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Abstract-This paper presents a new set of cache management algorithms for shared data objects that 
are accessed sequentially. 1/0 delays on sequentially accessed data is a dominant performance factor in 
many application domains, in particular for batch processing. Our algorithms fall into three classes: 
replacement, prefetching and scheduling strategies. Our replacement algorithms empirically estimate the 
rate at which the jobs are proceeding through the data. These velocity estimates are used to project the 
next reference times for cached data objects and our algorithms replace data with the longest time to 
re-use. The second type of algorithm performs asynchronous prefetching. This algorithm uses the velocity 
estimations to predict future cache misses and attempts to preload data to avoid these misses. Finally, 
we present a simple job scheduling strategy that increases locality of reference between jobs. Our new 
algorithms are evaluated through a detailed simulation study. Our experiments show that the algorithms 
substantially improve performance compared to traditional algorithms for cache management. 
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1. INTRODUCTION 

This study presents and evaluates new caching algorithms for sequentially accessed data that is 
being concurrently used by several processes or jobs. This type of access is common in many data 
processing environments. In this paper, we focus on batch processing, which is often dominated 
by concurrent sequential access to data [1, 2]. Several of our algorithms are applicable to other 
domains in which sequential scanning of data is common such as query processing or long running 
transactions in database systems. In this section, we provide a motivation for our algorithms, 
discuss related work, highlight the new concepts incorporated in our algorithms and outline the 
organization of the paper. 

1.1. Motivation 

Batch processing constitutes a major part of most large computer complexes and data centers. 
Typical batch jobs include daily and monthly report generation, payroll processing and performing 
bulk updates against databases. These jobs are usually executed at night since they have high 
resource requirements (CPU, I/0) which would seriously reduce performance for interactive 
applications. Batch processing, however, faces the problem that more and more computations have 
to be performed every night since applications and databases grow permanently. Furthermore, the 
"batch window" (i.e. the time period in which resources are mainly reserved for batch processing) 
should be as small as possible to allow for increased periods of interactive processing. Optimizing 
batch performance means minimizing the elapsed time required to process a fixed set of jobs. 

In order to reduce elapsed time, it is essential to minimize I/0 delays. Batch processing offers 
two characteristics which can be exploited for decreasing I/0 delays: (1) dominance of sequential 
access patterns and (2) a priori knowledge of the jobs' resource requirements. These characteristics 
are only partially utilized in current systems. In this paper, we propose new algorithms which 
exploit sequentiality of accesses and a priori knowledge about which datasets (files, relations, 
databases) are going to be referenced by each job to decrease the elapsed processing time of batch 
workloads. 
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1.2. Related work 

Prefetching (prepaging) as a means to utilize spatial locality of reference (sequential access) in 
order to reduce the number of I/Os has been analyzed in many previous studies. Studies for virtual 
memory systems often concentrated on preloading of program portions for which sequentiality is 
anticipated [3-8]. Prefetching means that in the event of a page fault multiple physically adjacent 
pages are fetched together in addition to the page for which the fault occurred. Critical control 
parameters are the number of pages to be read together, as well as the page size. Simple prefetching 
schemes for programs have generally been found to be ineffective [3-5] since pages are often 
unnecessarily prefetched. More sophisticated strategies which use a priori knowledge obtained by 
analyzing program traces [7], accept user advice or dynamically analyze the program reference 
behavior can significantly improve performance [5]. 

Stronger sequentiality and thus more effective prefetching has been observed for database 
accesses [9, 10]. Sequentiality of access is often a predictable consequence of database organization 
(clustering of record types) and operations (e.g. table scan). In [11], a static preanalysis of canned 
transactions is proposed to determine which pages should be prefetched when the transaction is 
started. Prefetching can improve performance in two ways. Firstly, the I/0 delay and thus response 
time of a query (transaction) can be reduced by caching data prior to the actual access. Secondly, 
the I/0 overhead for fetching n physically clustered pages at once is usually much smaller than n 
times the cost of bringing in 1 page. 

General caching strategies for main memory buffers have been studied primarily for database 
systems [12-16]. These schemes generally attempt to reduce the number of I/Os by exploiting 
temporal locality of reference within a transaction and between different transactions. The 
replacement algorithm used in virtually all existing database systems is the well-known LRU 
scheme (least recently used). LRU is not expected to be effective for sequential access patterns 
(spatial locality) because a transaction reads a particular page only once. The Most Recently Used 
(discard after use) policy performs well for sequential access when there is no concurrent data 
sharing among the jobs. However, this scheme cannot utilize locality between sequential jobs 
(inter-job locality) and is therefore not appropriate for our application domain. We are not aware 
of previous caching studies that consider inter-job locality for sequential data access. 

1.3. New concepts 

In this paper we will describe and evaluate three new cache replacement strategies for sequential 
data access and compare their performance with LRU and configurations with no data caching. 
The schemes adopt the following new concepts: 

-For every job and every dataset, the cache manager periodically determines the velocity with 
which the job proceeded through the dataset during the previous observation period. 

-The replacement schemes use the velocities to predict if and when cached data will be 
referenced in the future. This analysis determines the replacement order. Thus our schemes 
use the predictive information of references in the future for replacement decisions, while 
conventional algorithms like LRU solely rely on reference information of the past. 

--One of our schemes also utilizes a priori knowledge for replacement decisions. For every 
dataset, it requires information about how many jobs are going to process it sequentially. 
During execution of the jobs, the scheme tries to steal pages from datasets with the least 
number of outstanding (unstarted) jobs. 

Apart from the new replacement schemes, two further methods are applied to improve perform
ance: 

-Prefetching is employed in two ways. The standard form of prefetching which reads multiple 
blocks (pages) per I/0 is always applied for sequentially accessed datasets. An additional, 
asynchronous form of prefetching is implemented by dedicated prefetch processes which read 
in non-cached pages expected to be referenced soon. The velocity estimates are used to prefetch 
pages in the order they are likely to be needed. 

