
Empirical Performance Evaluation of
Concurrency and Coherency
Control Protocols for Database
Sharing Systems

ERHARD RAHM
University of Kaiserslautern

Database Sharing (DB-sharing) refers to a general approach for building a distributed high
performance transaction system. The nodes of a DB-sharing system are locally coupled via a
high-speed interconnect and share a common database at the disk level. This is also known as a
"shared disk" approach. We compare database sharing with the database partitioning (shared
nothing) approach and discuss the functional DBMS components that require new and coordi
nated solutions for DB-sharing. The performance of DB-sharing systems critically depends on
the protocols used for concurrency and coherency control. The frequency of communication
required for these functions has to be kept as low as possible in order to achieve high transaction
rates and short response times. A trace-driven simulation system for DB-sharing complexes has
been developed that allows a realistic performance comparison of four different concurrency and
coherency control protocols. We consider two locking and two optimistic schemes which operate
either under central or distributed control. For coherency control, we investigate so-called
on-request and broadcast invalidation schemes, and employ buffer-to-buffer communication to
exchange modified pages directly between different nodes. The performance impact of random
routing versus affinity-based load distribution and different communication costs is also exam
ined. In addition, we analyze potential performance bottlenecks created by hot spot pages.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Dis
tributed Systems; C.4 [Computer Systems Organization]: Performance of Systems; D.4.8
[Operating Systems]: Performance-simulation; H.2.4 [Database Management]:
Systems-distributed systems, transaction processing

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Coherency control, concurrency control, database parti
tioning, database sharing, performance analysis, shared disk, shared nothing, trace-driven
simulation

This work was financially supported by Siemens AG, Munich.
Author's address: University of Kaiserslautern, Department of Computer Science, 67678
Kaiserslautern, Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee andjor
specific permission.
© 1993 ACM 0362-5915/93/0600-0333$01.50

ACM Transactwns on Database Systems, Vol. 18, No.2, June 1993, Pages 333-377.

334 E. Rahm

1. INTRODUCTION

Large transaction processing applications, such as banking, flight reserva
tion, or telecommunication networking, increasingly demand high perform
ance transaction systems [24]. Such DB-based systems should not only
provide high transaction rates (several thousands of transactions per second
with response times acceptable for online applications), but also high avail
ability, scalability (modular growth), and manageability and maintainability
[24, 32].

Database Sharing (DB-sharing, "shared disk" [82]) systems, which have
received considerable attention in recent years [2, 6, 15, 31, 36, 47, 53, 68, 72,
73, 79, 82, 84, 86], offer a promising solution to these problems. They consist
of multiple autonomous processing nodes that share the common database at
the disk level (see Figure 1a). A node in such a system may be either a
uniprocessor or a tightly coupled multiprocessor with a local main memory
and a separate copy of the operating system and the database management
system (DBMS). In this paper, we usually assume that the nodes are loosely
coupled (message-oriented communication), as opposed to closely coupled
DB-sharing systems. A close coupling aims at a more efficient internode
cooperation for certain functions by using common semiconductor memory [8,
17, 64] or by using special-purpose processors for global services such as
concurrency control (e.g., by a "lock engine" [37, 69, 72]).

Existing DB-sharing systems and prototypes include the IMS Data Sharing
product [56, 79], the Power System 5/55 of Computer Console [84], the Data
Sharing Control System ofNEC [72], the Amoeba prototype [73, 82], Fujitsu's
Shared Resource Control Facility [2], and DEC's DBMS and RdbjVMS
products within a VaxCluster [38, 39, 42, 66]. Recently, Oracle has also
introduced a version of its DBMS product, called "parallel server" which
supports database sharing on different hardware platforms [53]. Further
more, the IBM operating system TPF (transaction processing facility) [71, 81]
also supports disk sharing for up to eight nodes and performs locking and
data caching within the disk control units.

Comparison to Other Approaches

Database partitioning (DB-partitioning, "shared nothing" [78]) refers to
another general approach for distributed transaction processing (Figure 1b).
In contrast to DB-sharing, the database in shared-nothing systems is parti
tioned so that each node owns some fraction of the disk devices. This
approach is adopted by Tandem's Encompass and NonStop SQL products [10,
80] and by several database machines, e.g., Teradata's DBCj1012 [50] and
the Bubba and Gamma prototypes [9, 16]. Typically, database machines only
process the database operations while application programs submitting the
operations are executed on front-end processors, which are usually main
frame hosts or workstations. This approach is also used in other client I server
architectures, and can effectively utilize the processing capacity of inexpen
sive microprocessors for transaction processing. A distributed server, needed
for high availability and high transaction rates, may be based either on the

ACM Transactwns on Database Systems. Vol 18, No 2. June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 335

Terminals, ~ •

"'"'"""'"" ~ . .

Front-end
system

Processing
nodes

External
storage

(database, log files)

(a)

wide-area
network
(or LAN)

local
interconnect

~··

(b)

Fig. 1. DB-sharing versus DB-partitioning (a) DB-sharing (b) DB-partitioning.

DB-partitioning or DB-sharing approach. However, separating application
and database processing across node boundaries can cause performance
problems for online transaction processing (OLTP). This is because internode
communication is required for every database operation in order to submit
the request to the server and to return the result to the application program.
For simple operations prevalent in typical OLTP applications, the associated
communication overhead and response time delay dominates the execution
cost and time of the operation itself. Off-loading database processing may be
appropriate for complex queries by processing them in parallel on multiple
back-end processors.

The controversy among DB-sharing and DB-partitioning systems has been
discussed in the literature [32, 55, 74, 78]. Although research and system
developments have concentrated on the DB-partitioning approach (including
distributed database systems), we feel the DB-sharing approach offers a
number of advantages that make it attractive for high performance transac
tion processing. In the following, we summarize the major differences between
the two approaches:

(1) Locally us. geographically distributed systems. DB-partitioning is
applicable in locally and geographically distributed systems. DB-sharing, on
the other hand, requires that all physical components are located in close
proximity, due to the attachment of the disk drives to the nodes. New
fiberoptic disk connections permit extending the distance from one room to
several kilometers between processing nodes and disk drives.

A geographically distributed transaction processing system is desirable in
order to reflect the organizational structure of large institutions. In addition,

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

336 E. Rahm

it can offer better failure isolation than a locally coupled system. On the other
hand, locally coupled systems allow a simpler administration and avoid
problems of geographically distributed systems introduced by the autonomy
requirements of individual sites, or unreliable communication paths or net
work partitions. In addition, locally coupled systems can utilize a higher
communication bandwidth and streamlined communication protocols, thus
improving performance for distributed transactions. Furthermore, local sys
tems offer a greater flexibility for global load control and load balancing [13].
If for instance, transactions are routed to the nodes via a front-end system
(Figure 1), a dynamic load distribution becomes feasible, which takes the
current load situation into account. This promises a better utilization of the
available resources, as in geographically distributed systems where workload
allocation is typically static (predetermined assignment of terminals to nodes).
Locally coupled systems can be protected against disasters by a limited form
of geographic data distribution. As discussed in [11, 41, 46], this is possible by
keeping a copy of the database at a passive remote data center. The database
copy is not used for normal transaction processing, but only kept up to date
by spooling log data from the primary to the remote data center. In the event
of a disaster, the backup system takes over and continues transqction pro
cessing. Such an approach is applicable to DB-partitioning as v. eil as DB
sharing.

(2) Database design. The key problem of DB-partitioning is the difficulty
of finding a "good" fragmentation and allocation of the database [70]. This not
only complicates system administration, but has far-reaching consequences
on how transactions are processed and on the achievable performance. The
problem is aggravated by the fact that database allocations tend to be rather
static, since physical database relocations are expensive. Furthermore, a
sufficient flexibility to adapt database partitioning is only provided if fine
grained fragmentation units are supported, e.g., by a horizontal partitioning
of relational databases. For navigational databases, on the other hand, only
coarse fragmentation units (segments, record types, etc.) are usually possible.
This severely restricts the number of database partitions and processing
nodes, and makes it difficult to achieve load balancing. Similar problems may
be posed by complex objects in object-oriented database systems, e.g., for CAD
applications. As pointed out in [34], partitioning of such objects is a major
problem.

DB-sharing does not encounter these problems because there is no need to
physically partition the database. As a result, no changes to the physical or
logical database structure are necessary when migrating from a centralized
system to DB-sharing or when the number of nodes in the DB-sharing system
changes. Hence, DB-sharing can support nonrelational databases more easily
than DB-partitioning.

(3) Transaction execution model. For DB-partitioning, the execution of a
database operation is distributed if nonlocal data has to be accessed. Consid
erable extensions to the query optimizer are necessary in order to support the
construction of distributed execution plans. If nonlocal data has been accessed

ACM Transactions on Database Systems, Vol. 18, No. 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 337

by a transaction, a distributed commit protocol has to be employed to
guarantee the aU-or-nothing property [33] of the transaction. Similarly,
rollback of a transaction is distributed if the transaction has referenced
external data. After a change in the data allocation, precompiled execution
plans may become invalid, requiring a new compilation and optimization of
affected application programs.

In DB-sharing systems, no distributed execution plans have to be deter
mined by the query optimizer because each node has direct access to the
entire database. Nevertheless, communication may be necessary to process a
given operation, e.g., for concurrency and coherency control (see Section 2).
These tasks, however, are performed by lower layers of the DBMS, and are
thus transparent to the query optimizer. The first commit phase of a transac
tion is always local for DB-sharing; that is, a transaction is committed as
soon as the commit record has been written to the local log file of the node
where the transaction has been started [63]. Communication may be needed
during the second commit phase to release externally managed locks.

Both approaches, DB-partitioning and DB-sharing, can employ parallel
execution strategies for complex queries and process independent (noncon
flicting) suboperations on different nodes in parallel. For DB-partitioning, the
physical data distribution determines whether a parallel execution is applica
ble for a given operation. This limitation is removed for DB-sharing; even the
same data can be concurrently read in different nodes, thus increasing
the flexibility for parallel processing models. Obviously, the query optimizer
needs to be enhanced for DB-sharing, too, in order to support parallel
execution strategies.

(4) Availability and scalability. DB-sharing systems offer availability and
extensibility advantages over the DB-partitioning approach because they can
cope more easily with variations in the number of nodes. In DB-partitioning
systems, a node crash makes the partition of the failed node unavailable
unless another node is connected to the disk devices of the failed node. Even
if the partition can be taken over, the node temporarily owning two partitions
becomes easily overloaded. Even more difficult is the addition of a new node
to a DB-partitioning complex, since it requires a physical redistribution of the
database (N ~ N + 1). This is generally a major reorganization and affects
the availability of the data to be moved.

DB-sharing avoids these problems, since no physical data allocation needs
to be adapted. On the other hand, depending on the I/0 architecture, the
number of nodes that can be connected to the same disk may be limited. For
message-oriented storage devices that communicate with processing nodes by
means of message passing, there is no inherent limit in the number of
processing nodes. Such an approach has been chosen in the VaxClusters [42]
which currently support up to 96 processing nodes and disk servers, as well
as in parallel hypercube architectures (e.g., Intel's iPSCj860 or NCUBE).

