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1. INTRODUCTION 

Large transaction processing applications, such as banking, flight reserva
tion, or telecommunication networking, increasingly demand high perform
ance transaction systems [24]. Such DB-based systems should not only 
provide high transaction rates (several thousands of transactions per second 
with response times acceptable for online applications), but also high avail
ability, scalability (modular growth), and manageability and maintainability 
[24, 32]. 

Database Sharing (DB-sharing, "shared disk" [82]) systems, which have 
received considerable attention in recent years [2, 6, 15, 31, 36, 47, 53, 68, 72, 
73, 79, 82, 84, 86], offer a promising solution to these problems. They consist 
of multiple autonomous processing nodes that share the common database at 
the disk level (see Figure 1a). A node in such a system may be either a 
uniprocessor or a tightly coupled multiprocessor with a local main memory 
and a separate copy of the operating system and the database management 
system (DBMS). In this paper, we usually assume that the nodes are loosely 
coupled (message-oriented communication), as opposed to closely coupled 
DB-sharing systems. A close coupling aims at a more efficient internode 
cooperation for certain functions by using common semiconductor memory [8, 
17, 64] or by using special-purpose processors for global services such as 
concurrency control (e.g., by a "lock engine" [37, 69, 72]). 

Existing DB-sharing systems and prototypes include the IMS Data Sharing 
product [56, 79], the Power System 5/55 of Computer Console [84], the Data 
Sharing Control System ofNEC [72], the Amoeba prototype [73, 82], Fujitsu's 
Shared Resource Control Facility [2], and DEC's DBMS and RdbjVMS 
products within a VaxCluster [38, 39, 42, 66]. Recently, Oracle has also 
introduced a version of its DBMS product, called "parallel server" which 
supports database sharing on different hardware platforms [53]. Further
more, the IBM operating system TPF (transaction processing facility) [71, 81] 
also supports disk sharing for up to eight nodes and performs locking and 
data caching within the disk control units. 

Comparison to Other Approaches 

Database partitioning (DB-partitioning, "shared nothing" [78]) refers to 
another general approach for distributed transaction processing (Figure 1b). 
In contrast to DB-sharing, the database in shared-nothing systems is parti
tioned so that each node owns some fraction of the disk devices. This 
approach is adopted by Tandem's Encompass and NonStop SQL products [10, 
80] and by several database machines, e.g., Teradata's DBCj1012 [50] and 
the Bubba and Gamma prototypes [9, 16]. Typically, database machines only 
process the database operations while application programs submitting the 
operations are executed on front-end processors, which are usually main
frame hosts or workstations. This approach is also used in other client I server 
architectures, and can effectively utilize the processing capacity of inexpen
sive microprocessors for transaction processing. A distributed server, needed 
for high availability and high transaction rates, may be based either on the 
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Fig. 1. DB-sharing versus DB-partitioning (a) DB-sharing (b) DB-partitioning. 

DB-partitioning or DB-sharing approach. However, separating application 
and database processing across node boundaries can cause performance 
problems for online transaction processing (OLTP). This is because internode 
communication is required for every database operation in order to submit 
the request to the server and to return the result to the application program. 
For simple operations prevalent in typical OLTP applications, the associated 
communication overhead and response time delay dominates the execution 
cost and time of the operation itself. Off-loading database processing may be 
appropriate for complex queries by processing them in parallel on multiple 
back-end processors. 

The controversy among DB-sharing and DB-partitioning systems has been 
discussed in the literature [32, 55, 74, 78]. Although research and system 
developments have concentrated on the DB-partitioning approach (including 
distributed database systems), we feel the DB-sharing approach offers a 
number of advantages that make it attractive for high performance transac
tion processing. In the following, we summarize the major differences between 
the two approaches: 

(1) Locally us. geographically distributed systems. DB-partitioning is 
applicable in locally and geographically distributed systems. DB-sharing, on 
the other hand, requires that all physical components are located in close 
proximity, due to the attachment of the disk drives to the nodes. New 
fiberoptic disk connections permit extending the distance from one room to 
several kilometers between processing nodes and disk drives. 

A geographically distributed transaction processing system is desirable in 
order to reflect the organizational structure of large institutions. In addition, 
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it can offer better failure isolation than a locally coupled system. On the other 
hand, locally coupled systems allow a simpler administration and avoid 
problems of geographically distributed systems introduced by the autonomy 
requirements of individual sites, or unreliable communication paths or net
work partitions. In addition, locally coupled systems can utilize a higher 
communication bandwidth and streamlined communication protocols, thus 
improving performance for distributed transactions. Furthermore, local sys
tems offer a greater flexibility for global load control and load balancing [ 13]. 
If for instance, transactions are routed to the nodes via a front-end system 
(Figure 1), a dynamic load distribution becomes feasible, which takes the 
current load situation into account. This promises a better utilization of the 
available resources, as in geographically distributed systems where workload 
allocation is typically static (predetermined assignment of terminals to nodes). 
Locally coupled systems can be protected against disasters by a limited form 
of geographic data distribution. As discussed in [ 11, 41, 46], this is possible by 
keeping a copy of the database at a passive remote data center. The database 
copy is not used for normal transaction processing, but only kept up to date 
by spooling log data from the primary to the remote data center. In the event 
of a disaster, the backup system takes over and continues transqction pro
cessing. Such an approach is applicable to DB-partitioning as v. eil as DB
sharing. 

(2) Database design. The key problem of DB-partitioning is the difficulty 
of finding a "good" fragmentation and allocation of the database [70]. This not 
only complicates system administration, but has far-reaching consequences 
on how transactions are processed and on the achievable performance. The 
problem is aggravated by the fact that database allocations tend to be rather 
static, since physical database relocations are expensive. Furthermore, a 
sufficient flexibility to adapt database partitioning is only provided if fine
grained fragmentation units are supported, e.g., by a horizontal partitioning 
of relational databases. For navigational databases, on the other hand, only 
coarse fragmentation units (segments, record types, etc.) are usually possible. 
This severely restricts the number of database partitions and processing 
nodes, and makes it difficult to achieve load balancing. Similar problems may 
be posed by complex objects in object-oriented database systems, e.g., for CAD 
applications. As pointed out in [34], partitioning of such objects is a major 
problem. 

DB-sharing does not encounter these problems because there is no need to 
physically partition the database. As a result, no changes to the physical or 
logical database structure are necessary when migrating from a centralized 
system to DB-sharing or when the number of nodes in the DB-sharing system 
changes. Hence, DB-sharing can support nonrelational databases more easily 
than DB-partitioning. 

(3) Transaction execution model. For DB-partitioning, the execution of a 
database operation is distributed if nonlocal data has to be accessed. Consid
erable extensions to the query optimizer are necessary in order to support the 
construction of distributed execution plans. If nonlocal data has been accessed 
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by a transaction, a distributed commit protocol has to be employed to 
guarantee the aU-or-nothing property [33] of the transaction. Similarly, 
rollback of a transaction is distributed if the transaction has referenced 
external data. After a change in the data allocation, precompiled execution 
plans may become invalid, requiring a new compilation and optimization of 
affected application programs. 

In DB-sharing systems, no distributed execution plans have to be deter
mined by the query optimizer because each node has direct access to the 
entire database. Nevertheless, communication may be necessary to process a 
given operation, e.g., for concurrency and coherency control (see Section 2). 
These tasks, however, are performed by lower layers of the DBMS, and are 
thus transparent to the query optimizer. The first commit phase of a transac
tion is always local for DB-sharing; that is, a transaction is committed as 
soon as the commit record has been written to the local log file of the node 
where the transaction has been started [63]. Communication may be needed 
during the second commit phase to release externally managed locks. 

Both approaches, DB-partitioning and DB-sharing, can employ parallel 
execution strategies for complex queries and process independent (noncon
flicting) suboperations on different nodes in parallel. For DB-partitioning, the 
physical data distribution determines whether a parallel execution is applica
ble for a given operation. This limitation is removed for DB-sharing; even the 
same data can be concurrently read in different nodes, thus increasing 
the flexibility for parallel processing models. Obviously, the query optimizer 
needs to be enhanced for DB-sharing, too, in order to support parallel 
execution strategies. 

(4) Availability and scalability. DB-sharing systems offer availability and 
extensibility advantages over the DB-partitioning approach because they can 
cope more easily with variations in the number of nodes. In DB-partitioning 
systems, a node crash makes the partition of the failed node unavailable 
unless another node is connected to the disk devices of the failed node. Even 
if the partition can be taken over, the node temporarily owning two partitions 
becomes easily overloaded. Even more difficult is the addition of a new node 
to a DB-partitioning complex, since it requires a physical redistribution of the 
database (N ~ N + 1). This is generally a major reorganization and affects 
the availability of the data to be moved. 

DB-sharing avoids these problems, since no physical data allocation needs 
to be adapted. On the other hand, depending on the I/0 architecture, the 
number of nodes that can be connected to the same disk may be limited. For 
message-oriented storage devices that communicate with processing nodes by 
means of message passing, there is no inherent limit in the number of 
processing nodes. Such an approach has been chosen in the VaxClusters [ 42] 
which currently support up to 96 processing nodes and disk servers, as well 
as in parallel hypercube architectures (e.g., Intel's iPSCj860 or NCUBE). 

(5) Workload allocation and load balancing. Although a dynamic work
load allocation is possible for both approaches in a locally distributed system, 
DB-sharing offers a much higher flexibility for load balancing. The problem 
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of DB-partitioning is that at least simple database operations, which refer
ence one or a few records, have to be processed where the data resides. That 
is, the physical data allocation determines where an operation is going to be 
processed, irrespective of the node to which the corresponding transaction 
has been assigned. If, for load balancing reasons, a transaction is assigned to 
a lightly loaded node which holds no or little of the data to be accessed, the 
database operations still have to be processed at the nodes owning the 
required data. Thus the load on these nodes is not significantly reduced and 
may even be increased, since additional comr ,unication overhead is intro
duced for receiving the remote requests, returning the results and participat
ing in the commit protocol. As a consequence, resource utilization and mes
sage frequency are largely determined by data allocation, leaving only a 
small optimization potential for transaction routing. Variations in the load 
profile can thus easily lead to unbalanced CPU utilizations and overload 
situations at some nodes. In particular, partitioned systems do not have the 
flexibility to adapt to short-term workload fluctuations [74]. 

In DB-sharing systems, on the other hand, a database operation can 
largely be processed at the node to which the corresponding transaction has 
been assigned, since each node has direct access to the entire database. For 
instance, it is possible to allocate complex ad hoc queries and short online 
transactions to separate nodes so as to avoid resource contention on CPU and 
memory between these workload types. Furthermore, it is possible to free 
whole nodes from transaction processing when the current load can be 
handled by a smaller number of nodes [74]. For DB-sharing, the routing 
strategy is not determined by a static data allocation, and can thus be more 
easily adapted to short-term workload fluctuations and other changes in the 
system state. 