-We also evaluate how performance is affected by improving locality of reference through a 
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simple job scheduling strategy. For this purpose, we employ a method called Load Partitioning 
which uses a priori knowledge to schedule jobs accessing the same datasets concurrently. 

1.4. Organization 

The remainder of this paper is organized as follows. In the next section, we introduce the system 
model assumed for all caching strategies. The three new replacement schemes as well as the methods 
used for velocity determination and prefetching are described in Section 3. Section 4 presents the 
simulation model which has been implemented to evaluate the new algorithms. Simulation results 
which compare our schemes with LRU and configurations without caching are analyzed in 
Section 5. We also discuss simulation experiments which study the performance impact of 
prefetching and load partitioning. Section 6 summarizes the main conclusions from this 
investigation. 

2. PROBLEM STATEMENT AND MODEL 

There are M datasets (files) in the system, which are denoted D1, D2 , ••• , DM. The system 
processes a set of batch jobs denoted 11> 12 , ••. , 1 N. All of the jobs are ready to execute when the 
batch window begins and we assume that they can be processed in any ordert. A job 11 reads M(i) 
datasets D 1 , D2 , ••• , D M(il. Job 1; reads every record in a dataset in order from the first to the last. 
The job may read all M(i) datasets in parallel, one dataset at a time or any other interleaving. Our 
algorithms dynamically adapt to the job's usage pattern. 

Since all jobs that access Dj are reading sequentially, performance can be imporved by reading 
blocks of physically adjacent records as opposed to reading one record at a time. We assume that 
the records are stored in their logical ordering and that there is an intrinsic granule size which 
defines the maximum number of adjacent records that can be read by a single 1/0. An obvious 
example could be all of the records in a single cylinder. A granule is the unit of transfer between 
the disks and the main memory of the computer system. 

Given this model, the problem is to minimize the time between starting the batch jobs and the 
completion of the last job. One way of decreasing the elapsed time is to cache granules from the 
datasets in main memory. There is a cache manager that controls a main memory dataset cache. 
All granule requests are processed through the cache manager. There are three possible outcomes 
from a request. The first is a hit and the job immediately begins processing the individual 
records/pages in the granule. The granule is "fixed" (not replaceable) until the job begins processing 
the next granule. The second outcome is a miss, and the job is suspended until the granule is read 
into the cache by the cache manager. 

The final outcome is called an in-transit, which means an I/0 is already in progress as a result 
of some other job's request. The second job is also suspended until the I/0 completes. In-transit 
1/0s delay jobs (like misses) but decrease disk contention (like hits). One physical I/0 satisfies 
multiple job 1/0 requests. This reduces disk contention and decreases the time required to service 
cache misses. Our experiments in Section 5 demonstrate the importance of decreased device 
utilization achieved by the in-transit I/Os. Previous caching studies have ignored the significance 
of the in-transit 1/0 state and have simply assumed cache hits when in-transits occur. This 
assumption greatly affects previous results for sequential access patterns. 

To complete the system model, it is necessary to specify two algorithms. The first is the cache 
replacement algorithm that determines which cached granule is replaced when a new granule is read 
into the cahce and the cache is full. The second algorithm determines which granules are prefetched 
by asynchronous prefetch jobs. Due to the sequential nature of the jobs' access patterns, it is 
possible to predict which granule a job needs next. This granule can be read into the cache before 
the job submits the read request. Several algorithms for cache replacement and prefetching are 
described in the next section and their performance is studied in Section 5. 

This model only deals with the datasets that are sequentially read by the batch jobs. Batch jobs 

tin practice, there may be precedence constraints among the jobs. Optimal scheduling of precedence constrained jobs has 
been extensively studied [I 7]. We assume no precedence constraints to isolate the performance of our cache management 
algorithms from other extraneous effects on performance. 



200 ERHARD RAHM and DoNALD FERGUSON 

also perform random reads and writes to datasets, and sequentially write new datasets. In this 
paper, we are examining situations in which the sequential read processing delays due to I/Os and 
queuing delays on shared disks is a dominant factor in the elapsed time performance. Analysis of 
several batch workloads has shown this to be common for batch processing, and it may be common 
in other domains. 

3. CACHE MANAGEMENT ALGORITHMS 

This section presents our new cache replacement and prefetching algorithms. The three new cache 
replacement algorithms are the Binary Use Count, Weighted Binary Use Count and Use Time 
algorithms. In this section, we also present the Deadline Pre/etching algorithm. The Load 
Partitioning strategy for scheduling is described in Section 4. 

All of the cache replacement algorithms and the prefetch algorithm anticipate the set of granules 
that jobs will read in the near future. This set can be determined using the current positions of 
the active jobs in the datasets (i.e. granule ID being read), the fact that jobs read granules 
sequentially, and estimates of the velocities at which jobs are proceeding through the datasets. Our 
algorithm for estimating job velocities is presented in the first subsection. 

3.1. Velocity estimation algorithm 

The velocity of job J1 is defined to be the number of granule read requests that job J1 submits 
per unit of time. Clearly, the number of cache hits, misses and in-transits experienced affect the 
rate at which J1 submits requests. The velocity estimation algorithm isolates job J1 from the results 
of read requests and computes J;'s attainable velocity. The attainable velocity is the rate at which 
J1 would read granules if no cache misses or in-transits occur. This definition is similar in philosophy 
to the definition of working set in virtual memory systems [18], which isolates the reference behavior 
of a program from the page faults it incurs. 

A job's attainable velocity is determined by many factors, such as CPU time per granule, CPU 
queuing delay, random I/Os, etc. These factors may not be constant over time. So, the estimates 
of the job's velocities are periodically recomputed. The velocity estimation algorithm is invoked 
every A seconds. Assume the algorithm is invoked at time t0 and that J1 is reading D1. The algorithm 
records the job's current position (granule) in the dataset, denoted p1, and also sets a variable b1 

to 0. The variable b1 records the amount of time J1 is blocked by cache misses or in-transits during 
the interval {t0 , t0 +A). The cache manager can update this variable by recording the time it blocks 
J1 when a miss or in-transit occurs and the time it restarts J1 after the I/0 completes. 