(5) Workload allocation and load balancing. Although a dynamic work
load allocation is possible for both approaches in a locally distributed system,
DB-sharing offers a much higher flexibility for load balancing. The problem

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

338 E. Rahm

of DB-partitioning is that at least simple database operations, which refer
ence one or a few records, have to be processed where the data resides. That
is, the physical data allocation determines where an operation is going to be
processed, irrespective of the node to which the corresponding transaction
has been assigned. If, for load balancing reasons, a transaction is assigned to
a lightly loaded node which holds no or little of the data to be accessed, the
database operations still have to be processed at the nodes owning the
required data. Thus the load on these nodes is not significantly reduced and
may even be increased, since additional comr ,unication overhead is intro
duced for receiving the remote requests, returning the results and participat
ing in the commit protocol. As a consequence, resource utilization and mes
sage frequency are largely determined by data allocation, leaving only a
small optimization potential for transaction routing. Variations in the load
profile can thus easily lead to unbalanced CPU utilizations and overload
situations at some nodes. In particular, partitioned systems do not have the
flexibility to adapt to short-term workload fluctuations [74].

In DB-sharing systems, on the other hand, a database operation can
largely be processed at the node to which the corresponding transaction has
been assigned, since each node has direct access to the entire database. For
instance, it is possible to allocate complex ad hoc queries and short online
transactions to separate nodes so as to avoid resource contention on CPU and
memory between these workload types. Furthermore, it is possible to free
whole nodes from transaction processing when the current load can be
handled by a smaller number of nodes [74]. For DB-sharing, the routing
strategy is not determined by a static data allocation, and can thus be more
easily adapted to short-term workload fluctuations and other changes in the
system state.

(6) Technical problems. The discussion above already shows that various
technical problems have to be solved for DB-partitioning and DB-sharing.
Major problems for DB-partitioning include database design (database frag
mentation and allocation), distributed query processing, and distributed com
mit algorithms. Geographically distributed systems pose a number of extra
challenges: dealing with network partitions, authorization, catalog man
agement, and replication control. DB-sharing systems have to address new
problems in the areas of concurrency control, coherency control, logging,
and crash recovery (see Section 2). Some problems are relevant for
both DB-partitioning and DB-sharing: global deadlock management, dis
aster recovery, workload allocation/load balancing, and parallel query
optimization.

Organization

In this paper we investigate the concurrency and coherency control problems
in DB-sharing systems. Both functions are critical to the performance of such
systems because they largely determine the communication overhead for
transaction processing. We have implemented four different protocols within
a detailed trace-driven simulation system that allows a direct performance

ACM TransactiOns on Database Systems. Vol. 18, No. 2, June 1993

Performance Evaluatton of Concurrency and Coherency Control Protocols 339

comparison between the schemes. The algorithms have been designed to meet
high performance requirements by utilizing various concepts to limit the
message and I/0 frequency. In particular, we employ a so-called NOFORCE
strategy for update propagation to disk and to exchange modified pages
directly across the interconnect rather than across the shared disks. In
addition, affinity-based transaction routing, controlled by routing tables, is
used to assign the workload. Such a routing aims at improving performance
by supporting locality of reference within nodes.

The next section provides a discussion of the DB-sharing components,
requiring new solutions, compared to centralized and DB-partitioning sys
tems. In Section 3 we describe the four concurrency and coherency control
protocols that have been implemented. Section 4 presents our trace-driven
simulation system of loosely coupled DB-sharing configurations, together
with the load characteristics and our parameter settings. Simulation results
for the four protocols are then analyzed in Section 5. Section 6 deals with
related performance studies for DB-sharing. Finally, we summarize our main
conclusions and indicate areas for future research.

2. FUNCTIONAL COMPONENTS IN DB-SHARING SYSTEMS

In this section we discuss the four major components that require new
solutions for DB-sharing. These functions are global concurrency control,
coherency control, load control, and logging/recovery.

2.1 Concurrency Control

Since any data item of the shared database can be accessed by any node,
DB-sharing requires global synchronization in order to preserve serializabil
ity of transaction processing. While concurrency control is basically a local
function with DB-partitioning, where each node synchronizes accesses against
its partition, loosely coupled DB-sharing systems require explicit message
exchange for system-wide synchronization. The number of concurrency con
trol messages has to be as low as possible in order to reduce the communica
tion overhead and support high performance. Especially critical are so-called
synchronous messages (for instance, global lock requests) which entail trans
action deactivation, and hence process switching, until a response message is
received. These messages not only increase overhead due to process switches,
but also increase a transaction's response time, and thus data contention.
Data contention can be a limiting factor for throughput, particularly in
distributed environments where generally higher multiprogramming levels
than in centralized DBMSs have to be dealt with. To limit the communication
frequency it is also important (as we shall see) to treat concurrency and
coherency control by an integrated protocol. A further requirement for a
practical concurrency control protocol is robustness against failures in the
system, in particular against node crashes.

A survey of concurrency control schemes for DB-sharing is given in [60, 65].
The most appropriate approaches are locking and optimistic concurrency
control methods that operate either under central or distributed control. For

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

340 E. Rahm

each of the resulting four categories, we examine one representative scheme
(see Section 3).

2.2 Coherency Control

Coherency control is necessitated by the caching of database pages in main
memory database buffers. Caching may in large database buffers substan
tially reduce the amount of expensive and slow disk accesses by utilizing
locality of reference. Unfortunately, there is a buffer invalidation problem in
DB-sharing systems, since a particular page (block) may simultaneously
reside in the database buffers of different nodes. Thus, modification of the
page in any buffer invalidates copies of that page in other nodes, as well as
the page copy stored on disk. The basic task of coherency control is to ensure
that transactions always see the most recent version of database objects
despite buffer invalidations.

This buffer invalidation problem is analogous (although at a different level
of the storage hierarchy) to the cache coherency problem in tightly coupled
multiprocessors [18, 85] and to the replication control problem in distributed
databases [5, 22, 76]. Coherence problems for pages cached in main memory
buffers have recently also been studied in the context of network file systems
[40, 51] and in so-called Distributed Shared Memory (DSM) systems [4, 7, 44,
52]. The main difference between the latter studies and DB-sharing comes
from which correctness criterion for coherency control is supported. In net
work file systems, it is desirable that every access to a file block should
return the most recently written version of that block [51]. In DSM systems,
every machine instruction must be provided with the most recent page
version. For DB-sharing, on the other hand, transactions are the basic
execution units, and it must be guaranteed that every transaction sees all
modifications of previously committed transactions. (Actually, the correct
criterion of serializability demands only that a transaction sees a transaction
consistent state of the database, not necessarily the most recent one.) Since
transactions typically encompass tens to hundreds of page accesses and tens
to hundreds of thousands instructions, we can expect a significantly lower
number of page transfers between nodes for DB-sharing than for network file
systems or DSM systems. In addition, DB-sharing permits a combination of
coherency and concurrency control and may utilize an affinity-based transac
tion routing (see below) to limit the number of buffer invalidations and page
transfers.

Workstation/server DBMS with a caching of database pages in worksta
tions require coherency controls similar to DB-sharing systems [12. 83]. In
fact, the coherency control mechanisms for DB-sharing can be employed in
this environment as well [65].

Solving the buffer invalidation problem for DB-sharing depends on two
major factors, namely the data granularity for concurrency control and the
strategy used for update propagation to disk.

(1) Page versus record-level concurrency control. Page-level concurrency
control simplifies coherency control, since pages are the allocation units in
the database buffers and transfer units between main memory and disk.

ACM Transactwns on Datahase Systems, Vol. 18, No 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 341

Furthermore, a smaller number of lock requests, and thus potentially less
communication, is needed compared to record-level locking. On the other
hand, page-level concurrency control may cause an unacceptable amount of
data contention on frequently accessed "hot spot" pages. Record-level locking
permits different records of the same page to be concurrently modified at
different nodes. As a result, each node's page copy is only partially up-to-date
and the page copy on disk contains none of the modifications (at first). Since
writing out partially up-to-date pages could lead to lost updates, all modifica
tions must be merged before the page can be written to disk. This merging of
record modifications is cumbersome, in general, and may cause a substantial
number of extra messages. Furthermore, even with record-levellocking, short
page locks /latches may be needed in order to serialize modifications to page
control information (e.g., free space information in the page header). For
DB-sharing, this requires additional messages and seems impractical.

To avoid the coherency control problems associated with record-level lock
ing, existing DB-sharing systems only support page locking or a restricted
form of record locking. A good compromise may be to restrict page-level
concurrency control to concurrent write accesses of different systems, so that
different records of a page can be concurrently modified within the same
node. In addition, any record not being modified may be read in any system
[47]. Full record-level locking, i.e., concurrent modifications of the same page
in different nodes, may be tolerable for updates that leave the page structure
unchanged (modification of existing records) [49, 63, 65]. Another approach to
reduce data contention is to utilize the semantics of update operations, e.g.,
on index structures or for certain high-traffic data items (commutativity of
increment/decrement operations) [28, 49].

(2) FORCE versus NOFORCE strategy for update propagation to disk. A
FORCE strategy for update propagation requires that all pages modified by a
transaction are forced (written) to the permanent database on disk before
commit [33]. This approach is usually unacceptable for high performance
transaction processing-since a high r;o overhead and significant response
time delays for update transactions are introduced. For DB-sharing, this
strategy implies further page-level concurrency control for updates between
different nodes in order to serialize disk writes for the same page. On the
other hand, coherency control is simplified because the most recent version of
a page can always be obtained from disk. Furthermore, there is no need for
redo recovery after a node failure. Despite the performance problems of
the FORCE approach, most existing DB-sharing systems currently use the
FORCE strategy.

The NOFORCE alternative permits a drastically reduced I/0 overhead
and avoids the response time increase due to synchronous disk writes at end
of transaction (EOT). Only redo log data is written to a log tile at EOT
(possibly by utilizing group-commit [35]), and multiple modifications can be
accumulated per page before it is written to disk. Since the permanent
database on disk is not up-to-date, in general, coherency control has to keep
track of where the most recent version of a modified page can be obtained.

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

342 E. Rahm

Instead of reading a page from disk, a so-called page request may have to be
sent to the node holding the current page copy in its buffer. The modified
page can then be transferred to the requesting node either directly across the
communication system through a "buffer-to-buffer" communication or across
the shared disks. With a high-speed interconnect, the direct transmission is
typically much faster, say 1 ms versus 50 ms for the two IjOs needed for a
page exchange across shared disks. Non volatile disk caches could permit
transfer delays of about 4-8 ms for the two IjOs. In closely coupled DB
sharing systems, modified pages may also be exchanged across shared semi
conductor stores with faster access times than disk caches [64].

A disadvantage of buffer invalidations is that obsolete page copies cannot
be reused, thus reducing buffer hit ratios. In addition, performance is
degraded by extra messages that may be required for coherency control. On
the other hand, data replication in main memory permits multiple nodes to
concurrently read the same data. Furthermore, a buffer miss does not neces
sarily imply a need to read the page from disk. Rather, a page may be
obtained much faster from another node.