(6) Technical problems. The discussion above already shows that various 
technical problems have to be solved for DB-partitioning and DB-sharing. 
Major problems for DB-partitioning include database design (database frag
mentation and allocation), distributed query processing, and distributed com
mit algorithms. Geographically distributed systems pose a number of extra 
challenges: dealing with network partitions, authorization, catalog man
agement, and replication control. DB-sharing systems have to address new 
problems in the areas of concurrency control, coherency control, logging, 
and crash recovery (see Section 2). Some problems are relevant for 
both DB-partitioning and DB-sharing: global deadlock management, dis
aster recovery, workload allocation/load balancing, and parallel query 
optimization. 

Organization 

In this paper we investigate the concurrency and coherency control problems 
in DB-sharing systems. Both functions are critical to the performance of such 
systems because they largely determine the communication overhead for 
transaction processing. We have implemented four different protocols within 
a detailed trace-driven simulation system that allows a direct performance 
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comparison between the schemes. The algorithms have been designed to meet 
high performance requirements by utilizing various concepts to limit the 
message and I/0 frequency. In particular, we employ a so-called NOFORCE 
strategy for update propagation to disk and to exchange modified pages 
directly across the interconnect rather than across the shared disks. In 
addition, affinity-based transaction routing, controlled by routing tables, is 
used to assign the workload. Such a routing aims at improving performance 
by supporting locality of reference within nodes. 

The next section provides a discussion of the DB-sharing components, 
requiring new solutions, compared to centralized and DB-partitioning sys
tems. In Section 3 we describe the four concurrency and coherency control 
protocols that have been implemented. Section 4 presents our trace-driven 
simulation system of loosely coupled DB-sharing configurations, together 
with the load characteristics and our parameter settings. Simulation results 
for the four protocols are then analyzed in Section 5. Section 6 deals with 
related performance studies for DB-sharing. Finally, we summarize our main 
conclusions and indicate areas for future research. 

2. FUNCTIONAL COMPONENTS IN DB-SHARING SYSTEMS 

In this section we discuss the four major components that require new 
solutions for DB-sharing. These functions are global concurrency control, 
coherency control, load control, and logging/recovery. 

2.1 Concurrency Control 

Since any data item of the shared database can be accessed by any node, 
DB-sharing requires global synchronization in order to preserve serializabil
ity of transaction processing. While concurrency control is basically a local 
function with DB-partitioning, where each node synchronizes accesses against 
its partition, loosely coupled DB-sharing systems require explicit message 
exchange for system-wide synchronization. The number of concurrency con
trol messages has to be as low as possible in order to reduce the communica
tion overhead and support high performance. Especially critical are so-called 
synchronous messages (for instance, global lock requests) which entail trans
action deactivation, and hence process switching, until a response message is 
received. These messages not only increase overhead due to process switches, 
but also increase a transaction's response time, and thus data contention. 
Data contention can be a limiting factor for throughput, particularly in 
distributed environments where generally higher multiprogramming levels 
than in centralized DBMSs have to be dealt with. To limit the communication 
frequency it is also important (as we shall see) to treat concurrency and 
coherency control by an integrated protocol. A further requirement for a 
practical concurrency control protocol is robustness against failures in the 
system, in particular against node crashes. 

A survey of concurrency control schemes for DB-sharing is given in [ 60, 65]. 
The most appropriate approaches are locking and optimistic concurrency 
control methods that operate either under central or distributed control. For 
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each of the resulting four categories, we examine one representative scheme 
(see Section 3). 

2.2 Coherency Control 

Coherency control is necessitated by the caching of database pages in main 
memory database buffers. Caching may in large database buffers substan
tially reduce the amount of expensive and slow disk accesses by utilizing 
locality of reference. Unfortunately, there is a buffer invalidation problem in 
DB-sharing systems, since a particular page (block) may simultaneously 
reside in the database buffers of different nodes. Thus, modification of the 
page in any buffer invalidates copies of that page in other nodes, as well as 
the page copy stored on disk. The basic task of coherency control is to ensure 
that transactions always see the most recent version of database objects 
despite buffer invalidations. 

This buffer invalidation problem is analogous (although at a different level 
of the storage hierarchy) to the cache coherency problem in tightly coupled 
multiprocessors [18, 85] and to the replication control problem in distributed 
databases [5, 22, 76]. Coherence problems for pages cached in main memory 
buffers have recently also been studied in the context of network file systems 
[40, 51] and in so-called Distributed Shared Memory (DSM) systems [4, 7, 44, 
52]. The main difference between the latter studies and DB-sharing comes 
from which correctness criterion for coherency control is supported. In net
work file systems, it is desirable that every access to a file block should 
return the most recently written version of that block [51]. In DSM systems, 
every machine instruction must be provided with the most recent page 
version. For DB-sharing, on the other hand, transactions are the basic 
execution units, and it must be guaranteed that every transaction sees all 
modifications of previously committed transactions. (Actually, the correct 
criterion of serializability demands only that a transaction sees a transaction
consistent state of the database, not necessarily the most recent one.) Since 
transactions typically encompass tens to hundreds of page accesses and tens 
to hundreds of thousands instructions, we can expect a significantly lower 
number of page transfers between nodes for DB-sharing than for network file 
systems or DSM systems. In addition, DB-sharing permits a combination of 
coherency and concurrency control and may utilize an affinity-based transac
tion routing (see below) to limit the number of buffer invalidations and page 
transfers. 

Workstation/server DBMS with a caching of database pages in worksta
tions require coherency controls similar to DB-sharing systems [ 12. 83]. In 
fact, the coherency control mechanisms for DB-sharing can be employed in 
this environment as well [65]. 

Solving the buffer invalidation problem for DB-sharing depends on two 
major factors, namely the data granularity for concurrency control and the 
strategy used for update propagation to disk. 

(1) Page versus record-level concurrency control. Page-level concurrency 
control simplifies coherency control, since pages are the allocation units in 
the database buffers and transfer units between main memory and disk. 
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Furthermore, a smaller number of lock requests, and thus potentially less 
communication, is needed compared to record-level locking. On the other 
hand, page-level concurrency control may cause an unacceptable amount of 
data contention on frequently accessed "hot spot" pages. Record-level locking 
permits different records of the same page to be concurrently modified at 
different nodes. As a result, each node's page copy is only partially up-to-date 
and the page copy on disk contains none of the modifications (at first). Since 
writing out partially up-to-date pages could lead to lost updates, all modifica
tions must be merged before the page can be written to disk. This merging of 
record modifications is cumbersome, in general, and may cause a substantial 
number of extra messages. Furthermore, even with record-levellocking, short 
page locks /latches may be needed in order to serialize modifications to page 
control information (e.g., free space information in the page header). For 
DB-sharing, this requires additional messages and seems impractical. 

To avoid the coherency control problems associated with record-level lock
ing, existing DB-sharing systems only support page locking or a restricted 
form of record locking. A good compromise may be to restrict page-level 
concurrency control to concurrent write accesses of different systems, so that 
different records of a page can be concurrently modified within the same 
node. In addition, any record not being modified may be read in any system 
[47]. Full record-level locking, i.e., concurrent modifications of the same page 
in different nodes, may be tolerable for updates that leave the page structure 
unchanged (modification of existing records) [ 49, 63, 65]. Another approach to 
reduce data contention is to utilize the semantics of update operations, e.g., 
on index structures or for certain high-traffic data items (commutativity of 
increment/decrement operations) [28, 49]. 

(2) FORCE versus NOFORCE strategy for update propagation to disk. A 
FORCE strategy for update propagation requires that all pages modified by a 
transaction are forced (written) to the permanent database on disk before 
commit [33]. This approach is usually unacceptable for high performance 
transaction processing-since a high r;o overhead and significant response 
time delays for update transactions are introduced. For DB-sharing, this 
strategy implies further page-level concurrency control for updates between 
different nodes in order to serialize disk writes for the same page. On the 
other hand, coherency control is simplified because the most recent version of 
a page can always be obtained from disk. Furthermore, there is no need for 
redo recovery after a node failure. Despite the performance problems of 
the FORCE approach, most existing DB-sharing systems currently use the 
FORCE strategy. 

The NOFORCE alternative permits a drastically reduced I/0 overhead 
and avoids the response time increase due to synchronous disk writes at end 
of transaction (EOT). Only redo log data is written to a log tile at EOT 
(possibly by utilizing group-commit [35]), and multiple modifications can be 
accumulated per page before it is written to disk. Since the permanent 
database on disk is not up-to-date, in general, coherency control has to keep 
track of where the most recent version of a modified page can be obtained. 
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Instead of reading a page from disk, a so-called page request may have to be 
sent to the node holding the current page copy in its buffer. The modified 
page can then be transferred to the requesting node either directly across the 
communication system through a "buffer-to-buffer" communication or across 
the shared disks. With a high-speed interconnect, the direct transmission is 
typically much faster, say 1 ms versus 50 ms for the two IjOs needed for a 
page exchange across shared disks. Non volatile disk caches could permit 
transfer delays of about 4-8 ms for the two IjOs. In closely coupled DB
sharing systems, modified pages may also be exchanged across shared semi
conductor stores with faster access times than disk caches [ 64]. 

A disadvantage of buffer invalidations is that obsolete page copies cannot 
be reused, thus reducing buffer hit ratios. In addition, performance is 
degraded by extra messages that may be required for coherency control. On 
the other hand, data replication in main memory permits multiple nodes to 
concurrently read the same data. Furthermore, a buffer miss does not neces
sarily imply a need to read the page from disk. Rather, a page may be 
obtained much faster from another node. 

A survey of coherency control methods for DB-sharing systems is presented 
in [65]. Buffer invalidations can either be detected or avoided. A simple but 
expensive scheme uses broadcast messages to indicate the pages which may 
have been invalidated by an update transaction (broadcast invalidation). A 
better approach avoids extra messages to detect buffer invalidations by 
checking the validity of cached pages during lock request processing (on
request invalidation). Another method is to avoid buffer invalidations by 
purging a page from the database buffer before its modification at another 
node. The schemes described in the next section are based either on the 
broadcast invalidation or on-request invalidation scheme. 

2.3 Load Control and Load Balancing 
The main task of load control is transaction routing, that is, the assignment 
of incoming transaction requests to the nodes of the DB-sharing complex. 
This workload allocation should not be determined statically by a fixed 
allocation of terminals andjor application programs to nodes, but should be 
automatic and adaptive with respect to changing conditions in the system 
such as overload situations, changed load profile, and node crashes. Effective 
routing schemes not only aim at achieving load balancing to primarily limit 
CPU resource contention, but also at supporting efficient transaction process
ing so that given response time and throughput requirements can be met. A 
general approach to achieve this goal is affinity-based transaction routing 
which uses information about the reference behavior of transaction types to 
assign transactions with an affinity to the same database portions to the 
same node [62]. In this way it strives to achieve what we call node-specific 
locality of reference, which requires that transactions running on different 
nodes should mainly access disjoint portions of the shared database. This is a 
promising approach because improved locality of reference supports better hit 
ratios and thus fewer disk IjOs. Similarly, node-specific locality helps to 
reduce the number of buffer invalidations and page transfers between nodes. 
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Furthermore, locality of reference can be utilized by some concurrency control 
schemes to limit the number of synchronization messages (see Section 3). 