The next invocation of the velocity estimation algorithm occurs at time t0 + A. Let c1 be job J;'s 
new position in D1. The velocity of J1 is defined as 

V1 = (c1 - p1)/(A- b;). 

The algorithm then sets p1 to c1 and resets b1 to 0. 
Figure 1 depicts an example of the velocity estimation algorithm. Let A= 0.5 s. At time t0 , job 

J1 is at granule 10 (p1 = 10) and at time t0 +A at granule 15 (C; = 15). Assume that J1 encountered 
a miss when accessing granule 12 and an in-transit at granule 14 with blocked times of 70 and 30 ms, 

to to+A 

• • • • • = cached granule 
10 11 12 13 14 15 

miss in-transit 
(70 ms) (30ms) 

V = 5 I (ll- 100 ms) 

Fig. l. Velocity estimation. The horizontal line represents a dataset. A circle indicates that the granule 
is cached when the job references it. 
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respectively. The velocity is simply 

V; = (15-10)/(0.5- 0.1) = 12.5 granulesfs. 

It is possible that a job starts reading a new dataset at some time t1 in the interval (t0 , t0 + .:l). The 
velocity estimation algorithm handles this case by setting p1 to - n where n is the number of granules 
of the old dataset referenced by the job during the interval (t0 , t1 ). 

3.2. Cache replacement algorithms 

The three cache replacement algorithms (Binary Use Count, Weighted Binary Use Count and 
Use Time) have two components. The first component is an in-line algorithm that is called to 
determine which stealable cached granule should be replaced when a new granule is to be added 
to a full cache. The second component is asynchronous with respect to job execution and granule 
replacement, and is triggered after the velocity estimation algorithm updates the jobs' velocities. 
This component is parameterized by a look ahead time L and determines which cached granules 
will be referenced in the next L s. Before presenting the replacement schemes, we first discuss how 
the look ahead is determined. At the end of this subsection, we estimate the overhead introduced 
by our algorithms. 

Assume that job J; is reading dataset Dj, its attainable velocity is V; and its current position in 
Dj is p. In the next L s, J; will at most read L · V; granules. These granules are p +I, 
p + 2, ... , p + K1 with K; = f L · V; l These K1 granules are said to be in the look ahead of H1• The 
look ahead is computed for all datasets that J; is currently reading. It is possible that not all K1 

granules are cached. In this case, some of the granules in the look ahead of J; must be read from 
disk. Each read could be initiated by J;, another job Jk or a prefetch job for dataset Dj. Let T be 
the average time required to read a granule from disk and insert it into the cache. The maximum 
number of granule transfers for a dataset in the next L sis m = L/T. The look ahead of J1 is pruned 
and does not include a granule k for which there are at least m non-cached granules in the set 
{p + 1, p + 2, ... , p + (k I)}. This pruning limits overhead by not examining granules that J1 

cannot reach in the next L s. 
Figure 2 presents an example illustrating the pruning of look aheads. There are two look ahead 

vectors associated with each job. The solid vector represents the look ahead based on the attainable 
velocity V; containing K; granules. The dashed vector represents the pruned look ahead when 
T = L/2. Job J 1 is at granule 3 and has K 1 = 4. Granule 7 would be reachable except for the fact 
that granules 4 and 6 are not cached and m = 2. Figure 2 will also be used to describe the cache 
replacement algorithms. 

Binary Use Count (BUC). The BUC algorithm (as well as WBUC) associates a use bit with each 
granule in the cache. This bit is set of 0 each time the asynchrous component of the algorithm is 
invoked. For each job J;, the algorithm computes the pruned look ahead in each dataset and 
examines granules p + l, p + 2, ... ,p + k. Each cached granule in the look ahead has its use bit 
set to 1, the use bits of other granules are set to 0. The use bits indicate which granules will be 

J3 ............................. - ....................... p ... . 

J2 ........................................................... . 

•••1e1e1•••1•1• 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

• = cached granule 
---IIIIo.,.. look ahead 
................... 111•~ pruned look ahead 

Fig. 2. Look ahead of three concurrent jobs. The horizontal line represents the dataset and circles 
represent cached granules. 



202 ERHARD RAHM and DoNALD FERGUSON 

referenced during the next L s and the in-line algorithm does not replace any granules with a use 
bit of 1. In the example of Fig. 2, the set of granules with use bits set to 1 is {5, 9, 10, 11, 13}. 

The BUC in-line component is very simple. It randomly chooses a granule from the set of 
granules from all datasets what have use bits set to 0. The intuition behind this algorithm is that 
granules that are not in the look aheads will not be referenced for a long time, and are essentially 
indistinguishable. 

Weighted Binary Use Count (WBUC). As for the BUC algorithm, the asynchrous component 
of WBUC sets the use bits of granules in the jobs' look ahead. The in-line component of WBUC 
is more sophisticated than for BUC. WBUC uses information obtained from a static analysis of 
the work load to preselect the dataset from which the granule is to be stolen. The following values 
are used to select the dataset. 

-~: this is the total number of jobs that will read dataset D1• 

-R/ this is the total number of jobs that have already read or are currently reading D1• 

-Ci: this is the number of granules from D1 currently in the cache. 

The weight of dataset D1 is defined as the total number of outstanding jobs times the dataset size 
(denoted S1) and is 

~= (E1 - R1) x s1• 

WBUC dynamically partitions the cache into sub-caches dedicated to each dataset. For a cache 
of size Sc the size of D/s allocation is proportional to its weight and is defined by 

The WBUC algorithm steals the next granule from the dataset k that most exceeds its allocation 
(i.e. maximizes Ck- Ak). A dataset is allowed to exceed its allocation if some other dataset has 
not yet had enough requests to fill its allocation, e.g. no job has started reading it. 

