORCE, on the other hand, modified objects
may be exchanged directly between the processors (via the interprocessor connections) or also across
the shared disks.

Load control has to find an effective strategy for transaction routing such that all processors are well
utilized (however, without overloading any processor) and locality of reference (to decrease the amount of



338

disk-1/0 and buffer invalidation) is maximized. Furthermore, a cooperation between load control and
concurrency control should be possible in order to reduce the number of synchronization messages.
Load control also has to react dynamically to changes in the workload and to the crash or reintegration of a
processor.

The recovery component is responsible for system-wide logging and recovery. Each processor has to
maintain a local log required for transaction undo and crash recovery. Additionally, a global log (e.g. for
media recovery) is constructed by merging the local log data. Crash recovery is performed by the surviving
CPUs in order to continue transaction processing. Uncommitted transactions of the failed processor are
backed out and restarted on another processor.

In addition to the realization of these components, DB-sharing has to provide a 'single system image', i.e. at
least end users and programmers should be relieved from the existence of multiple processors. Also very
important are a high level interface to the users, ease of installation, ease of maintenance and ease of
modifications. Managability and maintainability have direct influence to reliability since most system failures
are caused by users and operators /Gr86/.

In this work we focus on the synchronization problem that is also related to load control, recovery and buffer
control. In section 2 we describe how synchronization is performed with the primary copy algorithm under
‘normal’ conditions. Section 3 shows the behavior of the protocol in the presence of failures, especially after
a processor crash.

The primary copy algorithm to be described is based on similar algorithms used in distributed DBMS with
replication /BG81/. in the latter schemes, each data item has a primary copy controlled by one of the
processors. Besides of synchronization, the primary copy processor is also responsible of updating all
copies of the data item. With DB-sharing, however, no replicated data must be controlled in this way
(although another kind of replication is treated by the buffer control).

2. PRIMARY COPY LOCKING (PCL)

In this approach the synchronization responsibility is distributed among all processors. Therefore, the
database is logically partitioned into N disjoint parts and each of the N processors performs the global
synchronization for one partition. A processor is said to have the primary copy authority (PCA) for its
partition /RS84/. As Fig. 2 shows, each lock manager maintains a global lock table (GLT) to control the
objects of its partition and a local lock table (LLT) to keep information about granted or requested locks for
local transactions.

P1 P2
LLTH LLT2
GLTH ‘ l GLT2

message
subsystem

P3 ! P4
LLT3 4_T L_> LLT4
GLT3 GLT4

Fig. 2: Primary Copy Locking (N=4)

PCL has the obvious advantage that lock requests against the local partition can be managed without
communication, regardless of external contention. Only lock requests against non-local partitions have to
be sent to the authorized processor. To minimize the number of such ‘'long' lock requests, load control
should attune the partitioning of the data and the assignment of the load appropriately instead of routing



339

transactions at random. It is this potential for reducing the communication overhead that makes the primary
copy approach attractive for DB-sharing.

Up to now, it has not been precisely specified what kind of information is kept in the local and in the global
lock tables and how synchronization can be performed using this information. We assume in the sequel that
synchronization is performed on block level (page level) and that two types of locks are obtainable for a
transaction: read or shared locks (S-locks) and write or exclusive locks (X-locks). The compatibility of these
locks is as usual.

Data structures

Both types of lock tables (local and global lock table) use a different format for their control blocks or block
entries required for synchronization. The exact layouts of the block entries are given in Fig. 3. We assume
that a block entry for a certain block may simultaneously reside in the global lock table as well as in the local
lock table of the same processor. This has the advantage that a redistribution of the PCAs can be done
without changing the LLTs. Keeping block entries not only in the GLTs also allows a reconstruction of a GLT
that was lost due to a processor crash by merging block entries from the LLTS (see next section).