A survey of coherency control methods for DB-sharing systems is presented
in [65]. Buffer invalidations can either be detected or avoided. A simple but
expensive scheme uses broadcast messages to indicate the pages which may
have been invalidated by an update transaction (broadcast invalidation). A
better approach avoids extra messages to detect buffer invalidations by
checking the validity of cached pages during lock request processing (on
request invalidation). Another method is to avoid buffer invalidations by
purging a page from the database buffer before its modification at another
node. The schemes described in the next section are based either on the
broadcast invalidation or on-request invalidation scheme.

2.3 Load Control and Load Balancing
The main task of load control is transaction routing, that is, the assignment
of incoming transaction requests to the nodes of the DB-sharing complex.
This workload allocation should not be determined statically by a fixed
allocation of terminals andjor application programs to nodes, but should be
automatic and adaptive with respect to changing conditions in the system
such as overload situations, changed load profile, and node crashes. Effective
routing schemes not only aim at achieving load balancing to primarily limit
CPU resource contention, but also at supporting efficient transaction process
ing so that given response time and throughput requirements can be met. A
general approach to achieve this goal is affinity-based transaction routing
which uses information about the reference behavior of transaction types to
assign transactions with an affinity to the same database portions to the
same node [62]. In this way it strives to achieve what we call node-specific
locality of reference, which requires that transactions running on different
nodes should mainly access disjoint portions of the shared database. This is a
promising approach because improved locality of reference supports better hit
ratios and thus fewer disk IjOs. Similarly, node-specific locality helps to
reduce the number of buffer invalidations and page transfers between nodes.

ACM Transactions on Database Systems, Vol. 18, No 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 343

Furthermore, locality of reference can be utilized by some concurrency control
schemes to limit the number of synchronization messages (see Section 3).

The achievable degree of node-specific locality of reference is not only
determined by the routing strategy, but also depends heavily on the load
characteristics and the number of nodes. Node-specific locality is hard to
achieve if the references of a transaction type are spread over the entire
database, if there are database areas that are referenced by most transac
tions, or in the case of transaction types which cannot be processed on a
single node without overloading it. Additionally, the more nodes are to be
utilized, the less node-specific locality can generally be achieved, unless new
transaction types andjor database partitions are also added to the system.
Our analysis of a number of traces from different DBMS and customers
shows that these characteristics are quite common in real database applica
tions. None of the workloads we examined was nearly as "delightful" and
"scalable" [78] as the well-known debit-credit transaction load [3, 25]. This
load is completely homogeneous (one transaction type with every transaction
updating four record types) and permits an almost ideal partitioning of the
workload and database for different numbers of nodes. The amount of achiev
able node-specific locality is thus very high and almost independent of the
number of nodes. (According to the benchmark definition in [3, 25], up to 15%
of the account accesses may require communication. Since typically the other
three record types can be locally accessed, at most 3. 75% of all accesses are
remote.)

A more detailed discussion of transaction routing and a framework for
classifying different approaches can be found in [62]. In [61], a hierarchical
model for a comprehensive workload management for transaction processing
is proposed where load control takes place at various levels. It is based on
feedback loops, for local and global system control, that periodically analyze
monitor data to detect performance problems and initiate corrective actions if
necessary. Apart from improving performance, the main objective is to sim
plify system administration by automatically controlling the most important
control parameters (routing strategy, multiprogramming level, transaction
priorities, etc.). Only those problems are reported, together with hints on
possible reasons, for which automatic corrections could not be applied or did
not prove effective.

2.4 Logging and Recovery

Each node of the DB-sharing system maintains a local journal where the
modifications of locally executed transactions are logged. This information is
used for transaction abort and crash recovery. For media recovery, a global
journal may be constructed by merging the local log data [48, 73]. Preferably,
the global log is constructed on-the-fly to support quick recovery after a disk
failure. Existing DB-sharing systems either use mirrored diskE: to handle
disk failures or provide a tool for merging the local log files offline. The latter
approach is much easier to realize than an online construction of the global
log, but prevents a fast recovery from disk failures, thus limiting availability.
A discussion of the problems for creating global logs can be found in [48].

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

344 E. Rahm

Apart from media and disaster recovery, crash recovery is the major issue
that requires new solutions for DB-sharing. Crash recovery has to be per
formed by the surviving nodes which use the local journal of the failed node
in order to provide high availability. The realization of this recovery form
depends on many factors, including the underlying protocol for concurrency
and coherency control, the strategy used for update propagation (FORCE
versus NOFORCE), and the log and concurrency control granularities [63]. In
general, lost effects of transactions committed at the failed node have to be
redone while modifications of in-progress, hence failed, transactions may
have to be undone. If modified pages are directly exchanged between nodes
across the communication system, crash recovery may require use of a global
log in order to redo the modifications of affected pages in correct order.
Special recovery actions may be necessary for the reconstruction of lost
control information in order to properly continue concurrency and coherency
control.

Recovery in DB-sharing systems is discussed in more detail in [4 7] and
[63].

3. CONCURRENCY AND COHERENCY CONTROL PROTOCOLS

For this study we have chosen to examine two locking and two optimistic
concurrency control protocols, with one centralized and one distributed algo
rithm for each class. For coherency control, we apply either the broadcast
invalidation or on-request invalidation approach. To support high perfor
mance, our coherency protocols are designed for a NOFORCE environment
and use buffer-to-buffer communication to propagate modified pages to other
nodes. All algorithms assume page-level concurrency control to facilitate the
integration of concurrency and coherency control. Record-level concurrency
control could not be evaluated because our traces provide only reference
information at the page level.

3.1 Central Lock Manager (CLM)

In the simplest form, every lock request and release is forwarded to the CLM
node. This results in two messages per lock request and one message at EOT
to release all locks. Such an approach can be considered as a worst-case
protocol. Batching of messages reduces the communication overhead, but at
the expense of increased delays for the synchronous lock requests and thus
increased response times. We have incorporated two other techniques into
the CLM scheme which utilize locality of reference and are able to reduce
both the communication overhead and response times.

-A so-called read optimization [57, 60, 65] is applied that allows multiple
nodes at the same time to grant and release read locks for a page locally,
without contacting the CLM. The first read access to a page B in a node has
to be granted by the CLM. If no write lock request is known at the CLM at
this point in time, the CLM assigns a so-called read authorization for B to
the requesting node. This read authorization gives the node the permission
to process all further read lock requests and releases for B locally, thus

ACM TransactiOns on Database Systems, Vol. 18, No 2. June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 345

reducing the number of synchronization messages and response time delays.
The effectiveness of this technique increases with increasing locality of read
accesses.

Since multiple nodes can simultaneously hold a read authorization for the
same page, the read optimization supports a high concurrency and fast read
accesses, which are also supported by the data replication in the database
buffers. Write accesses, however, may suffer from this technique since a write
lock cannot be granted until the CLM has revoked all read authorizations.
Thus the read optimization seems less attractive for applications where
update accesses are more frequent than read accesses.

-A similar concept, called sole interest [68], is applied to grant an autho
rization for a local synchronization of read and write requests. Such a write
authorization is assigned to a node, when it requests a lock at the CLM and
no other node has issued a lock request for the same page ("sole interest"). In
contrast to read authorizations, a write authorization can be assigned only to
one node at a time, and has to be revoked by the CLM as soon as any other
node requests a read or write lock for the same page. If a read request causes
the sole interest revocation, the write authorization is degraded into a read
authorization. Otherwise the write authorization of the current owner is
given up and assigned to the requesting node (if there are no waiting
requests from other nodes).

The sole interest concept pays off only if more lock requests can be locally
satisfied than sole interest revocations occur. This is because four messages
are required for a lock request causing a sole interest revocation, compared to
two messages without sole interest concept. In contrast to the read optimiza
tion, the effectiveness of sole interest depends on the amount of node-specific
locality of reference requiring that different nodes should reference different
portions of the database.

Both techniques could also be applied for coarser granularities than pages,
e.g., record types or segments. For instance, if a node holds a write (read)
authorization for an entire segment, all (read) lock requests against this
segment can be locally synchronized. Such a hierarchical scheme has
not been implemented, mainly because of complexity reasons. Also, for
"important" segments or record types to which a substantial share of the
database references is directed, it is generally unlikely that only one node has
interest or that only read references are issued for longer periods of time.
Rather, thrashing-like situations with only short-lived assignments and fre
quent revocations of readjwrite authorizations could occur, which causes
more messages than are saved.

For coherency control, a simple broadcast invalidation scheme is used. At
the end of every update transaction, a broadcast message is sent to all nodes
indicating which pages have been modified. Invalidated page copies can thus
be removed from the buffers and access to them is avoided. With NOFORCE,
additional provisions are required in order to provide a transaction with the
most recent page copies (remember that the page versions on disk may be
obsolete). For this purpose, every buffer manager maintains a so-called

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

346 E. Rahm

modified-blocks table (MBT). The MBT indicates for all (recently) updated
pages the node where the latest modification has been performed, and thus
where the current page version can be requested. The MBT is maintained
without additional communication overhead by using information of the
broadcast messages. By periodically broadcasting modified pages which have
been written to disk, the number of MBT entries can be limited and page
requests that can no longer be satisfied by buffer-to-buffer communication
are largely avoided. These notifications can be piggy-backed on the broadcast
invalidation messages.

A CLM scheme is used in the DB-sharing systems of Computer Console
and NEC as well as in the Amoeba prototype. They rely on the sole interest
concept (for coarser granules than pages, however) for reducing the communi
cation overhead, while a read optimization is unknown in existing data
sharing systems. The broadcast invalidation scheme is used for coherency
control, but in combination with FORCE, and thus with an exchange of
modified pages across shared disks. In the Amoeba project [73] the existence
of a nonvolatile shared semiconductor store has been assumed for speeding
up the exchange of modified data.

3.2 Primary Copy Locking (PCL)

In this distributed scheme, the database is divided into logical partitions, and
each node is assigned the synchronization responsibility, or primary copy
authority (PCA), for one partition [68]. Lock requests against the local
partition can be handled without communication overhead and delay, while
other requests have to be directed to the authorized node holding the PCA for
the respective partition.

A simple PCL scheme results if the PCA allocation is determined by a hash
function such that each node controls the same number of hash classes. If all
hash classes are referenced with similar probability, we yield an average of
(2 - 2/N) messages per lock request, where N stands for the number
of nodes. The difference from the straightforward CLM scheme (two messages
per lock request) shrinks as the number of nodes grows (1.5 messages for
N = 4, but already 1.9 for N = 20). On the other hand, the CLM node is
likely to become the system's bottleneck with growing N, at least in the
simple approach, while with PCL the concurrency control overhead is
distributed among all nodes.

We implemented a PCL protocol with two major enhancements to reduce
the number of synchronization messages:

-A read optimization is employed for the primary copy scheme where
the read authorizations are assigned and revoked by the PCA lock man
agers. This permits a local read synchronization of pages belonging to the
partition of another node.