The idea behind the preselection is twofold. First, granules from datasets that have many 
expected future jobs should be replaced after granules from datasets with few expected jobs. This 
is a greedy heuristic for decreasing the number of cache misses. Secondly, a certain percentage of 
granules from all datasets should be kept in the cache, even those with few expected jobs. If this 
were not done, datasets with few expected jobs would not have any cached granules and the jobs 
reading them would proceed at disk 1/0 rates. 

After preselecting a dataset D1, WBUC selects the granule within the dataset to replace. Two 
heuristics are used. First, the granule with highest ID behind the last job is chosen. Second, if there 
are no granules behind the last job, the granule with highest ID and a use bit of 0 is chosen. If 
the WBUC algorithm selects the dataset in the example of Fig. 2, the order in which granules will 
be replaced is: 2, 1, 15, 7. 

Use Time algorithm. The asynchronous component of the Use Time algorithm explicitly 
estimates the next reference time (use time) for each cached granule. Assuming that J;'s velocity 
is constant during the next L s and all granules in the look ahead are cached, J; will read granule 
p + jinj/V;s. If, however, there are q non-cached granules in the set {p + l,p + 2, ... ,p + j- I}, 
the estimated reference time for granule p + j is 

A cached granule may be in the look ahead of several jobs. In this case, the granule's use time 
is defined as the smallest reference time over all jobs. 

There may l o: cached granules that are not in the pruned look ahead of any job. These granules 
fall into two cl!tsses. The first class are those granules that are behind the last active job in their 
dataset. In the example of Fig. 2, granules 1, 2 and 3 fall into this class. The second class contains 
graunles that are not behind the last job in the dataset. In the example, granules 7 and 15 are in 
this class. 

The asynchronous component of the Use Time algorithm builds three sorted lists of cached 
granules from all datasets, which are the following: 
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-The behind_/ast-job_list containing granules behind the last job in their datasets. This list is 
sorted from largest to smallest granule ID. In the example, this list is {2, I}. 

-The not-seen-list containing granules not in the look ahead of any job and not behind the 
last job in their dataset. This list is also sorted from largest to smallest granule ID, and is 
{ 15, 7} in the example. 

-The use _time-list containing granules in job look aheads. This list is sorted from largest to 
smallest use time. In the example, this list is {13, 5, 9, 11, 10}. 

The in-line component of the Use Time algorithm steals the granule with the largest use time. This 
algorithm makes similar assumptions as WBUC and first replaces all granules in the be
hind_lasLjob_list followed by granules in the notLSeen..Jist and finally granules in the 
use-time_list. The Use Time algorithm also dynamically updates the behind_lasLjob_Jist as the 
last job in a dataset advances. 

There are two main differences between WBUC and Use Time. The first is that Use Time does 
not preselect a dataset and its lists contain granules from all datasets. The second difference is that 
Use Time algorithm differentiates between granules in job look aheads. This is especially important 
when the size of the cache is small relative to the total size of the datasets, when the jobs have 
high velocities or when there are many active jobs. In these situations it is likely that all cached 
granules are in the look ahead of a job and have non-zero use bits. BUC and WBUC cannot make 
an intelligent replacement decision in this situation. For this reason, a longer look ahead time L 
can be used with the Use Time algorithm. 

Overhead considerations. The overhead of the in-line algorithms is comparable to the overhead 
of LRU. The Use Time algorithm simply replaces the granule at the head of one of its three lists. 
This is done in time O(l) as for LRU. BUC randomly chooses a granule that has a 0 use bit. This 
may be implemented by maintaining a list of stealable granules from which the head is chosen for 
replacement by the in-line algorithm. While this policy is not truly random, it is sufficient since 
granules with 0 use bit are considered equally stealable. The complexity of BUC's in-line 
component is thus reduced to 0(1). WBUC selects the replacement victim from a dataset-specific 
list which can be done in time 0(1). Additional overhead is introduced to implement the dataset 
selection policy. Maintaining the variables C1 and R1 as well as adapting the weights Jfj and 
allocations A1 incurs little overhead. The worst-case complexity of WBUC's in-line component is 
O(A ), where A is the number of concurrently active jobs. 

The overhead of the asynchronous components of the BUC and WBUC algorithms is linear in 
the number of active jobs A and the cache size Sc. The complexity of examining the look aheads 
and setting use bits is O(A · Sc ). The Use Time algorithm incurs a similar overhead for determining 
the use times in the look ahead of active jobs. However, it also incurs the complexity of building 
the three sorted lists which is O(Sc ·log Sc). 

The overhead of the asynchronous components can be controlled by setting the parameters A 
and L. The parameter A determines how often the asynchronous component is invoked and L 
controls the complexity of processing the look aheads. Furthermore, the asynchronous components 
do not directly delay the processing of granule requests that jobs submit. They can be run as a 
background job so that their overhead only indirectly affects the performance of the batch jobs 
through CPU contention. If CPU utilization is high, A can be increased and L decreased to lower 
overhead. In time of high CPU utilization, optimal cache management is less imperative. For most 
cache sizes, the system is I/0 bound and there is ample spare CPU capacity for the asynchronous 
components. 

3.3. Deadline prefetch algorithm 

The BUC, WBUC and Use Time algorithms use job look aheads to determine which cached 
granules will be referenced in the next L s. The examination of the look aheads also reveals which 
non-cached granules are expected to be referenced. For example, in Fig. 2, job J1 is expected to 
read non-cached granule 4. Granules that are not cached and are in the look ahead of a job are 
called prefetch candidates. The determination of the prefetch candidates and the prefetch order is 
part of the algorithms' asynchronous component. 

A control block is created for each prefetch candidate and this control block contains the 
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estimated use time of the granule. The use time is defined exactly as for cached granules and 
represents the deadline by which this granule must be cached to avoid a miss. Computing the 
deadlines of prefetch candidates is done for all cache replacement algorithms (including LRU), if 
prefetching is active. 