The achievable degree of node-specific locality of reference is not only 
determined by the routing strategy, but also depends heavily on the load 
characteristics and the number of nodes. Node-specific locality is hard to 
achieve if the references of a transaction type are spread over the entire 
database, if there are database areas that are referenced by most transac
tions, or in the case of transaction types which cannot be processed on a 
single node without overloading it. Additionally, the more nodes are to be 
utilized, the less node-specific locality can generally be achieved, unless new 
transaction types andjor database partitions are also added to the system. 
Our analysis of a number of traces from different DBMS and customers 
shows that these characteristics are quite common in real database applica
tions. None of the workloads we examined was nearly as "delightful" and 
"scalable" [78] as the well-known debit-credit transaction load [3, 25]. This 
load is completely homogeneous (one transaction type with every transaction 
updating four record types) and permits an almost ideal partitioning of the 
workload and database for different numbers of nodes. The amount of achiev
able node-specific locality is thus very high and almost independent of the 
number of nodes. (According to the benchmark definition in [3, 25], up to 15% 
of the account accesses may require communication. Since typically the other 
three record types can be locally accessed, at most 3. 75% of all accesses are 
remote.) 

A more detailed discussion of transaction routing and a framework for 
classifying different approaches can be found in [62]. In [61], a hierarchical 
model for a comprehensive workload management for transaction processing 
is proposed where load control takes place at various levels. It is based on 
feedback loops, for local and global system control, that periodically analyze 
monitor data to detect performance problems and initiate corrective actions if 
necessary. Apart from improving performance, the main objective is to sim
plify system administration by automatically controlling the most important 
control parameters (routing strategy, multiprogramming level, transaction 
priorities, etc.). Only those problems are reported, together with hints on 
possible reasons, for which automatic corrections could not be applied or did 
not prove effective. 

2.4 Logging and Recovery 

Each node of the DB-sharing system maintains a local journal where the 
modifications of locally executed transactions are logged. This information is 
used for transaction abort and crash recovery. For media recovery, a global 
journal may be constructed by merging the local log data [48, 73]. Preferably, 
the global log is constructed on-the-fly to support quick recovery after a disk 
failure. Existing DB-sharing systems either use mirrored diskE: to handle 
disk failures or provide a tool for merging the local log files offline. The latter 
approach is much easier to realize than an online construction of the global 
log, but prevents a fast recovery from disk failures, thus limiting availability. 
A discussion of the problems for creating global logs can be found in [ 48]. 
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Apart from media and disaster recovery, crash recovery is the major issue 
that requires new solutions for DB-sharing. Crash recovery has to be per
formed by the surviving nodes which use the local journal of the failed node 
in order to provide high availability. The realization of this recovery form 
depends on many factors, including the underlying protocol for concurrency 
and coherency control, the strategy used for update propagation (FORCE 
versus NOFORCE), and the log and concurrency control granularities [63]. In 
general, lost effects of transactions committed at the failed node have to be 
redone while modifications of in-progress, hence failed, transactions may 
have to be undone. If modified pages are directly exchanged between nodes 
across the communication system, crash recovery may require use of a global 
log in order to redo the modifications of affected pages in correct order. 
Special recovery actions may be necessary for the reconstruction of lost 
control information in order to properly continue concurrency and coherency 
control. 

Recovery in DB-sharing systems is discussed in more detail in [ 4 7] and 
[63]. 

3. CONCURRENCY AND COHERENCY CONTROL PROTOCOLS 

For this study we have chosen to examine two locking and two optimistic 
concurrency control protocols, with one centralized and one distributed algo
rithm for each class. For coherency control, we apply either the broadcast 
invalidation or on-request invalidation approach. To support high perfor
mance, our coherency protocols are designed for a NOFORCE environment 
and use buffer-to-buffer communication to propagate modified pages to other 
nodes. All algorithms assume page-level concurrency control to facilitate the 
integration of concurrency and coherency control. Record-level concurrency 
control could not be evaluated because our traces provide only reference 
information at the page level. 

3.1 Central Lock Manager (CLM) 

In the simplest form, every lock request and release is forwarded to the CLM 
node. This results in two messages per lock request and one message at EOT 
to release all locks. Such an approach can be considered as a worst-case 
protocol. Batching of messages reduces the communication overhead, but at 
the expense of increased delays for the synchronous lock requests and thus 
increased response times. We have incorporated two other techniques into 
the CLM scheme which utilize locality of reference and are able to reduce 
both the communication overhead and response times. 

-A so-called read optimization [57, 60, 65] is applied that allows multiple 
nodes at the same time to grant and release read locks for a page locally, 
without contacting the CLM. The first read access to a page B in a node has 
to be granted by the CLM. If no write lock request is known at the CLM at 
this point in time, the CLM assigns a so-called read authorization for B to 
the requesting node. This read authorization gives the node the permission 
to process all further read lock requests and releases for B locally, thus 
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reducing the number of synchronization messages and response time delays. 
The effectiveness of this technique increases with increasing locality of read 
accesses. 

Since multiple nodes can simultaneously hold a read authorization for the 
same page, the read optimization supports a high concurrency and fast read 
accesses, which are also supported by the data replication in the database 
buffers. Write accesses, however, may suffer from this technique since a write 
lock cannot be granted until the CLM has revoked all read authorizations. 
Thus the read optimization seems less attractive for applications where 
update accesses are more frequent than read accesses. 

-A similar concept, called sole interest [68], is applied to grant an autho
rization for a local synchronization of read and write requests. Such a write 
authorization is assigned to a node, when it requests a lock at the CLM and 
no other node has issued a lock request for the same page ("sole interest"). In 
contrast to read authorizations, a write authorization can be assigned only to 
one node at a time, and has to be revoked by the CLM as soon as any other 
node requests a read or write lock for the same page. If a read request causes 
the sole interest revocation, the write authorization is degraded into a read 
authorization. Otherwise the write authorization of the current owner is 
given up and assigned to the requesting node (if there are no waiting 
requests from other nodes). 

The sole interest concept pays off only if more lock requests can be locally 
satisfied than sole interest revocations occur. This is because four messages 
are required for a lock request causing a sole interest revocation, compared to 
two messages without sole interest concept. In contrast to the read optimiza
tion, the effectiveness of sole interest depends on the amount of node-specific 
locality of reference requiring that different nodes should reference different 
portions of the database. 

Both techniques could also be applied for coarser granularities than pages, 
e.g., record types or segments. For instance, if a node holds a write (read) 
authorization for an entire segment, all (read) lock requests against this 
segment can be locally synchronized. Such a hierarchical scheme has 
not been implemented, mainly because of complexity reasons. Also, for 
"important" segments or record types to which a substantial share of the 
database references is directed, it is generally unlikely that only one node has 
interest or that only read references are issued for longer periods of time. 
Rather, thrashing-like situations with only short-lived assignments and fre
quent revocations of readjwrite authorizations could occur, which causes 
more messages than are saved. 

For coherency control, a simple broadcast invalidation scheme is used. At 
the end of every update transaction, a broadcast message is sent to all nodes 
indicating which pages have been modified. Invalidated page copies can thus 
be removed from the buffers and access to them is avoided. With NOFORCE, 
additional provisions are required in order to provide a transaction with the 
most recent page copies (remember that the page versions on disk may be 
obsolete). For this purpose, every buffer manager maintains a so-called 
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modified-blocks table (MBT). The MBT indicates for all (recently) updated 
pages the node where the latest modification has been performed, and thus 
where the current page version can be requested. The MBT is maintained 
without additional communication overhead by using information of the 
broadcast messages. By periodically broadcasting modified pages which have 
been written to disk, the number of MBT entries can be limited and page 
requests that can no longer be satisfied by buffer-to-buffer communication 
are largely avoided. These notifications can be piggy-backed on the broadcast 
invalidation messages. 

A CLM scheme is used in the DB-sharing systems of Computer Console 
and NEC as well as in the Amoeba prototype. They rely on the sole interest 
concept (for coarser granules than pages, however) for reducing the communi
cation overhead, while a read optimization is unknown in existing data 
sharing systems. The broadcast invalidation scheme is used for coherency 
control, but in combination with FORCE, and thus with an exchange of 
modified pages across shared disks. In the Amoeba project [73] the existence 
of a nonvolatile shared semiconductor store has been assumed for speeding 
up the exchange of modified data. 

3.2 Primary Copy Locking (PCL) 

In this distributed scheme, the database is divided into logical partitions, and 
each node is assigned the synchronization responsibility, or primary copy 
authority (PCA), for one partition [68]. Lock requests against the local 
partition can be handled without communication overhead and delay, while 
other requests have to be directed to the authorized node holding the PCA for 
the respective partition. 

A simple PCL scheme results if the PCA allocation is determined by a hash 
function such that each node controls the same number of hash classes. If all 
hash classes are referenced with similar probability, we yield an average of 
(2 - 2/N) messages per lock request, where N stands for the number 
of nodes. The difference from the straightforward CLM scheme (two messages 
per lock request) shrinks as the number of nodes grows (1.5 messages for 
N = 4, but already 1.9 for N = 20). On the other hand, the CLM node is 
likely to become the system's bottleneck with growing N, at least in the 
simple approach, while with PCL the concurrency control overhead is 
distributed among all nodes. 

We implemented a PCL protocol with two major enhancements to reduce 
the number of synchronization messages: 

-A read optimization is employed for the primary copy scheme where 
the read authorizations are assigned and revoked by the PCA lock man
agers. This permits a local read synchronization of pages belonging to the 
partition of another node. 

-We coordinate the allocation of PCAs and the workload distribution such 
that transaction types are generally allocated to the node where most 
references can be locally synchronized. This kind of affinity-based transac
tion routing is accomplished by using a predetermined routing table indi-
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eating the best node(s) for every transaction type [67]. The computation of 
the routing table (see Section 4) assumes some knowledge of the reference 
pattern of the most important transaction types, as could be obtained from 
a DBMS-internal monitor. 

Coordinating PCA and load allocation aims at achieving node-specific 
locality of reference to reduce communication frequency. Contrary to sole 
interest assignments, PCA allocations are stable and independent of 
whether one or several nodes reference a partition. Also, there is no 
analogous disadvantage to the expensive revocations of write authoriza
tions in the CLM scheme. In contrast to the static data allocation in 
DB-partitioning systems, PCA distribution can be dynamically adapted 
together with the routing strategy (table), since it is only represented by 
internal control structures. This would typically be done when the load 
profile changes significantly, or less frequently, after a node has failed or 
been added. 

For coherency control, an on-request invalidation (check-on-access) scheme 
is applied. It uses extended information in the lock table, which allows the 
PCA lock manager to decide on the validity of a buffer page together with 
the lock request processing. Thus, buffer invalidations are detected without 
any additional communication-a big advantage compared to broadcast 
invalidation schemes. The on-request invalidation approach is used in DEC's 
VaxClusters [42], but in conjunction with a FORCE strategy. In [57], we 
describe two realization strategies for PCL that use either page version 
(sequence) numbers or so-called invalidation vectors to detect buffer invalida
tions. Both schemes incur no communication overhead, but the invalidation 
vector solution used in the simulation does not depend on version numbers 
stored within pages. 