Structure of a LLT block entry:
BLOCK-ID: ...
GRANTED-LOCKS-LIST: list of TA ENTRY;
LOCAL-WAIT-LIST: list of TA-ENTRY;;

Structure of a GLT block entry:
BLOCK-ID: ...
INTERESTED: array [1:n] of bit;
(* N processors *)
MODE: array [1:N] of [0, S, X];
GLOBAL-WAIT-LIST: list of TA-ENTRY;

Structure of a TA-ENTRY:

PNR: ... (* Identification of the processor;

only required for GLOBAL-WAIT-LIST *)
TA-ID:...  (* transaction ID within processor PNR *)
LOCK-MODE: S, X];

Fig. 3: Structure of the block entries

The example situation of Fig. 4 shows the block entries for a block B1 within the lock tables of two
processors. We assume that processor P1 holds the PCA for the partition to which B1 belongs. In the block
entries of the LLTs only local transactions are kept, either in the list of the granted locks or in the
LOCAL-WAIT-LIST. In the GLT, transactions waiting for a lock are stored within the GLOBAL-WAIT-LIST. In
this list transactions of all processors can wait.

processor P1 processor P2
LLT1 LLT2
Bl GRANTED-LOCKS-LIST B1
—t|T1| X °
.//'
s LOCAL-WAIT-LIST
LOCAL-WAIT-LIST <>
GLTI1 GLT2
Bl GLOBAL-WAIT-LIST
INT.= 11| —P2[T3] X
MODE = X0

Fig. 4: Lock scenario with two processors



340

In addition to the GLOBAL-WAIT-LIST, a block entry in the GLT contains further information (as shown in
Fig. 3) in order to process lock requests. The vector INTERESTED indicates the processors keeping a block
entry for the respective block in their LLT. The vector MODE gives the mode of granted locks for the
interested processors. Value MODE (P) = 0 says that processor P is not interested in the block, or that there
are only transactions waiting for a lock on the block. Value MODE (P) = X indicates that an X-lock has been
granted to a transaction at P, value S means that a S-lock was granted. In Fig. 4, 'INT. = 11" is used as an
abbreviation of INTERESTED (1) = 1 and INTERESTED (2) = 1. This means that both processors are
interested in the block. Similarly, MODE = X0 stands for MODE (1) = X and MODE (2) = 0. This says that an
X-lock was granted to a transaction at P1 and that no lock for B1 is granted at P2.

Now we are in the position to explain lock request processing using the data structures just introduced.

Lock request processing

Assume transaction T at processor P has issued a lock request for block B. PCL handles this lock request as
follows:

If P is the processor owning the primary copy authority for the requested block, it is checked whether or not
the GLT already contains a block entry for B. If this block entry does not exist, the lock can be granted since
T is the only transaction that wants to access B. In this case, block entries for B are created within the GLT
and within the LLT at P, the vectors INTERESTED and MODE are initialized properly, and T is inserted into
the GRANTED-LOCKS-LIST of the block entry in the local lock table.

If the GLT already holds a block entry for B, the lock request of T can be satisfied if the GLOBAL-WAIT-LIST
is empty and if the required lock mode is compatible with the granted locks (decidable by using vector
MODE). Otherwise, T has to wait for the desired lock and is appended to the GLOBAL-WAIT-LIST and also
to the LOCAL-WAIT-LIST in the LLT.

If P does not own the primary copy authority for block B, the lock request cannot be treated locally. So, T is
entered in the LOCAL-WAIT-LIST in the block entry of B in the LLT (the block entry may have to be created
at first) and a lock request message is sent to the responsible processor, say P'. P' uses its GLT for
processing the lock request message as just described for the local case. Only if the lock is grantable a lock
response message is sent immediately. Otherwise, T is appended to the GLOBAL-WAIT-LIST in the GLT of
P'. In that case, the lock manager of P' activates T (using a lock response message) at the time when the
conflicting transactions have released their locks on B and T is chosen from the GLOBAL-WAIT-LIST to
obtain the requested lock. After receipt of the lock response message, T is removed from the
LOCAL-WAIT-LIST and inserted into the GRANTED-LOCKS-LIST.

For illustration, look at Fig. 4 once more. Assume that at the time when transaction T1 had issued its
X-request for block B1, there was no interest in B1 at processor P2. Therefore, the GLT at P1 had contained
INTERESTED = 10 and MODE = X0 for B1 when the X-lock was granted to T1. After that, suppose
transaction T3 at P2 has wanted to modify block B1. In the LLT of P2 a block entry for B1 was created, then
T3 was inserted into the LOCAL-WAIT-LIST, and finally a lock request message was sent to P1. This
message resulted in a change of INTERESTED to 11, and T3 was inserted into the GLOBAL-WAIT-LIST
since the requested X-lock was not compatible with the granted X-lock at P1. Fig. 4 shows the situation after
the S-request of another transaction T2 running at P1. This lock request was also appended to the
GLOBAL-WAIT-LIST.