After all look aheads have been processed, a prefetch list is built for each dataset. The list for 
Dj contains all prefetch candidates from this dataset and is sorted from smallest to largest deadline. 
In the example of Fig. 2, the prefetch list for the dataset is: 8, 4, 12, 6, 14. 

A prefetch job for dataset Dj simply loops through the following steps: 

(1) Remove granule p from the head of the prefetch list for Dj. The list will not contain prefetch 
candidates read into the cache by other jobs. 

(2) Read granule p into the cache. The prefetch job is blocked until the granule is cached. 
(3) Go to 1. 

4. SIMULATION MODEL 

We implemented a detailed simulation system for evaluating the performance of the newly 
developed caching strategies. The overall structure of the simulation system is shown in Fig. 3. The 
main parameters of our simulation system are summarized in Table 1 together with their settings 
used in the experiments. The four major components of the simulation system are CPU 
management, 1/0 management, job management and cache management/prefetching, and will now 
separately be discussed. The parameters in Table 1 are also grouped according to this distinction. 

4.1. CPU management 

We assume that the workload is executed on a tightly coupled multiprocessor with the number 
of CPUs provided as a simulation parameter. Each active batch job is executed by a job process. 
The execution cost of a job is modelled by requesting CPU service for every granule access. CPU 
service is also requested for every disk 1/0 to account for the 1/0 overhead. The number of 
instructions per CPU request is exponentially distributed over a mean specified as a parameter. 

4.2. 1/0 management 

It is assumed that every dataset resides on a separate disk. Each disk is modeled as a single server 
queue in order to capture 1/0 queuing delays. The disk 1/0 time per granule is the sum of disk 
latency and transfer time. With no queuing delays, the parameter settings from Table 1 result in 
an average 1/0 time of 45 ms per granule. 

cache 
manager 

job 
processes 

pre fetch 
processes 

Fig. 3. Structure of the simulation model. 

CPUs 
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Cache management for shared sequential data access 

Table I. Simulation parameters 

Parameter 

#CPUs 
MIPS per CPU 
Instructions per granule access 
#Instructions per 1/0 

#Datasets 
Dataset size (#granules) 
Granule size (#blocks) 
Block size 
Average 1/0 latency 
1/0 transfer rate 

#Jobs to be executed 
READMAX (see text) 
Multiprogramming level 
#Partitions 

Caching 
Cach size 
Replacement algorithm 
Prefetching 
Buffer threshold 
Wake-up interval .1. 
Look-ahead window L 

6 
20 
50,000 
5000 

Parameter settings 

40 
1000 
25 
4KB 
20ms 
4MB/s 

1000 
3 
60 
1~10 

yesfno 
100MB-2GB 
LRU, BUC, WBUC, Use Time 
yesfno 
5% of cache size 
2s 
20 s 
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In every simulation run, we simulate the processing of a fixed number of batch jobs. We 
assume that all batch jobs are ready to execute at the beginning of a run, and wait in a job queue 
until they are scheduled for execution. Like in real systems, we allow only a fixed number of 
batch jobs to be processed concurrently; this number is referred to as the multiprogramming level 
(MPL). When an active job completes, another job is selected from the job queue. The MPL is 
a configuration-dependent parameter and should be chosen such that resources like main memory 
and CPUs can be well utilized without causing severe overload situations. 

The concentration on batch jobs and sequential access allowed us to use a fairly simple, 
synthetic workload model. Every job reads a certain number of datasets sequentially. This 
number is a uniformly distributed random variable per job in the range I to READMAX. The 
datasets read by a job are also randomly selected with uniform probability thus representing a 
worst case scenario for caching (small locality of reference between different jobs). Update 
accesses are currently not supported by the simulation system although the replacement schemes 
can deal with read as well as write accessest. With the parameter settings from Table I, a job 
reads 2 datasets on average (2000 granule accesses) resulting in an average of 100 million 
instructions per job (without I/0 overhead). 

Locality of reference between jobs can be improved by a job scheduling strategy which tries 
to concurrently activate jobs accessing the same datasets. Such a strategy is feasible since 
the datasets a batch job needs to access are generally known in advance. In the simulation 
model, we implemented a simple (static) scheduling strategy called Load Partitioning that 
rearranges the order of jobs in the job queue befor batch processing starts. This policy is 
controlled by the parameter "#partitions" which must be smaller than the number of datasets. 
We use this parameter to group the datasets into the specified number of partitions such that 
every partition is referenced by about the same number of jobs. After this we use the dataset 
partitions to build load partitions where a job is assigned to load partition x when most of its 
granule accesses fall into dataset partition x. The scheduling order is then determined by these 
partitions, i.e. we first start all jobs belonging to load partition 1, followed by jobs of partition 2 
and so on. Within a load partition, the scheduling order of the jobs is random. Note that there 
is generally more than one dataset partition in use since a job may reference more than one 
partition and because jobs of multiple load partitions may be active at the same time (e.g. in 
transition phases between load partitions or if the MPL is higher than the number of jobs per 
partition). 

tThe replacement of a modified granule in the cache has to be delayed until the modification is written back to disk. 
Response time deterioration due to such write delays can largely be avoided, however, by asynchronously writing out 
modified granules. 



206 ERHARD RAHM and DoNALD FERGUSON 

4.4. Cache management and prefetching 

We have implemented a global LRU steal policy as well as the three new replacement algorithms 
described in Section 3 (BUC, WBUC and the Use Time algorithms). Caching can also be switched 
off; in this case every granule access causes a disk I/0. As pointed out in Section 3, some control 
functions are asynchronously executed by the cache manager. The execution of these functions is 
triggered either by a timer (wakeup interval ~) or when the number of replaceable cache frames 
falls below a specified threshold (parameter "buffer threshold"). If prefetching is chosen (par
ameter), a prefetch queue is used to specify the granules to be read by the prefetch processes. In 
our model, there is one prefetch job per dataset (disk) to avoid disk contention among prefetch 
jobs. 