The coherency protocol for NOFORCE has been designed such that trans
missions of modified pages can also be combined with regular eoncurrency 
control messages. First, modified pages belonging to the partition of another 
node are transmitted to the responsible PCA site, together with the message 
required for releasing the write lock at EOT. This has the effect that the PCA 
node always gets the most recent page versions for its partition. Buffer 
invalidations are now limited to pages belonging to another node's partition. 
Moreover, when a lock is granted to an external transaction, the PCA node 
can send the most recent page version directly to the requesting transaction, 
together with the lock response message. 1 In this case, the requesting 
transaction does not need to be deactivated again for requesting the page 
from another node or reading it from disk. Therefore, our coherency control 
scheme requires neither extra messages for detecting buffer invalidations nor 
for exchanging modified pages between different sites; more details can be 
found in [57]. 

1 This would be the case if the requesting node holds no copy of the page in its buffer or only an 
obsolete one (detected by the PCA lock manager). If the PCA node does not hold a copy of the 
page in its buffer, it indicates in the lock response message that the page can be read from disk. 
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Note that not only a local PCA but also a read authorization guarantees the 
validity of a buffer page. This is because the read authorization indicates that 
the page has not been modified since the authorization was obtained from the 
PCA lock manager. Read authorization can be given back as soon as the page 
is replaced from the buffer, since for the next reference the PCA node has to 
be contacted anyway in order to get a current page copy, because the copy on 
disk may still be obsolete. Such a voluntary return of read authorizations 
reduces the number of lock table entries and can largely avoid delays for 
write locks due to revocations of read authorizations. Read authorizations 
for frequently referenced pages will not be given up voluntarily because these 
pages are not removed from the buffer unless they become invalidated. On 
the other hand, if a read authorization is explicitly revoked, the correspond
ing page can also be purged from the buffer, since it is going to become 
invalidated. 

Recovery protocols for PCL are presented in [63]. It turns out that an 
explicit construction of a global log can be avoided with this approach if the 
PCA nodes log all modifications against their partition. This is possible 
without extra communication because all modifications are transferred to the 
PCA nodes at EOT in commit phase 2. 

3.3 Central Validation Scheme (CV-OCC) 

In this optimistic concurrency control ( OCC) [ 43] scheme, all validations are 
performed at a designated site. A main reason to investigate such a scheme 
is that only one synchronous concurrency control request per transaction is 
required, namely the validation request sent at EOT. For performing the 
validations at the central site, we implemented a simple and efficient scheme 
using timestamp comparisons for conflict detection (for details, see [59]). 
Validation verifies whether or not the page copies referenced by the validat
ing transaction are still up to date. If not, validation fails and the validating 
transaction is aborted. 

An inherent problem of OCC is the danger of a high abort rate and 
starvation (i.e., a transaction may never succeed due to permanent restart). 
To address this problem we adopted a special combination with locking 
techniques similar to that suggested in [68]. For unsuccessful transactions, 
we perform a "preclaiming" at the central site, right after the failed valida
tion. Thus, before reexecution of the transaction is started, locks are acquired 
for all pages referenced during the first execution. These locks prevent 
the invalidation of the respective pages again and guarantee a successful 
second execution, at least if no additional objects are referenced. Note that no 
extra communication is required for setting the locks and that deadlocks are 
also avoided. However, lock conflicts with other failed transactions can occur. 

Though access to invalidated pages is detActed during validation, coherency 
control is still required to reduce the number of aborts by removing obsolete 
pages early from the buffers and providing the current page copies. For this 
purpose, a broadcast invalidation scheme is applied which also relies on 
replicated MBTs to indicate the nodes where modified pages can be requested 
(as in the CLM scheme). Here, however, the broadcast invalidation messages 

ACM Transactions on Database Systems. Vol. 18, No. 2, June 1993. 



Performance Evaluation of Concurrency and Coherency Control Protocols 349 

are sent by the central site, after the successful validation of an update 
transaction. For the site where the successful transaction has been executed, 
the broadcast message also serves as notification that validation has been 
successful, so that a separate validation response message is saved. 

3.4 Optimistic Token Ring Protocol (TR-OCC) 

In this distributed OCC scheme, a node performs validations only while it is 
holding the token [30]. After a transaction has reached its EOT, it first has to 
wait until the token arrives in order to validate itself against local transac
tions. For validation against external transactions, the validation request 
is sent around the ring, together with the token. The final outcome of 
a transaction is determined after the token arrives once more at the 
transaction's site of execution. 

We implemented a "forward-oriented" validation scheme where validations 
are performed against running transactions and where only update transac
tions have to validate [27]. Since all conflicting transactions are not yet 
committed, a conflict can be resolved either by aborting the validating 
transaction (abort policy) or by restarting the running transactions (kill 
policy). In the simulations, we adopted a hybrid scheme for conflict resolu
tion. Transactions start using the abort policy until their number of aborts 
has reached a certain restart limit, RL, which is a simulation parameter. The 
executions following then apply the kill strategy against conflicting transac
tions. If two "killer transactions" conflict with each other, the transaction 
with the lower priority, as determined by the number of restarts, is aborted. 
Starvation is thus avoided, since a frequently restarted transaction will 
eventually hold the highest priority. In our simulation system, a different 
restart limit can be selected for every transaction type. If RL == 0 is chosen, 
transactions start immediately with the kill policy. 

For coherency control, a broadcast invalidation scheme with a MBT in any 
node is employed. The scheme has been enhanced by several features 
described in [58]. Blocking of pages that belong to the write set of a validating 
transaction, until it is known whether the transaction has been successful, is 
one such feature. 

4. SIMULATION MODEL 

We invested major effort in implementing a detailed simulation system for 
message-based DB-sharing complexes. The system is structured in a modular 
way such that different algorithms and realization strategies for the main 
components can easily be incorporated. The primary objective for developing 
such a system was to identify critical performance factors in DB-sharing 
systems and to quantify the performance impacts of different realization 
strategies. More specifically, we are interested in comparing the performance 
of the concurrency and coherency control algorithms described above and in 
assessing the effectiveness of the various optimizations applied therein. 
Scalability is also of major interest (i.e., how performance is affected if we 
change the number of nodes). Another aspect covered in our studies and 
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described in this paper is the impact of different strategies for load distribu
tion and the influence of hot spot pages on performance. 

Though we could have used synthetic workloads for our simulations, we 
chose to apply a trace-driven approach. This was motivated by experiences 
with performance evaluations of centralized DBMS [29], indicating the 
importance of a realistic workload model for assessing the merits or short
comings of different algorithms, specifically for concurrency control or buffer 
management. Traces of real-life OLTP applications provide load profiles 
which typically consist of many individual transactions of different types with 
nonuniform reference pattern, hot spot objects, and locality of reference. It is 
difficult to capture these important aspects adequately by synthetic work
loads. Nonuniform reference patterns are especially important for the evalua
tion of buffer management schemes, and thus for DB-sharing where buffer 
invalidations and coherency control are expected to play a major role. In fact, 
trace-driven simulation is applied in most performance studies of caching 
schemes [1, 19, 40, 51, 75]. Knowledge of reference distribution can also be 
used for a meaningful, affinity-based, load distribution. 

A valid criticism of trace-driven simulations is that the results apply 
primarily only to the specific application from which the data has been 
collected. On the other hand, one could equally argue that synthetic work
loads do not represent any application well. Also, the generality of an 
empirical performance study can be improved by using traces from different 
environments. A main reason that trace-driven simulation is less frequently 
used in database performance studies lies in the difficulty of obtaining traces 
of commercial OLTP applications. 

The next section describes traces, for which simulation results are pre
sented. In Section 4.2 we describe the structure and realization of our 
simulation system, together with the parameters. 

4.1 Trace Characteristics 

Our simulation system does not use the original traces as input, but a more 
compact representation, called reference string, containing only the relevant 
record types from the trace. Four different record types are essential for our 
purposes: (1) a begin of transaction (BOT); (2) an EOT record for every 
transaction; (3) a FIX and (4) UNFIX record for every page reference. A page 
reference is actually represented by the FIX record, while the UNFIX record 
merely indicates to the buffer manager that the page need no longer 
be "fixed" in the buffer on behalf of the respective transaction, but may be 
considered for replacement. The BOT record indicates the transaction type 
and the access mode (update or read-only). A page reference specifies the 
transaction and page identifiers, the page type (e.g., regular database page or 
administration data for free space management, etc.) and the access mode 
(read or write). 

Simulation runs were conducted for six different transaction loads originat
ing from real applications with a nonrelational DBMS. The largest reference 
string contains over one million page references and 17,500 transactions. 
However, simulation execution times turned out to be extremely long for 
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reference strings of this size, so that most runs had to be conducted 
for smaller loads. Since the main findings of our extensive performance study 
[60] could already be observed for these loads, in Section 5 we present the 
simulation results for two shorter transaction mixes (Table D. Both loads 
originate from OLTP environments with interactive processing only. Mix 1 
consists of very short transactions with a comparatively high share of update 
accesses. Over 90% of the page accesses are performed by two of the four 
transaction types that operate on disjoint database partitions. For a DB-shar
ing system with two nodes, a high degree of node-specific locality of reference 
can therefore be expected when the two major transaction types are pro
cessed on different systems. 

Mix 2 is about four times as long as Mix 1 in terms of page accesses, and is 
dominated by read references. Though most transactions are also short in 
Mix 2, 70% of the page references are due to 13% of the transactions that 
perform more than 100 page accesses. These long (read-only) transactions are 
also responsible for a high degree of locality of reference for Mix 2 (on 
average, a page is referenced 10 times by the same transaction). The refer
ence matrix in Figure 2 depicts the access distribution of the 10 transaction 
types against 9 database areas (files). The matrix shows that there is a 
dominant transaction type (TTl) that encompasses about 65% of all page 
accesses. Similarly, 58% of all accesses are directed to a single file (area 1). In 
order to utilize all nodes, it is not possible to assign the dominating transac
tion type to a single node for configurations with more than two nodes. 
Assigning a transaction type to multiple nodes reduces the amount of node
specific locality of reference, and can therefore deteriorate performance. 

In both workloads there are several hot spot pages that contain database 
address translation tables (DBTT) and data for free space administration 
(FPA). DBTT and FPA pages have a much higher access frequency than 
"normal" database pages. Particularly critical are FPA pages that are always 
accessed with the intent to update (these pages are used by insert operations 
to determine a database page with sufficient free space). So in Mix 2 there is 
a single FPA page that is accessed by 28% of all transactions; in Mix 1 there 
are two such pages accessed by 17 to 20% of the transactions with intent 
to update. Page-level locking with long write locks on these pages would 
result in disastrous performance. In the underlying DBMS, lock conflicts on 
these pages are largely avoided by locking only the respective table entry 
(DBTT) or holding only short locks/latches (FPA). 