-We coordinate the allocation of PCAs and the workload distribution such
that transaction types are generally allocated to the node where most
references can be locally synchronized. This kind of affinity-based transac
tion routing is accomplished by using a predetermined routing table indi-

ACM Transacbons on Database Systems, Vol. 18, No 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 347

eating the best node(s) for every transaction type [67]. The computation of
the routing table (see Section 4) assumes some knowledge of the reference
pattern of the most important transaction types, as could be obtained from
a DBMS-internal monitor.

Coordinating PCA and load allocation aims at achieving node-specific
locality of reference to reduce communication frequency. Contrary to sole
interest assignments, PCA allocations are stable and independent of
whether one or several nodes reference a partition. Also, there is no
analogous disadvantage to the expensive revocations of write authoriza
tions in the CLM scheme. In contrast to the static data allocation in
DB-partitioning systems, PCA distribution can be dynamically adapted
together with the routing strategy (table), since it is only represented by
internal control structures. This would typically be done when the load
profile changes significantly, or less frequently, after a node has failed or
been added.

For coherency control, an on-request invalidation (check-on-access) scheme
is applied. It uses extended information in the lock table, which allows the
PCA lock manager to decide on the validity of a buffer page together with
the lock request processing. Thus, buffer invalidations are detected without
any additional communication-a big advantage compared to broadcast
invalidation schemes. The on-request invalidation approach is used in DEC's
VaxClusters [42], but in conjunction with a FORCE strategy. In [57], we
describe two realization strategies for PCL that use either page version
(sequence) numbers or so-called invalidation vectors to detect buffer invalida
tions. Both schemes incur no communication overhead, but the invalidation
vector solution used in the simulation does not depend on version numbers
stored within pages.

The coherency protocol for NOFORCE has been designed such that trans
missions of modified pages can also be combined with regular eoncurrency
control messages. First, modified pages belonging to the partition of another
node are transmitted to the responsible PCA site, together with the message
required for releasing the write lock at EOT. This has the effect that the PCA
node always gets the most recent page versions for its partition. Buffer
invalidations are now limited to pages belonging to another node's partition.
Moreover, when a lock is granted to an external transaction, the PCA node
can send the most recent page version directly to the requesting transaction,
together with the lock response message. 1 In this case, the requesting
transaction does not need to be deactivated again for requesting the page
from another node or reading it from disk. Therefore, our coherency control
scheme requires neither extra messages for detecting buffer invalidations nor
for exchanging modified pages between different sites; more details can be
found in [57].

1 This would be the case if the requesting node holds no copy of the page in its buffer or only an
obsolete one (detected by the PCA lock manager). If the PCA node does not hold a copy of the
page in its buffer, it indicates in the lock response message that the page can be read from disk.

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

348 E. Rahm

Note that not only a local PCA but also a read authorization guarantees the
validity of a buffer page. This is because the read authorization indicates that
the page has not been modified since the authorization was obtained from the
PCA lock manager. Read authorization can be given back as soon as the page
is replaced from the buffer, since for the next reference the PCA node has to
be contacted anyway in order to get a current page copy, because the copy on
disk may still be obsolete. Such a voluntary return of read authorizations
reduces the number of lock table entries and can largely avoid delays for
write locks due to revocations of read authorizations. Read authorizations
for frequently referenced pages will not be given up voluntarily because these
pages are not removed from the buffer unless they become invalidated. On
the other hand, if a read authorization is explicitly revoked, the correspond
ing page can also be purged from the buffer, since it is going to become
invalidated.

Recovery protocols for PCL are presented in [63]. It turns out that an
explicit construction of a global log can be avoided with this approach if the
PCA nodes log all modifications against their partition. This is possible
without extra communication because all modifications are transferred to the
PCA nodes at EOT in commit phase 2.

3.3 Central Validation Scheme (CV-OCC)

In this optimistic concurrency control (OCC) [43] scheme, all validations are
performed at a designated site. A main reason to investigate such a scheme
is that only one synchronous concurrency control request per transaction is
required, namely the validation request sent at EOT. For performing the
validations at the central site, we implemented a simple and efficient scheme
using timestamp comparisons for conflict detection (for details, see [59]).
Validation verifies whether or not the page copies referenced by the validat
ing transaction are still up to date. If not, validation fails and the validating
transaction is aborted.

An inherent problem of OCC is the danger of a high abort rate and
starvation (i.e., a transaction may never succeed due to permanent restart).
To address this problem we adopted a special combination with locking
techniques similar to that suggested in [68]. For unsuccessful transactions,
we perform a "preclaiming" at the central site, right after the failed valida
tion. Thus, before reexecution of the transaction is started, locks are acquired
for all pages referenced during the first execution. These locks prevent
the invalidation of the respective pages again and guarantee a successful
second execution, at least if no additional objects are referenced. Note that no
extra communication is required for setting the locks and that deadlocks are
also avoided. However, lock conflicts with other failed transactions can occur.

Though access to invalidated pages is detActed during validation, coherency
control is still required to reduce the number of aborts by removing obsolete
pages early from the buffers and providing the current page copies. For this
purpose, a broadcast invalidation scheme is applied which also relies on
replicated MBTs to indicate the nodes where modified pages can be requested
(as in the CLM scheme). Here, however, the broadcast invalidation messages

ACM Transactions on Database Systems. Vol. 18, No. 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 349

are sent by the central site, after the successful validation of an update
transaction. For the site where the successful transaction has been executed,
the broadcast message also serves as notification that validation has been
successful, so that a separate validation response message is saved.

3.4 Optimistic Token Ring Protocol (TR-OCC)

In this distributed OCC scheme, a node performs validations only while it is
holding the token [30]. After a transaction has reached its EOT, it first has to
wait until the token arrives in order to validate itself against local transac
tions. For validation against external transactions, the validation request
is sent around the ring, together with the token. The final outcome of
a transaction is determined after the token arrives once more at the
transaction's site of execution.

We implemented a "forward-oriented" validation scheme where validations
are performed against running transactions and where only update transac
tions have to validate [27]. Since all conflicting transactions are not yet
committed, a conflict can be resolved either by aborting the validating
transaction (abort policy) or by restarting the running transactions (kill
policy). In the simulations, we adopted a hybrid scheme for conflict resolu
tion. Transactions start using the abort policy until their number of aborts
has reached a certain restart limit, RL, which is a simulation parameter. The
executions following then apply the kill strategy against conflicting transac
tions. If two "killer transactions" conflict with each other, the transaction
with the lower priority, as determined by the number of restarts, is aborted.
Starvation is thus avoided, since a frequently restarted transaction will
eventually hold the highest priority. In our simulation system, a different
restart limit can be selected for every transaction type. If RL == 0 is chosen,
transactions start immediately with the kill policy.

For coherency control, a broadcast invalidation scheme with a MBT in any
node is employed. The scheme has been enhanced by several features
described in [58]. Blocking of pages that belong to the write set of a validating
transaction, until it is known whether the transaction has been successful, is
one such feature.

4. SIMULATION MODEL

We invested major effort in implementing a detailed simulation system for
message-based DB-sharing complexes. The system is structured in a modular
way such that different algorithms and realization strategies for the main
components can easily be incorporated. The primary objective for developing
such a system was to identify critical performance factors in DB-sharing
systems and to quantify the performance impacts of different realization
strategies. More specifically, we are interested in comparing the performance
of the concurrency and coherency control algorithms described above and in
assessing the effectiveness of the various optimizations applied therein.
Scalability is also of major interest (i.e., how performance is affected if we
change the number of nodes). Another aspect covered in our studies and

ACM Transactions on Database Systems, Vol. 18, No. 2, June 1993.

350 E. Rahm

described in this paper is the impact of different strategies for load distribu
tion and the influence of hot spot pages on performance.

Though we could have used synthetic workloads for our simulations, we
chose to apply a trace-driven approach. This was motivated by experiences
with performance evaluations of centralized DBMS [29], indicating the
importance of a realistic workload model for assessing the merits or short
comings of different algorithms, specifically for concurrency control or buffer
management. Traces of real-life OLTP applications provide load profiles
which typically consist of many individual transactions of different types with
nonuniform reference pattern, hot spot objects, and locality of reference. It is
difficult to capture these important aspects adequately by synthetic work
loads. Nonuniform reference patterns are especially important for the evalua
tion of buffer management schemes, and thus for DB-sharing where buffer
invalidations and coherency control are expected to play a major role. In fact,
trace-driven simulation is applied in most performance studies of caching
schemes [1, 19, 40, 51, 75]. Knowledge of reference distribution can also be
used for a meaningful, affinity-based, load distribution.

A valid criticism of trace-driven simulations is that the results apply
primarily only to the specific application from which the data has been
collected. On the other hand, one could equally argue that synthetic work
loads do not represent any application well. Also, the generality of an
empirical performance study can be improved by using traces from different
environments. A main reason that trace-driven simulation is less frequently
used in database performance studies lies in the difficulty of obtaining traces
of commercial OLTP applications.

The next section describes traces, for which simulation results are pre
sented. In Section 4.2 we describe the structure and realization of our
simulation system, together with the parameters.

4.1 Trace Characteristics

Our simulation system does not use the original traces as input, but a more
compact representation, called reference string, containing only the relevant
record types from the trace. Four different record types are essential for our
purposes: (1) a begin of transaction (BOT); (2) an EOT record for every
transaction; (3) a FIX and (4) UNFIX record for every page reference. A page
reference is actually represented by the FIX record, while the UNFIX record
merely indicates to the buffer manager that the page need no longer
be "fixed" in the buffer on behalf of the respective transaction, but may be
considered for replacement. The BOT record indicates the transaction type
and the access mode (update or read-only). A page reference specifies the
transaction and page identifiers, the page type (e.g., regular database page or
administration data for free space management, etc.) and the access mode
(read or write).

Simulation runs were conducted for six different transaction loads originat
ing from real applications with a nonrelational DBMS. The largest reference
string contains over one million page references and 17,500 transactions.
However, simulation execution times turned out to be extremely long for

ACM TransactiOns on Database Systems. Vol. 18, No. 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 351

reference strings of this size, so that most runs had to be conducted
for smaller loads. Since the main findings of our extensive performance study
[60] could already be observed for these loads, in Section 5 we present the
simulation results for two shorter transaction mixes (Table D. Both loads
originate from OLTP environments with interactive processing only. Mix 1
consists of very short transactions with a comparatively high share of update
accesses. Over 90% of the page accesses are performed by two of the four
transaction types that operate on disjoint database partitions. For a DB-shar
ing system with two nodes, a high degree of node-specific locality of reference
can therefore be expected when the two major transaction types are pro
cessed on different systems.

Mix 2 is about four times as long as Mix 1 in terms of page accesses, and is
dominated by read references. Though most transactions are also short in
Mix 2, 70% of the page references are due to 13% of the transactions that
perform more than 100 page accesses. These long (read-only) transactions are
also responsible for a high degree of locality of reference for Mix 2 (on
average, a page is referenced 10 times by the same transaction). The refer
ence matrix in Figure 2 depicts the access distribution of the 10 transaction
types against 9 database areas (files). The matrix shows that there is a
dominant transaction type (TTl) that encompasses about 65% of all page
accesses. Similarly, 58% of all accesses are directed to a single file (area 1). In
order to utilize all nodes, it is not possible to assign the dominating transac
tion type to a single node for configurations with more than two nodes.
Assigning a transaction type to multiple nodes reduces the amount of node
specific locality of reference, and can therefore deteriorate performance.