5. SIMULATION RESULTS 

In this section, we present the results of simulation experiments that measure and explain the 
performance of our new cache management algorithms. All simulation experiments were conducted 
with the parameter settings given in Table 1. We compare our algorithms to the traditional LRU 
algorithm and configurations with no caching. The impact of different cache sizes, the effect of 
prefetching (Section 5.2) and the influence of job scheduling strategies that try to improve inter-job 
locality (Section 5.3) are considered. 

5.1. Cache replacement algorithms 

Figure 4 shows the elapsed time to process the batch jobs versus cache size for the four 
replacement algorithms (LRU, BUV, WBUC, Use Time), without prefetching or load partitioning 
(#partitions= 1). The elaspsed time obtained without caching is also shown for comparison 
purposes. The x-axis in this figure represents the relative cache size, as a percentage of the total 
dataset size. In our experiments, the total dataset size is 4 GB and we vary cache size from 100 MB 
(2.5%) to 2GB (50%). 

The graph shows that all replacement schemes result in shorter elapsed time than with no 
caching, even for small cache sizes. Our replacement schemes outperform LRU for all cache sizes. 
The Use Time algorithm is clearly superior to the other schemes in particular for smaller cache 
sizes thus supporting high cost-effectiveness. For a relative cache size of 2.5% it cuts elapsed time 
already by 25% and almost by 30% for a cache size of 5% (compared to a maximal improvement 
of 10% for the other schemes). While the BUC scheme is only slightly better than LRU, the WBUC 
scheme gains most from increasing cache sizes and approaches the Use Time algorithm for very 
large caches (2GB). LRU could not utilize the 2GB cache; the elapsed time for this case is almost 
the same as for a 1.2GB cache (30%) and substantially worse than with the other schemes. 

The elapsed time results are mainly determined by the algorithms' I/0 behavior. Without caching 
the average I/0 delay per granule was about 62 ms including 17 ms queuing delays due to disk 
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contention. Caching reduced the I/0 delay and therefore elapsed time in several ways. Cache hits 
reduce the total number of I/Os and thus the I/0 delay. Fewer 1/0s also mean reduced disk 
contention and thus shorter disk access times when misses occur. In addition, CPU overhead for 
disk 1/0 is reduced and thus CPU queuing delays are decreased. In-transit granules also contribute 
to an improved 1/0 performance. In this case, another job has already initiated the disk read for 
the granule and the requesting job is only delayed until the 1/0 completes. Although in-transit 
granules cause an 1/0 delay, this delay is on average shorter than a full disk access. In addition, 
the 1/0 overhead associated with a disk access is saved and disk contention is decreased thereby 
reducing the I/0 delay for cache misses. 

The effectiveness of these factors varies substantially for our replacement schemes thus giving 
rise to the differences in elapsed time. This is clarified by Fig. 5 showing the hit ratios for the 
four replacement schemes. We observe that the Use Time scheme consistently shows the best 
hit ratios. However, hit ratios are comparatively low even for this scheme when compared to 
the relative cache size (e.g. 56% hit ratio for a relative cache size of 50%). This is because 
accesses are uniformly distributed over all datasets resulting in a comparatively low locality of 
reference between jobs if no load partitioning is applied. LRU achieved very low hit ratios of less 
than 10% for all cache sizes, although a high number of in-transit 1/0s (see below) helped to 
improve performance compared to the case with no caching. BUC and WBUC have almost 
identical hit ratios which increase linearly with the cache size. WBUC outperforms BUC because 
it required fewer 1/0s, i.e. it had in-transit 1/0s in many cases where BUC experienced a buffer 
miss. 

With LRU the system remained I/0 bound even for very large caches indicating that increased 
CPU power could not be used to reduce elapsed time. In contrast, our schemes could significantly 
reduce 1/0 delays with increasing cache size and were CPU bound for large cache sizes. Thus an 
additional advantage of our new algorithms compared to LRU is that they support vertical growth, 
i.e. elapsed time can be reduced by providing faster CPUs and larger caches. 

The relationship between hits, misses and in-transit 1/0s becomes clearer with Fig. 6 which shows 
their frequency for LRU and the Use Time algorithm. The number of hits, misses and in-transit 
1/0s add up to the total number of granule accesses by all jobs (2,000,000 = 100% ). Figure 6 shows 
that a substantial amount of granule accesses are delayed because of in-transit 1/0s (up to 40% 
for LRU) illustrating the importance of considering this case. If we had assumed a hit for every 
in-transit granule, as previous studies have usually done, results would be totally different and even 
LRU would have performed much better. 

In-transit I/Os show that there is locality of reference between different jobs since more than one 
job wants to access the same granule concurrently. For the Use Time algorithm, the number of 
in-transit I/Os is proportional to the number of misses and decreases with larger caches. This 
scheme can use locality of reference to substantially increase the hit ratios for growing cache sizes. 
With LRU, on the other hand, hit ratios remain very low even for large cache sizes although the 
miss ratio can be reduced significantly. Larger caches improve performance for LRU mainly 
because more and more buffer misses are replaced by in-transit 1/0s. This trend, however, flattens 
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out for a relative cache size of more than 30% accounting for the fact that the elapsed time for 
50% relative cache size is almost the same than with 30%. 

In contrast to WBUC and the Use Time algorithm which try to steel directly behind the last 
job in a dataset, LRU steels the least recently referenced granule. Thus LRU frequently steals from 
the beginning of a dataset. As a consequence, in most cases newly arriving jobs cannot make use 
of already cached portions of the dataset, but have to read the entire dataset again thus explaining 
the very low hit ratios for LRU. Due to the stealing from the beginning of a dataset, this effect 
can only be avoided when (almost) the entire dataset can be kept in the cache. However, when the 
first portion of a dataset is still cached when a new job wants to access the dataset, this job can 
quickly catch up with the job further ahead in the dataset that has read in the granules still residing 
in the cache. From then on, the two (or more) jobs proceed together and very slowly through the 
dataset (one job does the I/0 while the jobs clustered together with it find in-transit I/Os with delays 
close to the total access time). The new replacement strategies look ahead in the dataset to prevent 
the replacement of cached granules that will be referenced in the near future. This gives rise to much 
better hit ratios, which increase greatly with the cache size, and to a higher variance in job velocities 
so that they proceed less clustered than with LRU. 