In /Ra86¢/ an optimization of the primary copy algorithm is proposed which provides a more effective
treatment of S-locks that is especially important for level-2-consistency. Furthermore, solutions to the buffer
invalidation problem are given that use additional information in the GLT and avoid extra messages as far as
possible. The improved primary copy scheme has been implemented as part of a simulation system that is
driven by real-life object reference strings in order to quantify the performance behavior (throughput,
response times) of the algorithm. Some of our simulation results can be found in /Ra87a/.

Interaction with load control
The PCL algorithm described above should need little communication if an effective partitioning and

transaction routing can be performed. To achieve this goal, load control needs a prediction of the
presumable reference behavior of any transaction. Such predictions can be derived from the transaction



341

type identifying the subschema of the database accessed, and possibly the terminal identification and input
data (parameters). At least for simple transactions this kind of information should allow a fairly precise
estimation of which part of the database the transaction is going to operate on. Load control, which has to
know the PCA distribution, can therefore route the transaction to that processor where most of the
synchronization is local (provided this processor is not overloaded).

As shown in /Re86/, transaction routing can be done using a so-called routing table. The routing table is
constructed for a certain load pattern and gives to each transaction type the processor(s) that allow the most
efficient processing of transactions of that type. Furthermore, it guarantees for the assumed workload a
good utilization of the system without overloading any processor. In /Ra86a/ some heuristics are given that
allow a coordinated calculation of a routing table and a PCA distribution.

The possibility of a coordinated determining of the routing strategy and the PCA distribution allows a perfect
cooperation between load control and concurrency control. In particular, it is possible to adapt the routing
table and potentially the PCA distribution - when the workload changes significantly (what may be
recognized by monitoring the arrival rates of the transaction types /Re86/). Similarly, the routing table and
the PCA distribution can be adapted when a processor fails or is added (reintegrated) to the system. This
potential of a flexible adaption to changing working conditions should generally result in a sufficient
reduction of synchronization messages as needed for high transaction rates and short response times.

Note, that a redistribution of the PCAs requires that the global lock tables must be rearranged accordingly.
Furthermore, after a processor crash the lost GLT of the failed processor need to be reconstructed in order
to continue synchronization on the corresponding partition. The next section gives solutions to these
problems.

3. RELIABLE PRIMARY COPY LOCKING

To provide continuous operation and failure transparency, the synchronization component must be capable
of dealing with failures in the system. The following types of failures are usually considered in distributed
environments:

a) transaction failure

b) processor failure (crash)

c) failure within the communication system

d) failure of other components (disk, controller, etc.)

Transaction failures do not pose any new problem to be solved. The effects of an uncommitted transaction
can be undone by the executing processor (possibly using the local log) and the locks are released by
informing the responsible lock managers.

Failure types b, ¢ and d require sufficient redundancy and their treatment is - with the exception of the
processor crash - nearly independent of the concurrency control algorithm in use. For instance, a disk failure
may be recovered using a mirrored volume or alternatively by applying the global log to an archive copy.
Similarly, the failure of an inter-processor connection requires a redundant connection; a reliable
communication protocol must ensure that no messages are lost.

In the rest of the paper we assume a robust and fault-tolerant communication system where no messages
are lost and all messages are delivered in finite time. Furthermore, it is assumed that failures are
independent from each other, and that no failure occurs during the recovery of another failure. We discuss
in the following how PCL can cope with processor crashes and the integration of new or repaired
processors. Crash recovery requires that the local log of a failed processor is accessible by the surviving
CPUs.