In both workloads there are several hot spot pages that contain database
address translation tables (DBTT) and data for free space administration
(FPA). DBTT and FPA pages have a much higher access frequency than
"normal" database pages. Particularly critical are FPA pages that are always
accessed with the intent to update (these pages are used by insert operations
to determine a database page with sufficient free space). So in Mix 2 there is
a single FPA page that is accessed by 28% of all transactions; in Mix 1 there
are two such pages accessed by 17 to 20% of the transactions with intent
to update. Page-level locking with long write locks on these pages would
result in disastrous performance. In the underlying DBMS, lock conflicts on
these pages are largely avoided by locking only the respective table entry
(DBTT) or holding only short locks/latches (FPA).

In our simulations the cost for transaction processing is modeled by
requesting a certain number of instructions for every "unit of processing"
(UP) which is either a page reference, a BOT, or an EOT. The values for
"#instructions per UP" (Table I) are based on path length measurements and
differ from load to load. For Mix 1 the value is considerably higher than for
Mix 2, since the average number of page accesses per database operation was
smaller, causing a higher overhead for process switching. In addition, the
higher share of update operations resulted in an increased pathlength per
page request. Note that the overhead for I/0 and communication is not
included in the UP cost, but is modeled separately (see below).

ACM Transactions on Database Systems. Vol. 18, No. 2, June 1993.

352 E. Rahm

Table I. Workload Characteristics

Mix 1 Mix2

transactions 2288 669
share of update transactions 45.7% 46.5%
transaction types 4 10
DB size 565MB 330MB
page references 9862 40751
pages referenced 2188 3025
share of write accesses 48.9% 6.7%
units of processing (UP) 14438 42089
instruction per UP 8100 2850
#UPs per transaction (avg.) 6 62

Transaction Area (partition)
type 1 2 3 4 5 6 7 8 9 Total

TTl 17960 5975 1324 918 118 211 15 18 5 26544
TT2 2707 7 619 167 1616 76 130 102 1 5425
TT3 1567 32 1765 299 2 137 8 3811
TT4 1444 727 263 521 45 207 3207
TIS 34 51 1132 1217
TT6 363 363
TT7 16 1 21 14 5 49 106
TT8 52 52
TT9 18 18
TTlO 1 7 8

Total 23729 6014 4505 3163 2271 526 417 120 6 40751

Fig. 2. Reference matrix for Mix 2.

4.2 Structure and Realization of the Simulation System

The simulation system has been implemented in PL/1 and employs discrete
event simulation. It models DB-sharing systems with an arbitrary number of
nodes, and considers CPU, I/0, and communication costs. The gross struc
ture of the simulation system is shown in Figure 3.

-The scheduler is the central component requesting services from the other
four modules. It manages the CPUs and models transaction processing for
the entire DB-sharing system.

-The reference manager manages the reference string and delivers trans
actions and their reference records to the scheduler. It also performs
transaction routing controlled by a routing table, as could be done by a
front-end system in a real DB-sharing complex.

-The protocols for concurrency and coherency control as well as buffer
management and (local) logging have been implemented within the respec
tive components. Buffer management and logging is based on the DB-cache

ACM Transactions on Database Systems, Vol 18, No 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 353

reference
string

parameters ~

synchronization
component

reference manager

scheduler
.,. __,. __ 0011!!"" ..

FIX,
UNFIX, etc.

buffer management
and logging

routing
table

simulation
results

SEND,
RECEIVE

communic~
system_j

Fig. 3. Gross structure of the simulation system.

approach [20] which employs a NOFORCE strategy and uses a sequential
log file to speed logging. For logging, a separate log buffer is maintained for
each node to hold the afterimages of modified pages. A log buffer is written
out in one sequential IIO when it is full or at commit time of an update
transaction. Global LRU is employed for page replacement.

-The communication system handles the message transfers between the
nodes. We modeled a point-to-point connection between any two nodes and
an additional bus for the schemes employing broadcast invalidation. Batch
ing of messages is possible, and is controlled by two parameters, the
blocking factor B and the maximal buffering delay BMAX (only relevant if
B > 1).

Tables II-V show the main parameters of our simulation system together
with their default settings. Most of the parameters had to be fixed in order to
limit the number of simulation runs. Parameters varied for each mix include
the concurrency I coherency control protocol, the number of nodes, and the
multiprogramming level. For most of the other parameters, the effect of
different values has also been studied, but was found to be less relevant for
the relative performance of the different schemes. Still, in Section 5 we also
analyze the influence of page-level locking on FPAIDBTT pages and the
effect of different communication costs and routing strategies.

CPU, communication and I 10 costs. The scheduler simulates a single
CPU server for every node and distinguishes between three types of CPU
requests with different priorities and different costs (#instructions).
CPU requests for communication (send or receive operation, message proces
sing) have highest priority, followed by CPU requests for I/0 (disk read or
write, log IIO). The remaining CPU requests are for transaction processing
and have lowest priority; these requests are issued for every BOT, page

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

354 E. Rahm

Table II. General Parameters

Parameter Settings

reference string

number of nodes N
multiprogranuning level P
CPU capacity per processor
instructions per UP
routing table

Mix 1, Mix2
1, 2, 3,4
4, 8, 16
3 MIPS
see Table 1
dependent on load and N

Table III. Concurrency Control Parameters

Parameter

concurrency /coherency
control protocol

FP A/DBTT lockmg
consistency level

Settings

CLM, PCL,
CV-OCC, TR-OCC

no

2
PCA distribution (PCL)
token delay (TR-OCC)
restart lim1t RL (TR-OCC)
MAX-WAIT (timeout)

dependent on load and N
0
2
1 - 30 s

Table IV. Commumcation Parameters

Parameter
transmission rate

point-to-point
bus

bundling factor

Settings

3 MB/s
3 MB/s
1

max. bundling delay BMAX

message length 100 B (+page size)
5000 # instructions per send

instructions per rece1ve 5000

instructions for processing
one message

1000

Table V. Parameters for Buffer Management and I/0

Parameter

buffer size

page size

log buffer size

I/0 time

log buffer write time

instructions per l/0

Settings

600 page frames

2KB

16 page frames

30-60 ms
(equally distributed)

9 - 20 ms (dependent on
number of pages)

2500

ACM Transactwns on Database Systems, Vol. 18, No.2, June 1993.

Periormance Evaluation of Concurrency and Coherency Control Protocols 355

reference, or EOT. The average number of instructions per request type is
specified by parameters. The actual number of instructions per request
is exponentially distributed over the specified mean.

Communication costs are represented by CPU overhead for sending, receiv
ing, and processing messages, as well as communication delays for their
transmission over the network. Every point-to-point connection, as well as
the bus, have been modeled as separate servers in order to capture possible
bottleneck situations-for instance, due to page transfers. The net transmis
sion time is calculated from the message length and bandwidth parameters.

IjO costs are represented by CPU overhead and IjO delay for every IjO
operation. Disk servers have not been explicitly modeled, assuming that
bottleneck situations can be prevented by a sufficiently large number of disk
drives or by using a disk array [54].

Modeling of transaction processing. For each of the N nodes, a fixed
multiprogramming level P is applied indicting the number of concurrently
active transactions. The total degree of parallelism is thus N*P. The execu
tion of a transaction is modeled by processing all its records from the
reference string in chronological order. The processing of a reference record,
in turn, depends on the concurrency and coherency control protocol and the
current system state. So different actions are needed, depending on whether
or not a lock conflict occurred or a page was found in the local buffer. In
general, multiple events like CPU, I/0 or communication requests are
involved until a reference record is processed. The execution of an EOT record
triggers commit processing, consisting of logging and protocol-specific steps
like validation or release of locks. After completion of a transaction, the
scheduler requests the next transaction from the reference manager. The
simulation stops as soon as there are no more transactions to be executed for
any of the nodes (according to the routing strategy, see below).

Transaction routing. We employed a static strategy for load distribution
by using a predetermined routing table that remains unchanged during a
simulation run. The routing table specifies, for every node, which transaction
types it may process. Random routing can easily be achieved by letting every
node execute transactions of any type.

For calculation of the routing tables, it was necessary at first to determine
the workload's reference matrix from the trace, indicating for every transac
tion type the relative frequency and distribution of database accesses. The
reference matrix and the number of nodes then served as input parameters
for an iterative heuristic that was developed for the primary copy protocol,
which determines the routing table as well as the PCA distribution in a
coordinated way. In each step of this heuristic, a transaction type, or some
part of it, is assigned to one node such that the node is not overloaded. This
assignment starts with the largest transaction type and is continued until the
entire workload is allocated. The PCA allocation is adapted in each step of
the assignment procedure such that the load distributed so far can be
processed with a minimum of internode communication. The routing tables

ACM Transactions on Database Systems. Vol. 18, No. 2, June 1993.

356 E Rahm

obtained by this procedure were also applied to the other protocols in order to
facilitate a comparison of the schemes. These routing tables also help
to achieve node-specific locality, which is generally useful.

Although we have perfect knowledge of the reference behavior of the
transactions, it would not have been realistic to utilize this fact fully to
determine an "optimal" routing policy. So we only considered the reference
information at the type level, rather than for individual transactions. In
order to support load balancing, we used a simple approach by requiring that
about the same number of page accesses (±50(,) should be assigned to every
node. For more than two nodes, the dominating transaction types in our loads
had therefore to be assigned to multiple nodes.

Specific concurrency control aspects. Our simulation system offers a choice
between consistency level 2 and serializability Oevel 3)-an option that is
also provided by some commercial DBMS (DB2, Tandem NonStop SQL a.o.).
The simulation results (presented in Section 5) were achieved for consistency
level 2, which was also used in the applications reflected in the traces.
Consistency level 2 improves performance by tolerating the possibility of
"unrepeatable reads"; that is, a transaction may see different versions of a
database object [26]. For locking schemes, consistency level 2 means that
read locks are generally released before EOT ("short" read locks), giving rise
to a reduced conflict probability. There will, however, be more lock requests,
since a transaction may now request multiple read locks for the same object.
OCC can also utilize a restriction to consistency level 2. As pointed out in
[60], in this case only update transactions have to validate against other
update transactions (to avoid lost updates), while read-only transactions are
always successful. Note that access to uncommitted objects is always avoided
with OCC, since all modifications are performed on private object copies.

For the locking schemes, deadlocks are handled by a hybrid strategy.
Deadlocks between local transactions are explicitly detected and resolved by
aborting the transaction causing the deadlock. Global deadlocks are resolved
by a simple timeout mechanism (parameter MAX-WAIT).

For the optimistic token ring scheme (TR-OCC), the token is usually sent to
the next node as soon as all local validations have been performed. The
parameter "token delay" can be used to delay the token transmission in order
to control the communication overhead. For the CLM and central validation
(CV-OCC) schemes, the central concurrency controller is located on a sepa
rate node with the same CPU capacity as the transaction processing nodes,
giving a total of N + 1 nodes for N > 1.