A limitation of the BUC scheme is that it randomly selects replacement victims from cached 
granules which are not in the look ahead of currently active jobs. The WBUC allows for a 
performance improvement by using several heuristics for finding a replacement candidate. In 
particular, WBUC uses an additional information to steal from datasets with the least number of 
outstanding jobs, and it tries to steal behing the last job in this dataset. The simulation results show 
that this approach brings a significant advantage mainly for large cache sizes when datasets with 
many outstanding jobs can completely be kept in the buffer, or when large percentages of the 
beginning of datasets can be kept in the cache to improve processing times of jobs when they start 
reading a dataset. 

The improvement of the Use Time algorithm over WBUC comes from several factors which turn 
out to be more effective than using information about the number of outstanding jobs. One factor 
is that the Use Time scheme does not apply a preselection of a dataset from which to steal, but 
considers granules from all datasets for replacement. In this way, it can steal behind the last job 
as long as this is possible for any dataset. WBUC, in contrast, may preselect a dataset where it 
cannot steal behind the last job anymore, although this would be possible for another dataset. 
Another advantage of the Use Time scheme is that is uses the information on next time to reference 
for stealing granules in the current look ahead of jobs. The use of this information makes is superior 
to WBUC particularly for small caches (or large total dataset size) or high MPL, where it is usually 
the case that there are no granules behind the last job in a dataset and all granules have their use 
bit set. WBUC cannot perform much better than random replacement in this scenario since all 
cached granules appear identical. 
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We conducted a series of experiments to find out the influence of different look aheads. It turns 
out that the BUC scheme depends mostly on a large look ahead since otherwise only few of the 
cached granules are considered useful. This, however, increases the probability of selecting 
unfavorable replacement victims, since BUC picks them randomly from the granules not considered 
useful. We observed performance degradations of up to 10% for a look ahead of 2 s compared 
to the results with 20 s. The WBUC and the Use Time algorithms are very insensitive to different 
look aheads as long as they are at least as large than the wake-up interval d. 

5.2. Influence of prefetching 

In this section we study the effects of asynchronous prefetching performed by dedicated prefetch 
processes. As outlined in the previous sections, we have one prefetch process per disk that uses 
deadline information based on velocity estimates to determine the prefetch order of granules. 
Figure 7 shows the elapsed times obtained with such a prefetching (and with no load partitioning). 
We observe very similar performance trends compared to the no prefetching experiments (Fig. 4), 
and the Use Time algorithm remains the best and LRU the worst replacement scheme. A notable 
change is that the BUC algorithm benefits the most from prefetching and becomes substantially 
better than LRU. The BUC scheme has the fewest in-transit 1/0s without prefetching. Prefetching 
causes the highest increase of in-transit I/Os for this scheme leading to substantial performance 
improvements. For the other schemes, prefetching resulted in comparatively small improvements 
in elapsed time (less than 10%) for all cache sizes. 

To explain the performance impact of prefetching, we analyze the frequencies of buffer hits, 
misses, in-transit and prefetch 1/0s for the LRU and Use Time schemes (Fig. 8). As in Fig. 6 for 
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no prefetching, the number of hits, misses and in-transit I/Os add up to the total number of granule 
accesses by all jobs (2,000,000). In addition, we have shown the number of prefetch I/Os on top 
of the buffer misses in Fig. 8. Prefetch I/Os and misses combined represent the total number of 
I/Os. 

We observe that for LRU the hit ratios as well as the total number of I/Os are virtually the same 
with prefetching as without prefetching. The hit ratio for the Use Time algorithm is somewhat 
higher with prefetching, especially for large caches. For both algorithms, what changes significantly 
is the number of buffer misses and the number of in-transit 1/0s. Basically, the number of misses 
is reduced by the number of prefetch 1/0s and the number of in-transit 1/0s is increased by the 
number of prefetch 1/0s. With prefetching, "1/0 in transit" is the dominant case for granule 
accesses in all schemes (for LRU up to 90% of all granule acceses!). 

Though prefetching does not improve the hit ratios or number of 1/0s, it saves the CPU time 
and overhead for initiating the I/0. Furthermore, the average 1/0 delay for an in-transit I/0 is 
shorter than for a buffer miss (full disk access time). However, savings in I/0 delays and thus in 
elapsed time are comparatively small since the prefetch jobs proceed slowly through a dataset (at 
I/0 speed) so that the jobs are mostly close behind them. As a result, in-transit I/0 delays were 
almost as high as the disk access times. 

For prefetching to be more effective, the mean time between a job submitting granule access 
requests would have to be very high so that more benefit can be derived from overlapping I/0 and 
other processing. In this case, however, not I/0 but other resources would be the bottleneck which 
seems not typical for current batch processing applications. Another possibility is to restructure 
the storage of datasets on the disks to allow multiple concurrent I/Os per dataset (e.g. store the 
dataset on multiple disks, disk striping). This would allow prefetch I/Os and normal data access 
I/Os to overlap and may increase the benefits of prefetching. 

5.3. Influence of Load Partitioning 

Load Partitioning is a job scheduling strategy that uses information about the job reference 
behavior to concurrently schedule jobs accessing the same datasets. As outlined in Section 4, we 
use the parameter " # partitions" to control this kind of scheduling. The primary goal of load 
partitioning is to improve locality of reference between jobs and thus the hit ratios and elapsed 
time. A possible problem is increased disk contention since more jobs are now concurrently 
accessing the same datasets (disks) than without load partitioning. 