After a processor crash the contents of the volatile memory including the lock tables are assumed to be lost.
The recovery of the failed processor must be done in cooperation with load control and includes rolling back
uncommitted transactions, redoing lost effects of committed transactions, reconstruction of the lost GLT,
redistribution of the PCAs, modification of the routing table and restart of the failed transactions. For
simplicity it is assumed that load control is a centralized function for which a stand-by (shadow) can take over
control in case of a failure. The used data structures may therefore be dually kept in independent main
memory segments so that the spare load control finds a consistent copy after a failure of the primary load
control. Details of such a recovery procedure for the load control are, however, beyond the scope of this
paper; a suitable implementation may use similar mechanisms as described in /Sek84/.



342

As mentioned in the previous sections, load control performs transaction routing and load balancing. It
keeps the following information:

- the routing table
- a PCA table, that holds the current PCA distribution
- further information about available processors, utilization, etc.

Fig. 5 shows examples of the routing table and the PCA table. The routing table (Fig. 5a) gives for each
transaction type the processor(s) a transaction of that type should be routed to. If more than one processor
is eligible (for T2 and T5 in the example), the routing decision depends on the current utilization of these
processors. The PCA table is kept in each processor and determines the processor being responsible of a
lock request (a lock request for a block B is directed to that processor that holds the PCA for the database
fragment to which B belongs). A database fragment is a portion of the database (relation, segment, etc.)
for which a PCA is assigned. A partition consists of all fragments that are controlled by the same processor.
For example, the partition of processor P3 constitutes from fragments D1, D5 and D6.

transaction | processors database | responsible;

type fragments | processor
T1 P2 D1 P3
T2 P2, P1 D2 P1
T3 P1 D3 P2
T4 P3 D4 P2
T5 P2, P3 D5 P3
D6 P3
D7 P1

a) routing table b) PCA table

Fig. 5: Routing table and PCA table (example)

Load control can also be made responsible of detecting a processor crash and of initiating and coordinating
the recovery actions for a failed processor. The detection of processor failures may be done by an 'active’
approach /Ki84/ where each processor sends 'l-AM-ALIVE' messages in periodic time intervals. If load
control does not receive these messages from a processor P for a while, a failure is assumed and recovery
actions are initiated. Similarly, the failure of load control itself can be detected by the shadow load control.

In the following we describe the actions that take place after the crash of processor P has been detected.
The six steps to be described can partially be executed in parallel. These cases are explicitly mentioned and
are clarified in Fig. 7.

Actions after a processor crash

Step 1 (Broadcast of the crash event):

Load control broadcasts that P has failed to prevent that further messages are sent to P. After that, all
messages concerning partition D, for which P was owning the PCA, are buffered until the recovery actions
are completed. Received messages that were sent by P before the crash are simply ignored. Transaction
processing can only continue on other partitions than D.

Step 2 (Initiation of recovery):

Load contro! initiates the undo and redo operations for P (step 3) and the reconstruction of the GLT for
partition D (step 4), and starts itself constructing the new routing table and the new PCA distribution. Since
steps 3 and 4 are independent operations they can be performed on different processors in order to speed
up the recovery process.



343

Step 3 (Undo and redo operations):

a) The recovery must undo the effects of uncommitted transactions in the database and potentially partially
redo the results of committed transactions using the local log of P. In a FORCE-environment all
modifications of a transaction are propagated to the database at EOT; thus, no redo actions have to take
place. With NOFORCE, however, the modified pages that were only in P's buffer at crash time must be
written to the database. The undo and redo operations may be performed by one of the surviving
processors or by several (e.g. if long-running batch transactions are incorporated) to keep the recovery time
acceptably small /Sh85/. Note that the recovering CPUs must have access to the local log of the failed
processor.

b) Locks held by failed transactions have to be released in order to eliminate unnecessary lock conflicts. For
partition D formerly owned by P this is done during the construction of the new GLT (step 4); for the other
partitions the corresponding lock managers must release the locks.

If the PCL scheme is also used to deal with buffer invalidation (as described in /Ra86c/) then additional
provisions are necessary. It has to be ensured that the latest version of each block of partition D can be read
from disk. Using a FORCE-strategy, this is already given when the undo operations are completed. With
NOFORCE, however, it is possible that one of the surviving processors holds in its buffer the most recent
version of a page belonging to partition D whereas the copy on disk is obsolete. Those pages must be
written out to prevent that the obsolete copy on disk is accessed. Furthermore, all other pages of partition D
that are in the buffer of a surviving processor irrespective of whether a FORCE or a NOFORCE strategy is
applied - must be considered as invalidated (unless they are in use) since the information to decide about
invalidation has been lost with the GLT of the failed processor. Therefere, these pages must be removed
from the buffer.

c) The original input messages of the failed transactions are read from the local log of processor P and are
transmitted to load control. These transactions are restarted after the recovery has been completed and the
new PCA distribution is established (step 6).