In our simulations the cost for transaction processing is modeled by 
requesting a certain number of instructions for every "unit of processing" 
(UP) which is either a page reference, a BOT, or an EOT. The values for 
"#instructions per UP" (Table I) are based on path length measurements and 
differ from load to load. For Mix 1 the value is considerably higher than for 
Mix 2, since the average number of page accesses per database operation was 
smaller, causing a higher overhead for process switching. In addition, the 
higher share of update operations resulted in an increased pathlength per 
page request. Note that the overhead for I/0 and communication is not 
included in the UP cost, but is modeled separately (see below). 
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Table I. Workload Characteristics 

Mix 1 Mix2 

# transactions 2288 669 
share of update transactions 45.7% 46.5% 
# transaction types 4 10 
DB size 565MB 330MB 
# page references 9862 40751 
# pages referenced 2188 3025 
share of write accesses 48.9% 6.7% 
# units of processing (UP) 14438 42089 
# instruction per UP 8100 2850 
#UPs per transaction (avg.) 6 62 

Transaction Area (partition) 
type 1 2 3 4 5 6 7 8 9 Total 

TTl 17960 5975 1324 918 118 211 15 18 5 26544 
TT2 2707 7 619 167 1616 76 130 102 1 5425 
TT3 1567 32 1765 299 2 137 8 3811 
TT4 1444 727 263 521 45 207 3207 
TIS 34 51 1132 1217 
TT6 363 363 
TT7 16 1 21 14 5 49 106 
TT8 52 52 
TT9 18 18 
TTlO 1 7 8 

Total 23729 6014 4505 3163 2271 526 417 120 6 40751 

Fig. 2. Reference matrix for Mix 2. 

4.2 Structure and Realization of the Simulation System 

The simulation system has been implemented in PL/1 and employs discrete 
event simulation. It models DB-sharing systems with an arbitrary number of 
nodes, and considers CPU, I/0, and communication costs. The gross struc
ture of the simulation system is shown in Figure 3. 

-The scheduler is the central component requesting services from the other 
four modules. It manages the CPUs and models transaction processing for 
the entire DB-sharing system. 

-The reference manager manages the reference string and delivers trans
actions and their reference records to the scheduler. It also performs 
transaction routing controlled by a routing table, as could be done by a 
front-end system in a real DB-sharing complex. 

-The protocols for concurrency and coherency control as well as buffer 
management and (local) logging have been implemented within the respec
tive components. Buffer management and logging is based on the DB-cache 
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Fig. 3. Gross structure of the simulation system. 

approach [20] which employs a NOFORCE strategy and uses a sequential 
log file to speed logging. For logging, a separate log buffer is maintained for 
each node to hold the afterimages of modified pages. A log buffer is written 
out in one sequential IIO when it is full or at commit time of an update 
transaction. Global LRU is employed for page replacement. 

-The communication system handles the message transfers between the 
nodes. We modeled a point-to-point connection between any two nodes and 
an additional bus for the schemes employing broadcast invalidation. Batch
ing of messages is possible, and is controlled by two parameters, the 
blocking factor B and the maximal buffering delay BMAX (only relevant if 
B > 1). 

Tables II-V show the main parameters of our simulation system together 
with their default settings. Most of the parameters had to be fixed in order to 
limit the number of simulation runs. Parameters varied for each mix include 
the concurrency I coherency control protocol, the number of nodes, and the 
multiprogramming level. For most of the other parameters, the effect of 
different values has also been studied, but was found to be less relevant for 
the relative performance of the different schemes. Still, in Section 5 we also 
analyze the influence of page-level locking on FPAIDBTT pages and the 
effect of different communication costs and routing strategies. 

CPU, communication and I 10 costs. The scheduler simulates a single 
CPU server for every node and distinguishes between three types of CPU 
requests with different priorities and different costs (#instructions). 
CPU requests for communication (send or receive operation, message proces
sing) have highest priority, followed by CPU requests for I/0 (disk read or 
write, log IIO). The remaining CPU requests are for transaction processing 
and have lowest priority; these requests are issued for every BOT, page 

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993. 



354 E. Rahm 

Table II. General Parameters 

Parameter Settings 

reference string 

number of nodes N 
multiprogranuning level P 
CPU capacity per processor 
# instructions per UP 
routing table 

Mix 1, Mix2 
1, 2, 3,4 
4, 8, 16 
3 MIPS 
see Table 1 
dependent on load and N 

Table III. Concurrency Control Parameters 

Parameter 

concurrency /coherency 
control protocol 

FP A/DBTT lockmg 
consistency level 

Settings 

CLM, PCL, 
CV-OCC, TR-OCC 

no 

2 
PCA distribution (PCL) 
token delay (TR-OCC) 
restart lim1t RL (TR-OCC) 
MAX-WAIT (timeout) 

dependent on load and N 
0 
2 
1 - 30 s 

Table IV. Commumcation Parameters 

Parameter 
transmission rate 

point-to-point 
bus 

bundling factor 

Settings 

3 MB/s 
3 MB/s 
1 

max. bundling delay BMAX 

message length 100 B (+page size) 
5000 # instructions per send 

# instructions per rece1ve 5000 

# instructions for processing 
one message 

1000 

Table V. Parameters for Buffer Management and I/0 

Parameter 

buffer size 

page size 

log buffer size 

I/0 time 

log buffer write time 

# instructions per l/0 

Settings 

600 page frames 

2KB 

16 page frames 

30-60 ms 
(equally distributed) 

9 - 20 ms (dependent on 
number of pages) 

2500 
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reference, or EOT. The average number of instructions per request type is 
specified by parameters. The actual number of instructions per request 
is exponentially distributed over the specified mean. 

Communication costs are represented by CPU overhead for sending, receiv
ing, and processing messages, as well as communication delays for their 
transmission over the network. Every point-to-point connection, as well as 
the bus, have been modeled as separate servers in order to capture possible 
bottleneck situations-for instance, due to page transfers. The net transmis
sion time is calculated from the message length and bandwidth parameters. 

IjO costs are represented by CPU overhead and IjO delay for every IjO 
operation. Disk servers have not been explicitly modeled, assuming that 
bottleneck situations can be prevented by a sufficiently large number of disk 
drives or by using a disk array [54]. 

Modeling of transaction processing. For each of the N nodes, a fixed 
multiprogramming level P is applied indicting the number of concurrently 
active transactions. The total degree of parallelism is thus N*P. The execu
tion of a transaction is modeled by processing all its records from the 
reference string in chronological order. The processing of a reference record, 
in turn, depends on the concurrency and coherency control protocol and the 
current system state. So different actions are needed, depending on whether 
or not a lock conflict occurred or a page was found in the local buffer. In 
general, multiple events like CPU, I/0 or communication requests are 
involved until a reference record is processed. The execution of an EOT record 
triggers commit processing, consisting of logging and protocol-specific steps 
like validation or release of locks. After completion of a transaction, the 
scheduler requests the next transaction from the reference manager. The 
simulation stops as soon as there are no more transactions to be executed for 
any of the nodes (according to the routing strategy, see below). 

Transaction routing. We employed a static strategy for load distribution 
by using a predetermined routing table that remains unchanged during a 
simulation run. The routing table specifies, for every node, which transaction 
types it may process. Random routing can easily be achieved by letting every 
node execute transactions of any type. 

For calculation of the routing tables, it was necessary at first to determine 
the workload's reference matrix from the trace, indicating for every transac
tion type the relative frequency and distribution of database accesses. The 
reference matrix and the number of nodes then served as input parameters 
for an iterative heuristic that was developed for the primary copy protocol, 
which determines the routing table as well as the PCA distribution in a 
coordinated way. In each step of this heuristic, a transaction type, or some 
part of it, is assigned to one node such that the node is not overloaded. This 
assignment starts with the largest transaction type and is continued until the 
entire workload is allocated. The PCA allocation is adapted in each step of 
the assignment procedure such that the load distributed so far can be 
processed with a minimum of internode communication. The routing tables 
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obtained by this procedure were also applied to the other protocols in order to 
facilitate a comparison of the schemes. These routing tables also help 
to achieve node-specific locality, which is generally useful. 

Although we have perfect knowledge of the reference behavior of the 
transactions, it would not have been realistic to utilize this fact fully to 
determine an "optimal" routing policy. So we only considered the reference 
information at the type level, rather than for individual transactions. In 
order to support load balancing, we used a simple approach by requiring that 
about the same number of page accesses (±50(,) should be assigned to every 
node. For more than two nodes, the dominating transaction types in our loads 
had therefore to be assigned to multiple nodes. 

Specific concurrency control aspects. Our simulation system offers a choice 
between consistency level 2 and serializability Oevel 3)-an option that is 
also provided by some commercial DBMS (DB2, Tandem NonStop SQL a.o.). 
The simulation results (presented in Section 5) were achieved for consistency 
level 2, which was also used in the applications reflected in the traces. 
Consistency level 2 improves performance by tolerating the possibility of 
"unrepeatable reads"; that is, a transaction may see different versions of a 
database object [26]. For locking schemes, consistency level 2 means that 
read locks are generally released before EOT ("short" read locks), giving rise 
to a reduced conflict probability. There will, however, be more lock requests, 
since a transaction may now request multiple read locks for the same object. 
OCC can also utilize a restriction to consistency level 2. As pointed out in 
[60], in this case only update transactions have to validate against other 
update transactions (to avoid lost updates), while read-only transactions are 
always successful. Note that access to uncommitted objects is always avoided 
with OCC, since all modifications are performed on private object copies. 

For the locking schemes, deadlocks are handled by a hybrid strategy. 
Deadlocks between local transactions are explicitly detected and resolved by 
aborting the transaction causing the deadlock. Global deadlocks are resolved 
by a simple timeout mechanism (parameter MAX-WAIT). 

For the optimistic token ring scheme (TR-OCC), the token is usually sent to 
the next node as soon as all local validations have been performed. The 
parameter "token delay" can be used to delay the token transmission in order 
to control the communication overhead. For the CLM and central validation 
(CV-OCC) schemes, the central concurrency controller is located on a sepa
rate node with the same CPU capacity as the transaction processing nodes, 
giving a total of N + 1 nodes for N > 1. 

Another important factor is concurrency control on hot spot pages. As 
pointed out above, in our traces so-called FPA/DBTT pages represent hot 
spot pages for which page-level concurrency control is expected to result in 
unacceptable performance. We could not implement record (entry)-levellock
ing for these pages, since our traces only specify the page identifiers and page 
type (FPAjDBTT or regular pages), but not the accessed entries and records 
in a page. Instead, we either completely ignore lock conflicts on FPAjDBTT 
pages or perform page-level locking. The first option was chosen in most 
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simulation runs, assuming that a sufficiently low level of lock contention can 
be achieved by specialized locking techniques. To illustrate the effect of 
page-level locking, we also ran experiments where we assumed no lock 
conflicts among local transactions only, but applied page-level locking between 
transactions of different nodes. The latter option only assumes a special 
treatment of FPAjDBTT pages within a node and also provides coherency 
control for FPAjDBTT pages. 

Performance measures. The simulation system determines throughput 
and response time as the main performance measures. Throughput is not 
expressed by "transactions per second," since transactions of different types 
differ significantly in size. Instead, we use the number of UPs per second 
(UPS) as the throughput measure. The UPS value is calculated from the 
number of processed UPs of successful transactions divided by the total 
processing time. To explain the throughput and response time results, a large 
number of detailed statistics is produced by every simulation run, providing 
extensive information on resource utilization, response time composition, 
buffer behavior (hit ratio, buffer invalidations, page requests) and concur
rency control aspects (frequency of aborts, lock waits, external lock requests). 
Some of the results are reported in the next section. 