Another important factor is concurrency control on hot spot pages. As
pointed out above, in our traces so-called FPA/DBTT pages represent hot
spot pages for which page-level concurrency control is expected to result in
unacceptable performance. We could not implement record (entry)-levellock
ing for these pages, since our traces only specify the page identifiers and page
type (FPAjDBTT or regular pages), but not the accessed entries and records
in a page. Instead, we either completely ignore lock conflicts on FPAjDBTT
pages or perform page-level locking. The first option was chosen in most

ACM Transactions on Database Systems, Vol. 18. No 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 357

simulation runs, assuming that a sufficiently low level of lock contention can
be achieved by specialized locking techniques. To illustrate the effect of
page-level locking, we also ran experiments where we assumed no lock
conflicts among local transactions only, but applied page-level locking between
transactions of different nodes. The latter option only assumes a special
treatment of FPAjDBTT pages within a node and also provides coherency
control for FPAjDBTT pages.

Performance measures. The simulation system determines throughput
and response time as the main performance measures. Throughput is not
expressed by "transactions per second," since transactions of different types
differ significantly in size. Instead, we use the number of UPs per second
(UPS) as the throughput measure. The UPS value is calculated from the
number of processed UPs of successful transactions divided by the total
processing time. To explain the throughput and response time results, a large
number of detailed statistics is produced by every simulation run, providing
extensive information on resource utilization, response time composition,
buffer behavior (hit ratio, buffer invalidations, page requests) and concur
rency control aspects (frequency of aborts, lock waits, external lock requests).
Some of the results are reported in the next section.

5. SIMULATION RESULTS

The main part of this section is devoted to comparing the simulation results
for the four concurrency and coherency control protocols described in Section
3. In Sections 5.2 and 5.4, we discuss some additional experiments illustrat
ing how performance is influenced by routing strategy, varying communica
tion costs, and page-level locking on hot spot pages. The results refer to the
two transaction loads introduced in Section 4 and the parameter settings
from Tables II-V.

5.1 Performance Comparison of the Implemented Protocols

Figures 4 and 5 show the throughput results for Mix 1 and Mix 2, respec
tively, for our four protocols. The results are given for one to four nodes (N)
and three different values of P (parallelism per node). In general, throughput
increases as the multiprogramming level P grows due to the increased CPU
utilization; deviations from this behavior are caused by increased data con
tention and/ or communication overhead. Response time results correspond
to the throughput values according to Little's result [45]. Response times
deteriorate as the degree of multiprogramming grows due to increased CPU
and data contention. Figures 4 and 5 show that in most cases the primary
copy locking protocol achieved the best throughput results, followed in second
place by the central validation scheme, CV-OCC, with preclaiming for failed
transactions. Significantly lower performance was observed for the two other
protocols, the token ring scheme, TR-OCC, as well as the CLM scheme. In the
following, simulation results are discussed separately for each protocol.

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

358 E Rahm

UPS

18oo

600

400

200

0
1/4 1/8 1/15 2/4 2/8 2/15 3/4 3/8 3115

)IE-------'!I' PCL
[9---{'] CV-OCC
6-----"6 TR-OCC
l't---~ CLM

Fig. 4. Throughput results for Mix 1.

UPS

I
3000

2000

1000

0
1/4 1/8 1115 214 2/8 2/16 3/4 3/8 3/15

)IE-------'!I' PCL
[9---{'] cv-occ
6-----"6 TR-OCC
)(----)(CLM

F1g. 5. Throughput results for Mix 2.

ACM Transactwns on Database Systems, Vol. 18, No 2, June 1993

414 4/8 4/15
N/P

y.-------1<

414 4/8 4/16
N/P

Performance Evaluation of Concurrency and Coherency Control Protocols 359

Results for primary copy locking (PCL). Simulation results for Mix 1 are
influenced by the fact that this load is dominated by two transaction types
that mainly operate on disjoint database portions. Thus for N = ~:, an almost
optimal load and PCA allocation was feasible, so that nearly all (> 97%) lock
requests could be granted locally. This helped to achieve optimal performance
results for two nodes (more than twice the throughput and better response
times than in the centralized case). The superlinear throughput increase for
two nodes was possible because the aggregate buffer size was doubled com
pared to the central case, resulting in a reduced I/0 delay and overhead.
This permitted a higher effective CPU utilization per node, despite the
(small) communication overhead for remote lock requests (see below). How
ever, for more than two nodes, throughput could not be significantly im
proved further due to the fact that each of the dominating transaction types
had to be processed by more than one node. This led to reduced node-specific
locality and a higher number of global lock requests (for N = 4, "only" 76% of
the locks could be locally granted). Lock contention also increased consider
ably for three and four nodes, so that the average CPU utilization decreased
with growing N despite the increasing communication overhead.

For Mix 2, lock conflicts were not a throughput-limiting factor due to the
high proportion of read accesses. Here throughput could be improved almost
linearly, even for three or four nodes, in spite of the fact that in these cases
the dominating transaction type was processed at more than one node. Figure
6 shows the composition of the average CPU utilization for Mix 2, which
helps to explain the throughput results. Total utilization is composed of the
effective CPU utilization ("transaction processing") and the overhead for I/0
and communication. The effective CPU utilization, which directly determines
throughput, was (mostly) lower for DB-sharing than for the central case,
owing to the comparatively high communication overhead for Mix 2. The
communication overhead grows with the multiprogramming level P, since
more transactions can then issue lock requests concurrently. Communication
overhead also grows as the number of nodes is increased because fewer lock
requests may then be granted locally (see below). The negative effect of
communication overhead may be partially compensated for by the fact that
I/0 overhead is substantially lower for DB-sharing than in the central case,
due to the increased aggregate buffer size. For P = 4, the reduced I/0 delays
in the DB-sharing configurations even permitted a higher ef£ective CPU
utilization than in the central case for Mix 2.

Communication overhead is mostly determined by the number of remote
lock requests. Figure 7 illustrates the average number of messages per lock
request for Mix 1 and Mix 2. The curves labeled "4" correspond to the results
shown in Figures 4 and 5, and were achieved with both improvements
mentioned in Section 3.2 (read optimization, coordinated PCA and load
allocation). The graphs labeled "3" show the average number of messages
that would have occurred if only the coordinated PCA and load distribution
had been applied, but not read optimization. The curves labeled "1" and "2"
refer to the simple CLM and simple PCL schemes (see Section 3) requiring 2
and (2 - 2/N) messages per lock request, respectively, which brings our

ACM Transactions on Database Systems, Vol. 18. No.2, June 1993

360 E. Rahm

Percent

100

80

50

40

20

0

ESSS3 communication

CJ l/0

~ transaction process1ng

Fig. 6. Average CPU utlhzation for Mix 2 (PCL).

optimizations into proper perspective. The number of messages per lock
request refer to the average for all multiprogramming levels. The graphs
show that most messages could be saved, due to coordination between load
and PCA distribution, though the effectiveness of this optimization decreases
with more nodes (similar to the simple PCL scheme). This is because the
average partition size decreases with growing N if the database size is kept
constant, and because we had to split the dominating transaction types
across multiple sites (the PCA allocation can support a local synchronization
for a transaction type on only one node). Such an increase in message
frequency may however be avoided for "scalable" and "delightful'' applications
[78] (e.g., debit~credit) where the database grows proportionally with the
transaction rate (number of nodes) and the same degree of node-specific
locality can be sustained. Although these prerequisites are not given for our
loads, most lock requests could be granted locally. The coordinated load and
PCA allocation was particularly effective for Mix 1. Even with four nodes,
this optimization alone allowed us to grant 68% (compared to 25% with the
simple PCL scheme) of the locks locally for Mix 1-which translates into less
than one global lock request per transaction for this load.

Read optimization was also very effective, and is the main reason for good
performance results for Mix 2. As can be seen from Figure 7, read optimiza
tion is of greater help to more nodes and when fewer locks are granted due to

ACM Transactions on Database Systems, Vol 18. No.2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 361

MIX 1 MIX2

#me"clges per lock request #me,'itge' per lock request

--
2 00 ~-----~--------<.-j I

2 ()() l

I XO

I 60

1.20

I 00

() 80

() 60

0.40

0.20

0.00

... -··

2 00

I XO f-- -

I 60 - -
........ o

.u····· I 40 - -

.. n··

I 20 - -

I 00
... -··

0 kOo_

0 60
-~-

0 40

0.20
- - - - -- - - - - - - ... - -

0 00 -~- -- -----____ _li-:::J

3.00 4 00 2 ()()

I· simple CLM
2._ .. siiDiJie.i>ct·········-----···-----···-·--········-·-··

~3: coord1-riaied ioad a~(frci\-ailocation
'F3-+-react oiitiinizin"ion- -- - - -- - -

3 00

Fig. 7. Average number of messages per lock request.

4.00

no of node' N

local PCA ownership. This is because read authorizations are assigned only
for objects not belonging to the local partition and because with more nodes
more objects of external partitions have to be referenced. Our results confirm
that read optimization is capable of improving scalability of the primary copy
scheme by reducing dependencies on how far load and PCA distribution can
be effectively coordinated.

This was, of course, particularly useful for Mix 2, due to the high share of
read accesses, and helped that more than 93% of the locks could be acquired
and released without communication even for four nodes. This high share
was, however, favored by the use of short read locks (consistency level 2),
since the long transactions in Mix 2 frequently requested multiple read locks
for the same page. With read optimization, communication was typically
required only for the first read lock request for a page, while subsequent
requests could take advantage of a local read authorization. With short read
locks and without read optimization, the number of global lock requests per
transaction would have increased from 3.9 to 24 for Mix 2 and N = 4. We
thus consider read optimization indispensable for consistency level 2, though
its usefulness is not restricted to intra transaction locality of read references.
Revocations of read authorizations were very rare and did not cause any
noticeable performance degradation.

ACM TransactiOns on Database Systems, Vol. 18, No.2, June 1993

362 E. Rahm

Table VI. Average Hit RatiOs and Number of Physical Reads per Transaction

Mix 1 Mix2
N=l N=2 N=3 N=4 N=l N=2 N=3 N=4

average hit ratio (%) 67.4 79.8 83.5 83.7 88.0 91.7 92.6 95.1
average number of disk reads per tx 1.4 0.9 0.7 0.7 7.7 5.2 4.7 3.1

The IjO behavior was another important factor that determined the
performance results. As mentioned, the increased aggregate buffer size
allowed, in some DB-sharing configurations, for a superlinear throughput
increase and better response times, compared to the centralized case (N = 1).
This is confirmed by Table VI, showing that DB-sharing configurations
achieved significantly better hit ratios than for N = 1. The savings in I/0
delay were generally more significant that the communication delays for
external lock requests, thus supporting good response times. High response
times for DB-sharing were mostly due to increased lock contention.