Step 4 (Construction of the GLT for partition D):

The GLT can be constructed by merging all block entries for blocks of partition D residing in any of the
available local lock tables (LLT). First, load control determines the processor P that has to construct the new
GLT, and informs all processors within the initial broadcast message (step 1) that P’ is in charge of the
reconstruction of the lost GLT. Then, all surviving processors (without P’, of course) send all block entries
found in their local lock tables and belonging to partition D to P'. (Such a block entry indicates that a local
transaction owns or waits for a lock.)

For each block B represented in the LLT of (at least) one of the surviving processors, a block entry in the
new GLT is created. INTERESTED (l) is set to "1' for such a block B, if processor | has a block entry for Bin its
LLT, and to value '0' otherwise. The GLOBAL-WAIT-LIST is simply a union of all LOCAL-WAIT-LISTs (the
order within the GLOBAL-WAIT-LIST need not be the same as in the lost GLT). Note, that no waiting
transaction is left out, since a transaction is appended to the LOCAL-WAIT-LIST before the lock request is
sent to another processor. Vector MODE can be constructed from the GRANTED-LOCKS-LISTs.

Since the lock information from the failed processor P is not available, the construction process
automatically generates a GLT without lock requests or MODE-information concerning any (failed)
transaction of P. So, the new vector MODE indicates when waiting locks are grantable. For example,
assume that a transaction at P has held an X-lock for a block B, and that transactions of other processors are
waiting for a lock on B. In the LLTs of these other processors, the block entry for B must have empty
GRANTED-LOCKS-LISTs and LOCAL-WAIT-LISTs with the waiting transactions. Now, the construction of
the new GLT generates the GLOBAL-WAIT-LIST and a vector MODE with value 0 for all processors. This
indicates that lock requests from the GLOBAL-WAIT-LIST are satisfiable. However, the activation of the
waiting transactions must be delayed until the recovery process is terminated and processing on partition D
can be continued (step 6).

The GLT constructed in the described manner reflects a consistent synchronization state of partition D. The
used block entries of the LLTs are from the point in time when the processors were informed about P's
crash. These block entries remain unchanged until it is explicitly notified that processing on partition D can
continue.

After having built the GLT for partition D, processor P would be in the position to synchronize accesses to D
after successful recovery. However, such a strategy would lead to an overloading of P' in most cases.



344

Therefore, P' merely informs the load control, which computes a new PCA distribution, that the GLT for
partition D is restored.

Step 5 (Establishing the new PCA distribution):

After load control has computed the new routing table and the new PCA table, and the construction of the
GLT for D (step 4) has been completed, the GLTSs in the system must be established according to the new
PCA table (note, that step 3 may still be in progress; however, step 5 and the release of locks in step 3b
should be executed in mutual exclusion). The database fragments for which the PCA should be reassigned
may also belong to another partition than D. For these other fragments, transaction processing must now
also be stopped; no messages concerning these fragments may be sent or processed until the new PCA
distribution is established.

The new PCA distribution indicates the database fragments for which a change of the PCA processor
should take place (hereto, P' can be seen as the temporary owner of the fragments belonging to partition
D). All block entries in the GLTs belonging to these fragments are transmitted to the new PCA-processor.
These block entries are inserted in the GLT of the receiving processor and deleted from the GLT of the
sending processor. In addition to the block entries, messages (e.g. lock responses) that were buffered due
to the blocking of a database fragment are also transmitted to the processor that should overtake the PCA.
When the fragment can be accessed again, these messages must be processed or send.