5. SIMULATION RESULTS 

The main part of this section is devoted to comparing the simulation results 
for the four concurrency and coherency control protocols described in Section 
3. In Sections 5.2 and 5.4, we discuss some additional experiments illustrat
ing how performance is influenced by routing strategy, varying communica
tion costs, and page-level locking on hot spot pages. The results refer to the 
two transaction loads introduced in Section 4 and the parameter settings 
from Tables II-V. 

5.1 Performance Comparison of the Implemented Protocols 

Figures 4 and 5 show the throughput results for Mix 1 and Mix 2, respec
tively, for our four protocols. The results are given for one to four nodes (N) 
and three different values of P (parallelism per node). In general, throughput 
increases as the multiprogramming level P grows due to the increased CPU 
utilization; deviations from this behavior are caused by increased data con
tention and/ or communication overhead. Response time results correspond 
to the throughput values according to Little's result [ 45]. Response times 
deteriorate as the degree of multiprogramming grows due to increased CPU 
and data contention. Figures 4 and 5 show that in most cases the primary 
copy locking protocol achieved the best throughput results, followed in second 
place by the central validation scheme, CV-OCC, with preclaiming for failed 
transactions. Significantly lower performance was observed for the two other 
protocols, the token ring scheme, TR-OCC, as well as the CLM scheme. In the 
following, simulation results are discussed separately for each protocol. 
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Results for primary copy locking (PCL). Simulation results for Mix 1 are 
influenced by the fact that this load is dominated by two transaction types 
that mainly operate on disjoint database portions. Thus for N = ~:, an almost 
optimal load and PCA allocation was feasible, so that nearly all ( > 97%) lock 
requests could be granted locally. This helped to achieve optimal performance 
results for two nodes (more than twice the throughput and better response 
times than in the centralized case). The superlinear throughput increase for 
two nodes was possible because the aggregate buffer size was doubled com
pared to the central case, resulting in a reduced I/0 delay and overhead. 
This permitted a higher effective CPU utilization per node, despite the 
(small) communication overhead for remote lock requests (see below). How
ever, for more than two nodes, throughput could not be significantly im
proved further due to the fact that each of the dominating transaction types 
had to be processed by more than one node. This led to reduced node-specific 
locality and a higher number of global lock requests (for N = 4, "only" 76% of 
the locks could be locally granted). Lock contention also increased consider
ably for three and four nodes, so that the average CPU utilization decreased 
with growing N despite the increasing communication overhead. 

For Mix 2, lock conflicts were not a throughput-limiting factor due to the 
high proportion of read accesses. Here throughput could be improved almost 
linearly, even for three or four nodes, in spite of the fact that in these cases 
the dominating transaction type was processed at more than one node. Figure 
6 shows the composition of the average CPU utilization for Mix 2, which 
helps to explain the throughput results. Total utilization is composed of the 
effective CPU utilization ("transaction processing") and the overhead for I/0 
and communication. The effective CPU utilization, which directly determines 
throughput, was (mostly) lower for DB-sharing than for the central case, 
owing to the comparatively high communication overhead for Mix 2. The 
communication overhead grows with the multiprogramming level P, since 
more transactions can then issue lock requests concurrently. Communication 
overhead also grows as the number of nodes is increased because fewer lock 
requests may then be granted locally (see below). The negative effect of 
communication overhead may be partially compensated for by the fact that 
I/0 overhead is substantially lower for DB-sharing than in the central case, 
due to the increased aggregate buffer size. For P = 4, the reduced I/0 delays 
in the DB-sharing configurations even permitted a higher ef£ective CPU 
utilization than in the central case for Mix 2. 

Communication overhead is mostly determined by the number of remote 
lock requests. Figure 7 illustrates the average number of messages per lock 
request for Mix 1 and Mix 2. The curves labeled "4" correspond to the results 
shown in Figures 4 and 5, and were achieved with both improvements 
mentioned in Section 3.2 (read optimization, coordinated PCA and load 
allocation). The graphs labeled "3" show the average number of messages 
that would have occurred if only the coordinated PCA and load distribution 
had been applied, but not read optimization. The curves labeled "1" and "2" 
refer to the simple CLM and simple PCL schemes (see Section 3) requiring 2 
and (2 - 2/N) messages per lock request, respectively, which brings our 
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optimizations into proper perspective. The number of messages per lock 
request refer to the average for all multiprogramming levels. The graphs 
show that most messages could be saved, due to coordination between load 
and PCA distribution, though the effectiveness of this optimization decreases 
with more nodes (similar to the simple PCL scheme). This is because the 
average partition size decreases with growing N if the database size is kept 
constant, and because we had to split the dominating transaction types 
across multiple sites (the PCA allocation can support a local synchronization 
for a transaction type on only one node). Such an increase in message 
frequency may however be avoided for "scalable" and "delightful'' applications 
[78] (e.g., debit~credit) where the database grows proportionally with the 
transaction rate (number of nodes) and the same degree of node-specific 
locality can be sustained. Although these prerequisites are not given for our 
loads, most lock requests could be granted locally. The coordinated load and 
PCA allocation was particularly effective for Mix 1. Even with four nodes, 
this optimization alone allowed us to grant 68% (compared to 25% with the 
simple PCL scheme) of the locks locally for Mix 1-which translates into less 
than one global lock request per transaction for this load. 

Read optimization was also very effective, and is the main reason for good 
performance results for Mix 2. As can be seen from Figure 7, read optimiza
tion is of greater help to more nodes and when fewer locks are granted due to 
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local PCA ownership. This is because read authorizations are assigned only 
for objects not belonging to the local partition and because with more nodes 
more objects of external partitions have to be referenced. Our results confirm 
that read optimization is capable of improving scalability of the primary copy 
scheme by reducing dependencies on how far load and PCA distribution can 
be effectively coordinated. 

This was, of course, particularly useful for Mix 2, due to the high share of 
read accesses, and helped that more than 93% of the locks could be acquired 
and released without communication even for four nodes. This high share 
was, however, favored by the use of short read locks (consistency level 2), 
since the long transactions in Mix 2 frequently requested multiple read locks 
for the same page. With read optimization, communication was typically 
required only for the first read lock request for a page, while subsequent 
requests could take advantage of a local read authorization. With short read 
locks and without read optimization, the number of global lock requests per 
transaction would have increased from 3.9 to 24 for Mix 2 and N = 4. We 
thus consider read optimization indispensable for consistency level 2, though 
its usefulness is not restricted to intra transaction locality of read references. 
Revocations of read authorizations were very rare and did not cause any 
noticeable performance degradation. 
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Table VI. Average Hit RatiOs and Number of Physical Reads per Transaction 

Mix 1 Mix2 
N=l N=2 N=3 N=4 N=l N=2 N=3 N=4 

average hit ratio ( %) 67.4 79.8 83.5 83.7 88.0 91.7 92.6 95.1 
average number of disk reads per tx 1.4 0.9 0.7 0.7 7.7 5.2 4.7 3.1 

The IjO behavior was another important factor that determined the 
performance results. As mentioned, the increased aggregate buffer size 
allowed, in some DB-sharing configurations, for a superlinear throughput 
increase and better response times, compared to the centralized case (N = 1). 
This is confirmed by Table VI, showing that DB-sharing configurations 
achieved significantly better hit ratios than for N = 1. The savings in I/0 
delay were generally more significant that the communication delays for 
external lock requests, thus supporting good response times. High response 
times for DB-sharing were mostly due to increased lock contention. 

Of course, hit ratios for the central case can also be improved by using a 
larger database buffer. Thus we observed a hit ratio of92.5% for Mix 2 in the 
central case, when we doubled the buffer size, and 95.7% when we increased 
the buffer size by a factor of four. These hit ratios are only slightly better 
than the corresponding hit ratios for DB-sharing and the same aggregate 
buffer size (N = 2 and N = 4), despite the fact that some pages are repli
cated in multiple buffers for DB-sharing. Good hit ratios for DB-sharing are 
due mainly to the affinity-based routing strategy that supports node-specific 
locality of reference by coordinating PCA and load distribution. The direct 
exchange of modified pages between nodes also helped to improve I/0 
behavior for DB-sharing. We found that considerably more pages were 
received from the PCA node (together with the lock response message) than 
buffer invalidations occurred. This helped save disk I/0, compared to the 
centralized case where a buffer miss always causes a disk read. In addition, 
delay for getting a page from another node is significantly shorter than for a 
disk access (factor 50 for our parameters). 

Efficient coherency control without any additional messages was a main 
advantage of PCL over the schemes using broadcast invalidation. Apart from 
avoidance of broadcast messages at the end of update transactions, it 
was especially important that no additional requests for pages modified at 
other nodes were necessary. Furthermore, buffer invalidations are only possi
ble for pages for which no read authorization is held and which belong to the 
partition of another node. This resulted in a very low frequency of buffer 
invalidations, with a maximum of 2% of all lock requests (Mix 1, N = 4). 
Page transmissions did not cause any bottleneck situations in the communi
cation system; its utilization was always less than 2%. 

The coordinated load and PCA allocation was, of course, mainly responsible 
for the low amount of buffer invalidations and page transmissions (most 
pages were referenced and modified at the PCA node). In general, buffer 
invalidations and page transmissions are the more frequent the higher the 
share of update accesses and the lower the amount of node-specific locality. 
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Simulation results for CLM scheme. Figures 4 and 5 reveal that in all 
simulation runs the central lock manager approach was clearly inferior to the 
PCL protocol, in spite of the fact that an additional node was used for 
concurrency control (of course, for N = 1, the CLM and PCL results are 
identical). Even for two nodes, throughput could not be substantially improved 
compared to the centralized case. 

Although the sole interest concept, as well as read optimization, helped to 
reduce the number of global lock requests, we found that by far fewer locks 
could be locally synchronized due to sole interest than by a local PCA in the 
primary copy scheme. One reason is that in order to get a write authorization 
(sole interest), communication with the CLM is necessary, while PCA owner
ships are not requested from other nodes but are assigned a priori. Further
more, sole interest is unstable and frequently revoked if transactions of the 
same type (or of other types referencing the same database portions) are 
running on different sites. So, generally, more than twice the number of 
global lock requests was observed for the CLM scheme than for PCL. Addi
tional delays and messages were caused by sole interest revocations, in 
particular for Mix 1, where up to 35% of these authorizations had to be 
released involuntarily. 

Read optimization was also important for the CLM scheme, in view of the 
use of short read locks, but worked less smoothly than in the primary copy 
protocol due to conversions between read and write authorizations. Also, in 
the PCL scheme, a read authorization can always be assigned immediately, 
unless the PCA lock manager has learned of a write request. In the CLM 
scheme, however, sole interest assignments delay the assignment of read 
authorizations, even if in the node holding sole interest no lock requests or 
only read lock requests have been issued. 

The comparatively high frequency of synchronization messages caused a 
high utilization of the CLM node. For N = 4 j P = 16, its CPU utilization was 
over 80%, indicating that the CLM node may easily become a throughput 
bottleneck. 

The broadcast invalidation scheme for coherency control contributed to a 
lesser degree to the unacceptable performance of the CLM scheme. Only for 
Mix 1, where many update operations occur, and for more than two nodes 
was there noticeable communication overhead and delays to the broadcast 
messages and page requests. So even an on-request invalidation scheme to 
detect buffer invalidations does not seem likely to substantially improve the 
overall performance of the CLM scheme. 