Figure 9 shows the elapsed time results obtained for a load partitioning with 4 partitions and 
prefetching. Four partitions means that usually only one fourth of the datasets (disks) is accessed 
by active jobs. We observe that load partitioning leads to dramatic changes in elapsed time for the 
different cache sizes. With small cache sizes, all caching schemes but the Use Time algorithm have 
higher elapsed time than without caching! (We did not apply load partitioning without caching 
because it would obviously be a bad idea.) The Use Time algorithm's performance is slightly better 
with load partitioning for small cache sizes than without load partitioning. Increasing the cache 
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size leads to steep performance improvements until all schemes converge to an elapsed time close 
to the best possible. For a relative cache size of more than 25% all schemes achieve about the same 
elapsed time since almost all concurrently accessed datasets can be completely kept in main memory 
in this range. 

For small cache sizes, however, the "working set" (granules with small use times) of active jobs 
is too large to be kept in the cache and only a few hits can be achieved. Since the high number 
of 1/0s is directed only to a subset of the disk devices, disk contention increases drastically 
compared to the case without load partitioning. This increases total 1/0 delay for the jobs which 
in turn increases elapsed time. Increasing the cache size quickly reduces the number of 1/0s because 
the higher locality of reference due to load partitioning improved hit ratios and/or the amount of 
in-transit 1/0 and therefore disk contention. As a result, the I/0 delay per granule access and 
elapsed time improve greatly. 

The Use Time algorithm shows a much stabler behavior than the other algorithms. In particular 
its effectiveness for small cache sizes is extremely valuable with load partitioning and prevents the 
thrashing effects observed for the other replacement schemes. Therefore, even with very small 
caches (2.5%) significantly better elapsed time than without caching and dramatically better results 
than with the other caching schemes are achieved. 

LRU exhibits an especially unstable performance. This is also illustrated by Fig. 10 depicting 
the frequency of hits, misses, in-transit and prefetch I/Os for LRU. Figure 10 as well as Fig. 9 show 
that LRU experiences three phases with different performance characteristics. The first phase is 
associated with small cache sizes ( ~ 12.5%) and is characterized by a high number of I/Os (mostly 
regular I/Os) and high disk contention. Hit ratios are very low in this phase. The third phase is 
when almost all active datasets can be kept in the cache (relative cache size ~ 25% ). In this situation 
even LRU experiences very high hit ratios and few I/Os; elapsed times are therefore as good as 
with any of the other schemes. The second (perhaps most interesting) phase is observed for relative 
cache sizes between 12.5 and 25%. In this phase the cache size is high enough to reduce the number 
of buffer misses to a large extent, however withoug significantly improving the hit ratios. In the 
corresponding cache size range, elapsed time remains almost the same even when increasing the 
cache size. This corresponds to the observation made without load partitioning (Section 5.1 ), where 
LRU could not further improve performance after a relative cache size of 30%, and hit ratios were 
very low even for relative cache size of 50%. The underlying reason is that after a certain cache 
size, LRU cannot utilize larger caches until the cache is large enough to hold almost all datasets 
(with load partitioning all currently active datasets). 

Figure 11 compares elapsed time results for LRU and the Use Time scheme varying the number 
of partitions from 1 (no load partitioning) to 10. The cache size for these experiments has been 
500MB (12.5% of the total dataset size). For this cache size, we see comparatively small changes 
in elapsed time for the different number of partitions. In all configurations, LRU is clearly 
outperformed by the Use Time algorithm. (The Use Time scheme achieved hit ratios of up to 66% 
compared to 6% for LRU.) With LRU, elapsed time deteriorates for 2 partitions compared to the 
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case without load partitioning due to increased disk contention, but improves significantly with 4 
partitions. More than 4 partitions do not result in significant performance improvements for both 
replacement strategies. This was because locality could not significantly be increased any more since 
with a larger number of partitions the population per load partition becomes smaller, making is 
more likely that more than one load partition is concurrently in use (fixed multiprogramming level). 
A dynamic load scheduling scheme, not employed in the simulation, could have been more 
successful in improving locality further, although at the expense of increased complexity. 

6. SUMMARY 

In this paper, we have presented a set of new cache management algorithms for shared 
sequentially accessed data. Sequential access is common in many important problem domains. We 
have focused on overnight batch processing as an example of such an environment. Most of our 
algorithms apply to other problem domains in which sequential data access is performed. 

Our cache replacement algorithms have an asynchronous component that is periodically 
executed. It estimates the velocities with which jobs proceed through datasets to determine which 
data objects will be referenced in the future. This information is used by the replacement schemes 
to avoid replacement of data that will be re-referenced soon. The velocity estimates are also used 
by our Deadline Prefetch algorithm to perform an asynchronous prefetching. Finally, we have 
presented a new job scheduling strategy called Load Partitioning to improve inter-job locality. 

We outlined the results of simulation experiments to measure the performance of the new 
algorithms. Our experiments show that the Use Time and WBUC algorithms significantly 
outperform traditional cache replacement algorithms. For small caches (::::;; 5% of total database 
size), the Use Time algorithm is by far the best replacement algorithm studied and decreases elapsed 
processing time by 30% compared to all other algorithms. The Deadline Prefetch algorithm 
achieved approximately a 10% decrease in elapsed time for most cache replacement algorithms 
(including LRU) in our experiments. Load partitioning was shown to be very effective for a small 
number of load partitions. However, for small cache sizes it can increase disk contention thus 
lowering performance. Only the Use Time algorithm was able to avoid such an unstable behavior 
and take advantage of load partitioning for all cache sizes. 

The Use Time algorithm has been implemented in the new version of the MVS/ESA Hiperbatch 
(High Performance Batch) product of IBM which is successfully being used at more than 300 
commercial data centers worldwide [1, 2]. Hiperbatch allows caching to take place in Expanded 
Storage (page-addressable extended memory) rather than in main memory. This difference has littly 
impact on the replacement algorithms, but permits a more cost-effective caching since the storage 
cost of extended memory is lower than for main memory [19]. 

There are several possible areas for further work on the problems studied in this paper. These 
include enhancing the algorithms to deal with update and non-sequential 1/0 activity. Integrating 
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precedence based scheduling algorithms with our load partitioning algorithm is another possible 
avenue for further work. 
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