When all GLTs are reestablished, load control is informed.

| | 1
GLT1 GLT2 GLT3
D2 D D1
P1f D7 P2 D43t P3[|Ds
D6
a) Situation before the crash of processor P3
| | |
GLT1 GLT2 GLT3
D2 D1 hed
r1|| D7 r2|| 53 |[Bs p3i
D6
b) Situation after construction of the lost GLT
] ] [
GLT1 GLT2
D2 o crashed
r1|| ps pz2||D3 P3
D6 D4
D7

¢) Situation after adaption of the GLTSs to the new PCA table

Fig. 6: Steps in establishing a new PCA distribution after a processor crash (example)

To illustrate the steps discussed so far, an example is given in Fig. 6. The GLTs in Fig. 6a represent the
situation where all (three) processors were active and the PCA table of Fig. 5b was in use. Assume now that
processor P3 has crashed and that P2 has constructed the new GLT - as described in step 4 - for the
fragments formerly controlled by P3. This situation is shown in Fig. 6b. In the meantime, assume that load
control has computed the following PCA table:



processor P = time

345

database | responsible
fragments | processor

D1 P2

D2 P1

D3 P2

D4 P2

D5 P1

D6 P1

D7 P2

To establish this PCA distribution the block entries for fragments D5 and D6 must be transmitted from P2 to
P1, and those for fragment D7 from P1 to P2. Fig. 6¢ shows the new situation.

Step 6 (Start processing on blocked database fragments):

When all GLTs are established according to the new PCA distribution, load control sends the new PCA table
to all processors. For partition D processing cannot be continued until recovery step 3 is completed; all
other partitions are fully available now. When a database fragment is no further ‘blocked', the processors are
informed by the load control. Then, buffered messages for the fragment are transmitted or processed, and
waiting transactions can possibly be activated if their requested locks are grantable.

When the entire database is available again, load control routes each transaction that failed on P to one of

the survivors (according to the new routing table) for re-execution.

>
crash
load | | | |
control f .1 . — r _
crash detection computation of anew initiation communicating of the new start of processing
and broadcast routing table and a new of step 5 PCA table and start of pro- on the recovered
e P : p
PCA distribution cessing on blocked frag- partition and restart
processor P’ } | ments not to be recovered of failed transactions
construction of the lost GLT '
(step 4)
establishing the new
PCA distribution
(step 5)
other | L
processors f 1
step 3a step step
3b 3¢

Fig. 7: Parallelism in the recovery actions after a processor crash

It should have become clear that the recovery actions after a processor crash require a coordinated effort of
load control, the recovery component and the synchronization component (including buffer control). Since
the recovery can be done by several processors in parallel (Fig. 7), it is supposed that the time a partition is
blocked can be kept tolerably small. In most cases, especially if a NOFORCE-strategy is applied, step 3
seems to be the most time consuming one, since it may require a lot of disk writes. On the other hand, the
exchange of block entries between the processars in steps 4 and 5 should only require a small fraction of
the time for step 3 (fast communication system).

So, the construction of the GLT (step 4) and the establishing of the new PCA distribution (step 5) does not
lengthen the recovery process, in general. In addition, only the partition to be recovered is blocked
completely during recovery; other database fragments get unavailable at worst for the duration of step 5.
Therefore, transaction processing should not be severely interfered after a processor crash. Furthermore,
the redundancy in the LLTs used for reconstruction of a lost GLT is provided with nearly no extra costs



346

during normal operation. The latter point is a clear advantage over checkpointing schemes /1YD84/ that
cause a high communication overhead to keep the data structures of a shadow or backup process, running
on a separate processor, up-to-date.

Integration of a new (repaired) processor

It is assumed that the integration of a processor requires the intervention of the operator to inform the load
control. Load control then determines the new routing table and a new PCA distribution regarding the new
processor. Finally, this PCA distribution is established as described above (step 5) and the new PCA table is
communicated to each processor. The use of the new routing table ensures that the new processor gets
suitable transactions for execution.

The introduced method for establishing a new PCA distribution is also applicable when the load control has
recognized significant changes in the workload and has modified the PCA table to adapt synchronization to
the new load pattern.

4. SUMMARY

We have described the primary copy algorithm for synchronization in a loosely coupled DB-sharing system.
This decentralized locking scheme also allows an integrated solution to the problem of buffer invalidation.