Results for central validation scheme with preclaiming. Afler PCL, this 
optimistic scheme achieved the best performance results-in some cases, 
particularly for Mix 2 and N = 4, even better throughput than with PCL. In 
this comparison, however, note that in the CV-OCC scheme an additional 
node was used for concurrency control and also for sending the broadcast 
messages for successfully validated transactions. This helped to reduce com
munication overhead on the N transaction processing nodes. ln contrast to 
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the CLM scheme, the central synchronization node was never highly utilized 
( < 30% ), despite higher transaction rates. 

A basic observation is that the optimistic protocol scaled up better than 
PCL, mainly because of the two following reasons. First, communication for 
concurrency control is limited to one validation request per update transac
tion (and one additional request for every reexecution). Thus message fre
quency for concurrency control-but not for coherency control-was less 
dependent on the number of nodes than the locking schemes that depend on 
node-specific locality of reference. So for N > 2, communication overhead 
on transaction processing nodes was smaller than with the primary copy 
protocol. The second key factor was more efficient processing of reader 
transactions with OCC than with the locking protocols, due to the relaxation 
to consistency level 2. 

In the PCL and CLM locking schemes, read-only transactions suf
fered from communication delays until a short read lock was granted-
though read optimization reduced the number of global read lock requests 

considerably-as well as from lock conflicts with update transactions. With 
OCC and consistency level 2, however, read-only transactions are freed from 
validation, thus never aborted, and do not cause any validation overhead. 
Instead, reader transactions can always get the current version of a page, 
since modifications are performed on private page copies (pages are only 
blocked for a short time when they are to be replaced by a new version during 
the write phase of a local update transaction [60]). Thus communication for 
read-only transaction was restricted to requesting pages from other nodes 
having performed the most recent modification of the respective pages. The 
number of these page requests was only significant for Mix 1, and increased 
with the number of nodes. For read-dominated Mix 2, on the other hand, 
CV-OCC outperformed PCL for four nodes. For more than four nodes, CV-OCC 
would have been even more superior to PCL for Mix 2, due to the increasing 
difficulty of finding an adequate PCA and load allocation. 

With the OCC scheme, on the other hand, update transactions were 
less efficiently processed by far than with PCL. With the central valida
tion scheme, update transactions failed frequently in their first validation 
(for N = 4 more than 50%) and had to perform a pre claiming before the sec
ond execution. In the simulation, this preclaiming helped insure that the 
second execution was always successful (the same pages were referenced 
than in the first execution). Thus, starvation was avoided, but at the expense 
of a delayed reexecution due to "lock" conflicts with other failed update 
transactions in their preclaiming phase. Typically, the second execution was 
faster than the first, since most of the pages to be accessed still resided in the 
database buffer. With a lesser degree of access invariance [21]; that is, if 
different pages were referenced during reexecution of failed transactions, the 
number of restarts and I/Os would be higher, thus degrading performance. 

Simulation results for token ring protocol. As may be seen from Figures 4 
and 5, throughput for the optimistic token ring scheme was always signifi
cantly worse than for PCL or the central validation scheme. The unacceptable 
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Table VII. Average CPU Utilization for Communication (TR-OCC, P '= 8) 

Mixl Mix2 
N=2 N=4 N=2 N=4 

broadcast messages 4.0% 6.8% 1.4% 3.5% 

page requests 0.7% 7.4% 0.7% 4.3% 

token ( + cvalidation requests) 33.3% 13.8% 42.3% 18.9% 

Total 38.0% 28.0% 44.4% 26.7% 

results are largely due to the fact that update transactions were aborted even 
more often than in the central OCC scheme, where preclaiming at least 
guaranteed a successful second execution. Here, however, even transactions 
that reached their restart limit (2) were still aborted by concurrently validat
ing "killer" transactions (as described in Section 3.4). 

Another critical factor was the communication overhead for validation and 
coherency control (Table VII) The table shows that the communication over
head associated with coherency control (broadcast messages, page requests) 
increases with the number of nodes and already accounts for a considerable 
portion of CPU utilization (14.2% for Mix 1 and N = 4/P = 8). More impor
tant, however, was the communication overhead for validation--determined 
by the average token-holding time (circulation time). Table VII shows that 
without token delay, in addition to the time required for validations, a very 
high communication overhead is introduced which decreases with more nodes 
due to increased circulation times. So the highest communication overhead 
was observed for two nodes, accounting for the low throughput figures in this 
case. 

In order to reduce communication overhead, many simulation runs with 
varying settings for the parameter "token delay" have been conducted. 
Although this allowed for improved performance results, particularly for 
Mix 2, the results of PCL or the central OCC scheme could not be reached. 
The increased token-waiting times had a negative effect on throughput for 
smaller multiprogramming levels only (e.g., P = 4). Even response times 
often gained more from reduced CPU waiting times, due to smaller communi
cation overhead, than they suffered from the increased token-waiting times 
(at least for short token delays). Thus token-holding times must be carefully 
controlled in order to limit the communication overhead without causing 
overly long waiting times for (update) transactions ready to validate. 

5.2 Performance Impact of the Routing Strategy 

For the primary copy protocol, which showed the best performance results, 
additional experiments have been conducted and are analyzed in this and the 
next two sections. The results of these experiments are presented for 
the larger workload, Mix 2. 

In the simulation runs discussed above, we always applied a coordinated 
load and PCA allocation which aimed at supporting node-specific locality. 
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Fig. 8. Throughput for M1x 2 and PCL under different routing strategies. 

These results are now compared to those achieved with a random routing of 
the transactions. In the runs with a random routing, the database was 
partitioned in a way such that each node controlled about equally important 
database portions, that is, each node had to process about the same number 
of lock requests. 

Figure 8 shows the throughput results for Mix 2 with such a random 
routing, as well as the results obtained with a coordinated load and PCA 
distribution (repeated from Figure 5). Observe that throughput is always 
worse with random routing and that the differences from the results with the 
affinity-based load distribution increase significantly as the number of nodes 
grows. Compared to the centralized case, random routing allowed only mod
est throughput improvements, by a factor 1.41 (instead of 1. 76 for affinity
based routing) with two nodes, by a factor of merely 2.16 (3.02) with four 
nodes (for P = 16). The same trends apply for response times, which were 
always worse for DB-sharing with random routing than in the centralized 
case, despite the increased buffer capacity. 

We found that random routing had a negative effect on the frequency of 
global lock requests, on hit ratios, on data contention (fewer local but many 
more global lock conflicts), and on the number of buffer invalidations and 
page transmissions. Most important for Mix 2 were the number of physical 
reads and global lock requests, which were on average about twice as high as 
for the affinity-based load distribution. Table VIII summarizes the fractions 
of local and global lock requests for random as well as for affinity-based 
routing. 
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Table VIII. PCL Lock Behavior under Random Routing (and Affinity-Based Routing) 

N=2 N=3 N=4 

locally granted locks due to local PCA (%) 48.2 (83.6) 33.1 (73.5) 24.6 (58.2) 

locally granted due to read optimization(%) 45.3 (13.4) 57.0 (20.5) 63.4 (35.1) 

global lock requests(%) 6.5 (3.0) 9.9 (6.0) 12.0 (6.7) 

number of global lock requests per tx 3.7 (1.7) 5.7 (3.4) 6.9 (3.9) 

The table shows that with random routing far fewer lock requests could be 
granted locally due to PCA ownership than with affinity-based load distribu
tion; this share is about the same as with the simple PCL scheme (3.2), 
allowing a local synchronization for 100/N% of the locks. For Mix 2, how
ever, this low share could be greatly improved by read optimization, which 
turned out to be even more helpful here. This confirms even more strongly 
that the read optimization is able to reduce the dependencies of the PCL 
scheme on node-specific locality (the effectiveness of coordinating load and 
PCA distribution). So only a comparatively small share of the locks had to be 
acquired remotely ( ~ 12%), although the absolute number of global lock 
r~equests per transaction is significantly higher than with affinity-based 
routing. In the case of four nodes, up to 40% of the CPU capacity was 
required for communication overhead with random routing, <Compared to 
"only" 27% with affinity-based routing and its higher throughput. 

5.3 Influence of Communication Costs 

Though the primary copy scheme generally caused very few global lock 
messages, the communication overhead was considerable, mainly because 
of the choice of CPU capacity (3 MIPS) and the comparatively expen
sive communication primitives, causing 22,000 instructions per global lock 
request/ response (5000 instructions per send or receive operation and an
other 2000 instructions for processing the two messages). In order to study 
the performance effects of reduced communication costs, we conducted simu
lation runs with 500 instead of 5000 instructions per send or receive opera
tion, resulting in a total of 4000 instructions per global lock request I response. 

Figure 9 shows the throughput results for Mix 2 (and affinity-based 
routing) obtained with communication costs of 500 and 5000 instructions per 
send or receive operation. The cheaper communication primitives allow for 
significant throughput improvements, which grow with the number of nodes, 
as well as with the multiprogramming level. This allowed for an almost 
N-fold throughput, with N nodes compared to the centralized case (or even a 
superlinear throughput improvement for lower multiprogramming levels). 
For N = 4/P = 16, throughput was 24% higher than with the expensive 
communication operations, and only 8% instead of 27% of the CPU capacity 
was needed for communication overhead. The cheaper send and receive 
operations also improved response times by up to 20%. 
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In order to reduce communication overhead, not only should the number of 
messages be small, but it is equally important that the underlying hardware 
and operating system provide efficient communication primitives. Faster 
processors only reduce the absolute time for message processing, but do not 
improve the relative costs for communication. Message bundling is also no 
general solution. In experiments with different bundling factors and delays, 
we found that the reduction of communication overhead pays off only when 
CPU s are highly utilized. Delaying remote requests when sufficient CPU 
capacity for an immediate send is available only increases the message delay 
and often decreases throughput. For message hatching to be effective, a more 
flexible approach that automatically adapts the bundling parameters accord
ing to the available CPU capacity would therefore be required. Such an 
approach, however, is difficult to implement and control. Message bundling is 
more effective when more messages are directed to the same destination, 
namely a central lock manager. This makes message bundling less attractive 
for distributed protocols designed for few remote requests, as in PCL. 

5.4 Influence of Page-Level Locking on Hot Spots 

As discussed in Section 4, our workloads reference several hot spot pages 
containing free space information and database translation tables. The simu
lation results presented so far refer to the case where lock conflicts on 
FPAjDBTT pages have been ignored, assuming a similarly effective synchro
nization scheme as possible for the central case (i.e., the use of latches or 
record-level locking). To illustrate the consequences of a page-oriented 
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protocol for concurrency j coherency control on such pages, we also performed 
simulation runs with locking on FPAjDBTT pages. However, since there was 
no problem in using latches or record-level locking within a node, we used 
page-level locking on FPAj DBTT pages for synchronizing accesses between 
transactions of different nodes only. Lock contention between local transac
tions on FPAj DBTT pages was still assumed to be negligible. 