Of course, hit ratios for the central case can also be improved by using a
larger database buffer. Thus we observed a hit ratio of92.5% for Mix 2 in the
central case, when we doubled the buffer size, and 95.7% when we increased
the buffer size by a factor of four. These hit ratios are only slightly better
than the corresponding hit ratios for DB-sharing and the same aggregate
buffer size (N = 2 and N = 4), despite the fact that some pages are repli
cated in multiple buffers for DB-sharing. Good hit ratios for DB-sharing are
due mainly to the affinity-based routing strategy that supports node-specific
locality of reference by coordinating PCA and load distribution. The direct
exchange of modified pages between nodes also helped to improve I/0
behavior for DB-sharing. We found that considerably more pages were
received from the PCA node (together with the lock response message) than
buffer invalidations occurred. This helped save disk I/0, compared to the
centralized case where a buffer miss always causes a disk read. In addition,
delay for getting a page from another node is significantly shorter than for a
disk access (factor 50 for our parameters).

Efficient coherency control without any additional messages was a main
advantage of PCL over the schemes using broadcast invalidation. Apart from
avoidance of broadcast messages at the end of update transactions, it
was especially important that no additional requests for pages modified at
other nodes were necessary. Furthermore, buffer invalidations are only possi
ble for pages for which no read authorization is held and which belong to the
partition of another node. This resulted in a very low frequency of buffer
invalidations, with a maximum of 2% of all lock requests (Mix 1, N = 4).
Page transmissions did not cause any bottleneck situations in the communi
cation system; its utilization was always less than 2%.

The coordinated load and PCA allocation was, of course, mainly responsible
for the low amount of buffer invalidations and page transmissions (most
pages were referenced and modified at the PCA node). In general, buffer
invalidations and page transmissions are the more frequent the higher the
share of update accesses and the lower the amount of node-specific locality.

ACM Transactwns on Database Systems, Vol. 18, No. 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 363

Simulation results for CLM scheme. Figures 4 and 5 reveal that in all
simulation runs the central lock manager approach was clearly inferior to the
PCL protocol, in spite of the fact that an additional node was used for
concurrency control (of course, for N = 1, the CLM and PCL results are
identical). Even for two nodes, throughput could not be substantially improved
compared to the centralized case.

Although the sole interest concept, as well as read optimization, helped to
reduce the number of global lock requests, we found that by far fewer locks
could be locally synchronized due to sole interest than by a local PCA in the
primary copy scheme. One reason is that in order to get a write authorization
(sole interest), communication with the CLM is necessary, while PCA owner
ships are not requested from other nodes but are assigned a priori. Further
more, sole interest is unstable and frequently revoked if transactions of the
same type (or of other types referencing the same database portions) are
running on different sites. So, generally, more than twice the number of
global lock requests was observed for the CLM scheme than for PCL. Addi
tional delays and messages were caused by sole interest revocations, in
particular for Mix 1, where up to 35% of these authorizations had to be
released involuntarily.

Read optimization was also important for the CLM scheme, in view of the
use of short read locks, but worked less smoothly than in the primary copy
protocol due to conversions between read and write authorizations. Also, in
the PCL scheme, a read authorization can always be assigned immediately,
unless the PCA lock manager has learned of a write request. In the CLM
scheme, however, sole interest assignments delay the assignment of read
authorizations, even if in the node holding sole interest no lock requests or
only read lock requests have been issued.

The comparatively high frequency of synchronization messages caused a
high utilization of the CLM node. For N = 4 j P = 16, its CPU utilization was
over 80%, indicating that the CLM node may easily become a throughput
bottleneck.

The broadcast invalidation scheme for coherency control contributed to a
lesser degree to the unacceptable performance of the CLM scheme. Only for
Mix 1, where many update operations occur, and for more than two nodes
was there noticeable communication overhead and delays to the broadcast
messages and page requests. So even an on-request invalidation scheme to
detect buffer invalidations does not seem likely to substantially improve the
overall performance of the CLM scheme.

Results for central validation scheme with preclaiming. Afler PCL, this
optimistic scheme achieved the best performance results-in some cases,
particularly for Mix 2 and N = 4, even better throughput than with PCL. In
this comparison, however, note that in the CV-OCC scheme an additional
node was used for concurrency control and also for sending the broadcast
messages for successfully validated transactions. This helped to reduce com
munication overhead on the N transaction processing nodes. ln contrast to

ACM Transactions on Database Systems, VoL 18, No 2, June 1993.

364 E. Rahm

the CLM scheme, the central synchronization node was never highly utilized
(< 30%), despite higher transaction rates.

A basic observation is that the optimistic protocol scaled up better than
PCL, mainly because of the two following reasons. First, communication for
concurrency control is limited to one validation request per update transac
tion (and one additional request for every reexecution). Thus message fre
quency for concurrency control-but not for coherency control-was less
dependent on the number of nodes than the locking schemes that depend on
node-specific locality of reference. So for N > 2, communication overhead
on transaction processing nodes was smaller than with the primary copy
protocol. The second key factor was more efficient processing of reader
transactions with OCC than with the locking protocols, due to the relaxation
to consistency level 2.

In the PCL and CLM locking schemes, read-only transactions suf
fered from communication delays until a short read lock was granted-
though read optimization reduced the number of global read lock requests

considerably-as well as from lock conflicts with update transactions. With
OCC and consistency level 2, however, read-only transactions are freed from
validation, thus never aborted, and do not cause any validation overhead.
Instead, reader transactions can always get the current version of a page,
since modifications are performed on private page copies (pages are only
blocked for a short time when they are to be replaced by a new version during
the write phase of a local update transaction [60]). Thus communication for
read-only transaction was restricted to requesting pages from other nodes
having performed the most recent modification of the respective pages. The
number of these page requests was only significant for Mix 1, and increased
with the number of nodes. For read-dominated Mix 2, on the other hand,
CV-OCC outperformed PCL for four nodes. For more than four nodes, CV-OCC
would have been even more superior to PCL for Mix 2, due to the increasing
difficulty of finding an adequate PCA and load allocation.

With the OCC scheme, on the other hand, update transactions were
less efficiently processed by far than with PCL. With the central valida
tion scheme, update transactions failed frequently in their first validation
(for N = 4 more than 50%) and had to perform a pre claiming before the sec
ond execution. In the simulation, this preclaiming helped insure that the
second execution was always successful (the same pages were referenced
than in the first execution). Thus, starvation was avoided, but at the expense
of a delayed reexecution due to "lock" conflicts with other failed update
transactions in their preclaiming phase. Typically, the second execution was
faster than the first, since most of the pages to be accessed still resided in the
database buffer. With a lesser degree of access invariance [21]; that is, if
different pages were referenced during reexecution of failed transactions, the
number of restarts and I/Os would be higher, thus degrading performance.

Simulation results for token ring protocol. As may be seen from Figures 4
and 5, throughput for the optimistic token ring scheme was always signifi
cantly worse than for PCL or the central validation scheme. The unacceptable

ACM TransactiOns on Database Systems, Vol 18, No. 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols. 365

Table VII. Average CPU Utilization for Communication (TR-OCC, P '= 8)

Mixl Mix2
N=2 N=4 N=2 N=4

broadcast messages 4.0% 6.8% 1.4% 3.5%

page requests 0.7% 7.4% 0.7% 4.3%

token (+ cvalidation requests) 33.3% 13.8% 42.3% 18.9%

Total 38.0% 28.0% 44.4% 26.7%

results are largely due to the fact that update transactions were aborted even
more often than in the central OCC scheme, where preclaiming at least
guaranteed a successful second execution. Here, however, even transactions
that reached their restart limit (2) were still aborted by concurrently validat
ing "killer" transactions (as described in Section 3.4).

Another critical factor was the communication overhead for validation and
coherency control (Table VII) The table shows that the communication over
head associated with coherency control (broadcast messages, page requests)
increases with the number of nodes and already accounts for a considerable
portion of CPU utilization (14.2% for Mix 1 and N = 4/P = 8). More impor
tant, however, was the communication overhead for validation--determined
by the average token-holding time (circulation time). Table VII shows that
without token delay, in addition to the time required for validations, a very
high communication overhead is introduced which decreases with more nodes
due to increased circulation times. So the highest communication overhead
was observed for two nodes, accounting for the low throughput figures in this
case.

In order to reduce communication overhead, many simulation runs with
varying settings for the parameter "token delay" have been conducted.
Although this allowed for improved performance results, particularly for
Mix 2, the results of PCL or the central OCC scheme could not be reached.
The increased token-waiting times had a negative effect on throughput for
smaller multiprogramming levels only (e.g., P = 4). Even response times
often gained more from reduced CPU waiting times, due to smaller communi
cation overhead, than they suffered from the increased token-waiting times
(at least for short token delays). Thus token-holding times must be carefully
controlled in order to limit the communication overhead without causing
overly long waiting times for (update) transactions ready to validate.

5.2 Performance Impact of the Routing Strategy

For the primary copy protocol, which showed the best performance results,
additional experiments have been conducted and are analyzed in this and the
next two sections. The results of these experiments are presented for
the larger workload, Mix 2.

In the simulation runs discussed above, we always applied a coordinated
load and PCA allocation which aimed at supporting node-specific locality.

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

366 E. Rahm

UPS
3000

I

2000

1000

0
1/4 1/8 1/16 2/4 2/8 2/16

-------. affin1ly based roul1n15
1:9--~ random routing

3/4 3/8 3/16 4/4 4/8 4/16
N/P

Fig. 8. Throughput for M1x 2 and PCL under different routing strategies.

These results are now compared to those achieved with a random routing of
the transactions. In the runs with a random routing, the database was
partitioned in a way such that each node controlled about equally important
database portions, that is, each node had to process about the same number
of lock requests.

Figure 8 shows the throughput results for Mix 2 with such a random
routing, as well as the results obtained with a coordinated load and PCA
distribution (repeated from Figure 5). Observe that throughput is always
worse with random routing and that the differences from the results with the
affinity-based load distribution increase significantly as the number of nodes
grows. Compared to the centralized case, random routing allowed only mod
est throughput improvements, by a factor 1.41 (instead of 1. 76 for affinity
based routing) with two nodes, by a factor of merely 2.16 (3.02) with four
nodes (for P = 16). The same trends apply for response times, which were
always worse for DB-sharing with random routing than in the centralized
case, despite the increased buffer capacity.

We found that random routing had a negative effect on the frequency of
global lock requests, on hit ratios, on data contention (fewer local but many
more global lock conflicts), and on the number of buffer invalidations and
page transmissions. Most important for Mix 2 were the number of physical
reads and global lock requests, which were on average about twice as high as
for the affinity-based load distribution. Table VIII summarizes the fractions
of local and global lock requests for random as well as for affinity-based
routing.

ACM TransactiOns on Database Systems, Vol 18, No. 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 367

Table VIII. PCL Lock Behavior under Random Routing (and Affinity-Based Routing)

N=2 N=3 N=4

locally granted locks due to local PCA (%) 48.2 (83.6) 33.1 (73.5) 24.6 (58.2)

locally granted due to read optimization(%) 45.3 (13.4) 57.0 (20.5) 63.4 (35.1)

global lock requests(%) 6.5 (3.0) 9.9 (6.0) 12.0 (6.7)

number of global lock requests per tx 3.7 (1.7) 5.7 (3.4) 6.9 (3.9)

The table shows that with random routing far fewer lock requests could be
granted locally due to PCA ownership than with affinity-based load distribu
tion; this share is about the same as with the simple PCL scheme (3.2),
allowing a local synchronization for 100/N% of the locks. For Mix 2, how
ever, this low share could be greatly improved by read optimization, which
turned out to be even more helpful here. This confirms even more strongly
that the read optimization is able to reduce the dependencies of the PCL
scheme on node-specific locality (the effectiveness of coordinating load and
PCA distribution). So only a comparatively small share of the locks had to be
acquired remotely (~ 12%), although the absolute number of global lock
r~equests per transaction is significantly higher than with affinity-based
routing. In the case of four nodes, up to 40% of the CPU capacity was
required for communication overhead with random routing, <Compared to
"only" 27% with affinity-based routing and its higher throughput.