It was shown how primary copy locking (PCL) cooperates with load control in order to adapt synchronization
to changing working conditions and to reduce the communication overhead for concurrency control. The
recovery actions after a processor crash are described in some detail. Mechanisms were proposed that allow
to continue synchronization after a processor failure with little interference to transaction processing during
recovery. So, a method for reconstructing a lost global lock table was supplied and also for adapting the
PCA distributions after a processor crash or after integration of a new processor or when the transaction load
has significantly changed. A main advantage of our proposal is that the required redundancy to reconstruct
lock tables after a processor crash can be provided with nearly no extra costs during normal processing.

5. REFERENCES

/An85/ Anon. et al.: A Measure of Transaction Processing Power. Datamation, April 1985

/BG81/ Bernstein, P.A.; Goodman, N.: Concurrency Control in Distributed Database Systems. ACM
Comp. Surveys, Vol. 13, No. 2, 195-221

/Gr85/ Gray, J. et al.: One Thousand Transactions per Second. Proc. IEEE Spring CompCon, 1985,
96-101

/Gr86/ Gray, J.: Why Do Computers Stop and What Can Be Done About It. Proc. 5th Symp. on
Reliability in Distr. Software and Database Systems, 1986, 3-12

/HR83/ Harder, T.; Reuter, A.: Principles of Transaction-Oriented Database Recovery. ACM Comp.
Surveys, Vol. 15, No. 4, 1983, 287-317

/HR86/ Hérder, T.; Rahm, E.: Multiprocessor Database Systems for High Performance Transaction
Systems. Informationstechnik, Vol. 28, No. 4, 1986, 214-225, in German

/HR87/ Harder, T.; Rahm, E.: High Performance Database Systems - Comparision and Evaluation of
Current Architectural Approaches and their Implementation. Informationstechnik, Vol. 29, No.
3, 1987, in German

/NYD84/ lyer, B.R., Yu, P.S., Donatiello, L.: Comparitive Analysis of Fault Tolerant Architectures for
Multiprocessors. IBM Research Report RC-10876, Yorktown Heights, 1984

/Ke82/ Keene, W. N.: Data Sharing Overview. IMS/VS V1, DBRC and Data Sharing User's Guide,
Release 2, G30-5911-0, 1982

/Kig4/ Kim, W.: Highly Available Systems for Database Applications. ACM Comp. Surveys, Vol. 16,
No.1, 1984, 71-98

/Ragéa/ Rahm, E.: Algorithms for Efficient Load Control in Multiprocessor Database Systems. Applied
Informatics 4/86, 161-169, in German

/Ragéb/ Rahm, E.: Concurrency Control in DB-Sharing Systems. Proc. 16th Gl Annual Conf., Informatik
Fachberichte 126, Springer 1986, 617-632

/Ra8éc/ Rahm, E.: Primary Copy Synchronization for DB-Sharing. Information Systems, Vol. 11, No. 4,
1986, 275-286

/Ra87a/ Rahm, E.: Performance Analysis of Primary Copy Synchronization in Database Sharing
Systems. Internal Report 165/87, Dept. of Computer Science, Univ. Kaiserslautern, 1987



/Ra87b/
/Re86/
/RS84/
/Se84/
/Sek84/

/Sh85/
/We83/

347

Rahm, E.: Design of Optimistic Methods for Concurrency Control in Database Sharing
Systems. Proc. 7th Int. Conf. on Distributed Computing Systems, 1987

Reuter, A.: Load Control and Load Balancing in a Shared Database Management System.
Proc. 2nd Data Eng. Conf., 1986, 188-197

Reuter, A.; Shoens, K.: Synchronization in a Data Sharing Environment. Technical report, IBM
San Jose Research Lab., 1984.

Serlin, O.: Fault-Tolerant Systems in Commercial Applications. IEEE Computer, Aug. 1984,
19-30

Sekino, A. et al.: The DCS - A New Approach to Multisystem Data Sharing. Proc. National
Comp. Conf., 1984, 59-68

Shoens, K. et al.: The AMOEBA Project. Proc. IEEE Spring CompCon, 1985, 102-105

West, J.C. et al.: PERPOS Fault-Tolerant Transaction Processing. Proc. 3rd Symp. on
Reliability in Distr. Software and Database Systems, 1983, 189-194

This work was financially supported by Siemens AG, Munich.