Figure 10 shows the throughput results for Mix 2 with and without such a 
locking on FPAjDBTT pages, as well as for the two different communication 
costs from Section 5.3. The graphs show that throughput is dramatically 
worse in the case of page locking on FPAjDBTT pages, in particular for 
N = 3 and N = 4. For two nodes, affinity-based transaction routing could 
achieve a situation where FPAjDBTT pages were mostly referenced by 
transactions of one node. Consequently, FPAjDBTT lock conflicts between 
different nodes were comparatively rare, and affected throughput to a lesser 
degree. However, adding a third and fourth node actually resulted in a 
decline of throughput compared to N = 2, because the hot spot pages were 
then accessed concurrently on different nodes, causing a high lock contention, 
which prevented the utilization of the added capacity. Typically, a majority of 
transactions were blocked because of lock conflicts on a few FPAjDBTT 
pages. Long waiting lines formed for these pages, resulting in long deactiva
tions until the requested locks could be granted. The waiting times were also 
prolonged by message delays for assigning and releasing locks between 
different nodes and exchanging the modified pages. In addition, the timeout 
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mechanism to resolve global deadlocks proved to be unsuitable in the case of 
FPA/ DBTT locking, since the long waiting times caused many transactions 
to be aborted unnecessarily. For four nodes, lock contention and transaction 
aborts limited effective CPU utilization to only 31%, on average. The actual 
CPU utilization differed significantly from node to node since different degrees 
of lock contention were experienced. 

As Figure 10 shows, even the use of cheap communication primitives was of 
comparatively little help, since lock contention was the performance bottle
neck. This indicates that a low communication o>.'erhead, either because of a 
small message frequency and/ or cheap communication primitives, enables 
acceptable or good performance only if lock contention is sufficiently low. 
Page-level locking on frequently modified pages, even if restricted to inter
node concurrency control, was not sufficient to keep lock contention at an 
acceptable level for our workloads. Thus, special synchronization protocols on 
these page types are required for DB-sharing, too. Realization of such proto
cols has to be tailored to the specific use of data, which may depend on the 
underlying DBMS. 

6. RELATED PERFORMANCE STUDIES FOR DB-SHARING 

The simulation study in [6] also compares the performance of four concur
rency control schemes for DB-sharing. The protocols considered are a disk 
controller locking, a simple CLM scheme (without a sole interest concept or 
read optimization) and two basic primary copy protocols with synchronous or 
asynchronous lock requests; optimistic protocols have not been studied. The 
major technique to reduce communication overhead was hatching of mes
sages. For the primary copy schemes, the share of local lock requests was 
provided as a parameter (mostly 10%). 

The main weakness of the study is that coherency control has not been 
investigated. Instead, a simple buffer purge scheme was assumed where no 
pages are retained in the database buffers, but all pages are purged out at 
EOT in order to avoid their invalidation. This scheme is even worse than 
FORCE where only modified pages are written out of the buffer. In addition 
to the write overhead and delays, the purge scheme also leads to a drastic 
increase in the number of physical reads, and must therefore be considered as 
unacceptable for real database systems. Simulations were driven by synthetic 
workloads and showed the best performance for disk controller locking. This 
was because there were almost no buffer hits in the simulated system, so that 
locking could be combined with the disk accesses without extra overhead. 
Similar throughput results as for disk controller locking were predicted for 
the simple CLM scheme and asynchronous primary copy locking if they were 
to apply high hatching degrees. 

The performance of DB-sharing with a CLM and message hatching was 
also compared to DB-partitioning systems. Despite the simple approaches for 
concurrency control and buffer management (buffer purge), significantly 
better throughput results were generally predicted for DB-sharing than for 
DB-partitioning with a DB-cache approach for buffer management. This was 
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probably influenced by the workload model, which allowed only for small hit 
ratios ( s; 8%) and negligible lock contention. Also, apparently, no CPU 
overhead was considered for I/0 operations, thus favoring the buffer purge 
scheme. There was no mention of whether or not IjO delays for purging 
(writing) modified pages out of the buffer (FORCE) were modeled for the 
DB-sharing configurations. If these I/0 delays are ignored, the results for 
DB-sharing are invalid. 

A combination of analytical modeling and simulation was used in [86] to 
investigate the performance of a pass-the-buck protocol (used in IMS Data 
Sharing) and DB-sharing configurations using a central "lock engine" for 
concurrency control. The study assumed a FORCE strategy for update propa
gation to disk and a broadcast invalidation scheme for coherency control. The 
performance evaluation further assumed a completely homogeneous work
load, with all transactions and nodes experiencing the same amount of lock 
contention and I/0 frequency. I/0 frequency was further assumed to be 
independent of the number of sites. Database objects were not explicitly 
modeled in the DB-sharing simulations, but the average lock conflict proba
bilities and waiting times were calculated analytically. The lock engine 
scheme (assumed to perform concurrency control without communication 
overhead) was found to allow for more nodes to be effectively coupled than 
the pass-the-buck scheme. The authors conclude that lock contention is the 
critical factor that determines the maximal achievable transaction rate. 
Performance studies in [17] and [36] show that on-request invalidation 
outperforms broadcast invalidation for coherency control, since it avoids extra 
messages for detecting buffer invalidations. 

In [31] the performance of a largely improved pass-the-buck scheme 
was evaluated by means of empirical simulations. The original scheme was 
enhanced by an integrated coherency control for NOFORCE. So-called reten
tion locks are used for all pages retained in the buffers after EOT in order to 
avoid their invalidation. These locks also helped reduce the frequency of 
global lock requests, similar to read and write authorizations in the CLM 
scheme. As in the optimistic token ring protocol, studied in this paper, the 
token (buck) holding time was a critical factor for the pass-the--buck scheme. 
Short token holding times result in high communication overhead and CPU 
contention, while longer token delays increase the waiting times for global 
lock requests, and thus response times and lock contention. 

We discuss additional performance studies on DB-sharing in [65]. 

7. CONCLUSIONS AND OUTLOOK 

DB-sharing represents a locally distributed architecture for high-volume 
transaction processing. In contrast to DB-partitioning systems, there is no 
need to physically partition the database because all processing nodes can 
directly access all (shared) disks. This property results in an increased 
flexibility for dynamic load balancing and for dealing with variations in the 
number of nodes. Since finding an acceptable database partitioning, and 
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adapting it to changing demands, is a major problem in "shared-nothing" 
systems, administration is also simplified. Technical problems to be solved for 
DB-sharing include concurrency control, coherency control, workload alloca
tion, logging, and recovery. Critical to the performance of a DB-sharing 
system is the protocol used for concurrency and coherency control since these 
functions mainly determine the amount of communication for transaction 
processing. Both tasks should be solved in an integrated way in order to limit 
the number of extra messages. 

We presented a performance evaluation of four concurrency and coherency 
control protocols for DB-sharing. Unlike other studies, we applied a trace
driven simulation approach and assumed a NOFORCE strategy for update 
propagation to disk, together with buffer-to-buffer communication to exchange 
modified pages directly between different nodes. Two optimistic protocols and 
two locking schemes were examined for concurrency control, with the latter 
relying on various improvements to reduce the communication frequency by 
utilizing locality of reference. On-request invalidation or broadcast invalida
tion schemes were applied for coherency control. 

The primary copy-locking (PCL) protocol generally showed the best perfor
mance (from the implemented protocols). Key factors for the good results 
were a coordinated load and PCA distribution with affinity-based transaction 
routing, the employment of a so-called read optimization, and an efficient 
coherency control. Affinity-based transaction routing does not only help to 
limit the communication overhead for concurrency control, but also reduces 
the number of physical reads, buffer invalidations, page transfers, and global 
lock conflicts. Read optimization limits the dependency of locking schemes on 
the number of achievable node-specific localities of reference. Reduction 
in the number of global lock requests is greater if locality of read references 
is higher and the share of update accesses is smaller. The coherency control 
scheme applied to PCL requires neither additional messages for the detection 
of buffer invalidations (on-request invalidation) nor for the exchange of 
modified pages between different nodes. Affinity-based transaction routing 
and buffer-to-buffer communication contributed to improved I/0 behavior for 
DB-sharing compared to the centralized case. Thus the response time impact 
of communication delays and increased lock contention could at least partially 
be compensated for. 

The central lock manager ( CLM) scheme required significantly more global 
lock requests that PCL, and showed unacceptable performance results. This 
was mainly due to the weaknesses of the sole interest concept, which helped 
to save far fewer messages than the use of PCAs in the primary copy scheme. 
Batching of messages reduces the communication overhead, but at the expense 
of increased response times and lock contention. Also, the CLM is a poten
tial bottleneck for growing transaction rates and requires special recovery 
provisions. 

The optimistic schemes generally allowed for the lowest communication 
overhead for concurrency control (validation), and were less dependent on the 
amount of node-specific locality of reference than the locking schemes. How
ever, they achieved good performance results only for loads with a high share 
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of read-only transactions, because update transactions suffered from an 
intolerably high number of restarts, particularly in the token-ring scheme. 
Also, optimistic schemes cannot use on-request invalidation for coherency 
control, but are bound to the more expensive broadcast invalidation alterna
tive. The best optimistic protocol was a central validation scheme that 
employed a "preclaiming" for failed transactions, where it generally helps 
that their second execution ends successfully. 

DB-sharing with primary copy locking has similarities to DB-partitioning 
systems. There is a partitioning of the database in both approaches which 
determines, together with the load distribution, the frequency of internode 
communication. However, PCL uses only logical partitioning, which can be 
more easily and automatically adapted than can a physical data allocation, 
say, on an hourly basis, when significant changes in the load profile are 
observed. With DB-partitioning, a transaction is processed for the most part 
where the referenced data resides, independent of which node a transaction is 
assigned to. With DB-sharing and PCL, however, a transaction ean be largely 
executed where it has been routed to, while only global lock requests have to 
be processed by the responsible nodes. Thus, PCL preserves a significantly 
higher potential for load balancing compared to DB-partioning. A third 
advantage of PCL is that the same objects can be read and processed 
concurrently at different sites. Read optimization, in many cases, allows a 
local synchronization of read accesses for objects belonging to another node's 
partition, and reduces dependencies on how far transactions can be routed to 
the node controlling most of the data they need. This optimization promises a 
better scalability for DB-sharing and PCL than with DB-partitioning, at least 
for loads with a higher share of read accesses. 

It is interesting to note that our primary copy scheme could also be applied 
in a distributed main memory database system. In this case, each node would 
hold its entire partition in main memory and would also cache pages from 
remote partitions. As outlined in Section 3.2, page and lock requests could be 
combined, as well as release of write locks and propagation of the modified 
pages to the primary copy node. A coordinated load and PCA allocation 
and read optimization for locally buffered pages of remote partitions would 
reduce the, number of global lock requests and page transmissions in this 
environment as well. 

There are several areas in the analysis of DB-sharing systems that deserve 
further investigation. First, as our simulation results have shown, there is a 
need to support concurrency and coherency control below the page level for 
some types of database objects, namely free space administration, index 
structures, or application-specific high traffic objects. Proposals for dealing 
with such objects [28, 47, 49, 63] still need to be implemented and evaluated 
quantitatively. Second, adaptive load distribution strategies which take 
the current load and system state into account for transaction assignment 
should be investigated. Third, parallel query processing strategies tailored 
for DB-sharing should be studied and compared to query processing in 
DB-partitioning systems. Finally, the use of shared, and possibly nonvolatile, 
semiconductor stores [64] needs further evaluation. 
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