5.3 Influence of Communication Costs

Though the primary copy scheme generally caused very few global lock
messages, the communication overhead was considerable, mainly because
of the choice of CPU capacity (3 MIPS) and the comparatively expen
sive communication primitives, causing 22,000 instructions per global lock
request/ response (5000 instructions per send or receive operation and an
other 2000 instructions for processing the two messages). In order to study
the performance effects of reduced communication costs, we conducted simu
lation runs with 500 instead of 5000 instructions per send or receive opera
tion, resulting in a total of 4000 instructions per global lock request I response.

Figure 9 shows the throughput results for Mix 2 (and affinity-based
routing) obtained with communication costs of 500 and 5000 instructions per
send or receive operation. The cheaper communication primitives allow for
significant throughput improvements, which grow with the number of nodes,
as well as with the multiprogramming level. This allowed for an almost
N-fold throughput, with N nodes compared to the centralized case (or even a
superlinear throughput improvement for lower multiprogramming levels).
For N = 4/P = 16, throughput was 24% higher than with the expensive
communication operations, and only 8% instead of 27% of the CPU capacity
was needed for communication overhead. The cheaper send and receive
operations also improved response times by up to 20%.

ACM Transactions on Database Systems, Vol. 18, No. 2, June 1993.

368

UPS

I
3000

2000

1000

0

E. Rahm

_0
0'

_0 ~ 0'
/

~ _[')

?
0- - _[')

['f

1/4 1/8 1/16 2/4 2/82/16 3/4 3/8 3/16 4/4 4/84/16

~ 5000 1nstrucl1ons per SEND or RECEIVE operal1on

Ql---!CJ 500 1nstruct1ons per SEND or RECEIVE operal1on

Fig. 9 Influence of communicatiOn costs on throughput (Mix 2, PCLJ.

N/P

In order to reduce communication overhead, not only should the number of
messages be small, but it is equally important that the underlying hardware
and operating system provide efficient communication primitives. Faster
processors only reduce the absolute time for message processing, but do not
improve the relative costs for communication. Message bundling is also no
general solution. In experiments with different bundling factors and delays,
we found that the reduction of communication overhead pays off only when
CPU s are highly utilized. Delaying remote requests when sufficient CPU
capacity for an immediate send is available only increases the message delay
and often decreases throughput. For message hatching to be effective, a more
flexible approach that automatically adapts the bundling parameters accord
ing to the available CPU capacity would therefore be required. Such an
approach, however, is difficult to implement and control. Message bundling is
more effective when more messages are directed to the same destination,
namely a central lock manager. This makes message bundling less attractive
for distributed protocols designed for few remote requests, as in PCL.

5.4 Influence of Page-Level Locking on Hot Spots

As discussed in Section 4, our workloads reference several hot spot pages
containing free space information and database translation tables. The simu
lation results presented so far refer to the case where lock conflicts on
FPAjDBTT pages have been ignored, assuming a similarly effective synchro
nization scheme as possible for the central case (i.e., the use of latches or
record-level locking). To illustrate the consequences of a page-oriented

ACM Transactions on Database Systems. Vol. 18. No 2. June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 369

UPS

I
3000

2000

1000

0
1/4 1/8 1/16 2/4 2/8 2/16 3/4 3/8 3/16 4/4 4/8 4/16

N/P
-------*no FPA/DBTT lock1ng, 500 1nstr per send/rece1ve

[9----0 no FPA/DBTT locking. 5000 instr per send/receive

~-----~ w1th FPA/DBTT lock1ng, 500 1nstr

~--x with FPA/DBTT I ock 1 ng. 5000 1 ns t r

Fig. 10. Influence ofFPAjDBTT locking on throughput (Mix 2, PCL).

protocol for concurrency j coherency control on such pages, we also performed
simulation runs with locking on FPAjDBTT pages. However, since there was
no problem in using latches or record-level locking within a node, we used
page-level locking on FPAj DBTT pages for synchronizing accesses between
transactions of different nodes only. Lock contention between local transac
tions on FPAj DBTT pages was still assumed to be negligible.

Figure 10 shows the throughput results for Mix 2 with and without such a
locking on FPAjDBTT pages, as well as for the two different communication
costs from Section 5.3. The graphs show that throughput is dramatically
worse in the case of page locking on FPAjDBTT pages, in particular for
N = 3 and N = 4. For two nodes, affinity-based transaction routing could
achieve a situation where FPAjDBTT pages were mostly referenced by
transactions of one node. Consequently, FPAjDBTT lock conflicts between
different nodes were comparatively rare, and affected throughput to a lesser
degree. However, adding a third and fourth node actually resulted in a
decline of throughput compared to N = 2, because the hot spot pages were
then accessed concurrently on different nodes, causing a high lock contention,
which prevented the utilization of the added capacity. Typically, a majority of
transactions were blocked because of lock conflicts on a few FPAjDBTT
pages. Long waiting lines formed for these pages, resulting in long deactiva
tions until the requested locks could be granted. The waiting times were also
prolonged by message delays for assigning and releasing locks between
different nodes and exchanging the modified pages. In addition, the timeout

ACM Transactions on Database Systems, Vol. 18, No.2, June 1993.

370 E. Rahm

mechanism to resolve global deadlocks proved to be unsuitable in the case of
FPA/ DBTT locking, since the long waiting times caused many transactions
to be aborted unnecessarily. For four nodes, lock contention and transaction
aborts limited effective CPU utilization to only 31%, on average. The actual
CPU utilization differed significantly from node to node since different degrees
of lock contention were experienced.

As Figure 10 shows, even the use of cheap communication primitives was of
comparatively little help, since lock contention was the performance bottle
neck. This indicates that a low communication o>.'erhead, either because of a
small message frequency and/ or cheap communication primitives, enables
acceptable or good performance only if lock contention is sufficiently low.
Page-level locking on frequently modified pages, even if restricted to inter
node concurrency control, was not sufficient to keep lock contention at an
acceptable level for our workloads. Thus, special synchronization protocols on
these page types are required for DB-sharing, too. Realization of such proto
cols has to be tailored to the specific use of data, which may depend on the
underlying DBMS.

6. RELATED PERFORMANCE STUDIES FOR DB-SHARING

The simulation study in [6] also compares the performance of four concur
rency control schemes for DB-sharing. The protocols considered are a disk
controller locking, a simple CLM scheme (without a sole interest concept or
read optimization) and two basic primary copy protocols with synchronous or
asynchronous lock requests; optimistic protocols have not been studied. The
major technique to reduce communication overhead was hatching of mes
sages. For the primary copy schemes, the share of local lock requests was
provided as a parameter (mostly 10%).

The main weakness of the study is that coherency control has not been
investigated. Instead, a simple buffer purge scheme was assumed where no
pages are retained in the database buffers, but all pages are purged out at
EOT in order to avoid their invalidation. This scheme is even worse than
FORCE where only modified pages are written out of the buffer. In addition
to the write overhead and delays, the purge scheme also leads to a drastic
increase in the number of physical reads, and must therefore be considered as
unacceptable for real database systems. Simulations were driven by synthetic
workloads and showed the best performance for disk controller locking. This
was because there were almost no buffer hits in the simulated system, so that
locking could be combined with the disk accesses without extra overhead.
Similar throughput results as for disk controller locking were predicted for
the simple CLM scheme and asynchronous primary copy locking if they were
to apply high hatching degrees.

The performance of DB-sharing with a CLM and message hatching was
also compared to DB-partitioning systems. Despite the simple approaches for
concurrency control and buffer management (buffer purge), significantly
better throughput results were generally predicted for DB-sharing than for
DB-partitioning with a DB-cache approach for buffer management. This was

ACM TransactiOns on Database Systems. Vol. 18. No 2. June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 371

probably influenced by the workload model, which allowed only for small hit
ratios (s; 8%) and negligible lock contention. Also, apparently, no CPU
overhead was considered for I/0 operations, thus favoring the buffer purge
scheme. There was no mention of whether or not IjO delays for purging
(writing) modified pages out of the buffer (FORCE) were modeled for the
DB-sharing configurations. If these I/0 delays are ignored, the results for
DB-sharing are invalid.

A combination of analytical modeling and simulation was used in [86] to
investigate the performance of a pass-the-buck protocol (used in IMS Data
Sharing) and DB-sharing configurations using a central "lock engine" for
concurrency control. The study assumed a FORCE strategy for update propa
gation to disk and a broadcast invalidation scheme for coherency control. The
performance evaluation further assumed a completely homogeneous work
load, with all transactions and nodes experiencing the same amount of lock
contention and I/0 frequency. I/0 frequency was further assumed to be
independent of the number of sites. Database objects were not explicitly
modeled in the DB-sharing simulations, but the average lock conflict proba
bilities and waiting times were calculated analytically. The lock engine
scheme (assumed to perform concurrency control without communication
overhead) was found to allow for more nodes to be effectively coupled than
the pass-the-buck scheme. The authors conclude that lock contention is the
critical factor that determines the maximal achievable transaction rate.
Performance studies in [17] and [36] show that on-request invalidation
outperforms broadcast invalidation for coherency control, since it avoids extra
messages for detecting buffer invalidations.

In [31] the performance of a largely improved pass-the-buck scheme
was evaluated by means of empirical simulations. The original scheme was
enhanced by an integrated coherency control for NOFORCE. So-called reten
tion locks are used for all pages retained in the buffers after EOT in order to
avoid their invalidation. These locks also helped reduce the frequency of
global lock requests, similar to read and write authorizations in the CLM
scheme. As in the optimistic token ring protocol, studied in this paper, the
token (buck) holding time was a critical factor for the pass-the--buck scheme.
Short token holding times result in high communication overhead and CPU
contention, while longer token delays increase the waiting times for global
lock requests, and thus response times and lock contention.

We discuss additional performance studies on DB-sharing in [65].

7. CONCLUSIONS AND OUTLOOK

DB-sharing represents a locally distributed architecture for high-volume
transaction processing. In contrast to DB-partitioning systems, there is no
need to physically partition the database because all processing nodes can
directly access all (shared) disks. This property results in an increased
flexibility for dynamic load balancing and for dealing with variations in the
number of nodes. Since finding an acceptable database partitioning, and

ACM TransactiOns on Database Systems, Vol. 18, No.2. June 1993.

372 E. Rahm

adapting it to changing demands, is a major problem in "shared-nothing"
systems, administration is also simplified. Technical problems to be solved for
DB-sharing include concurrency control, coherency control, workload alloca
tion, logging, and recovery. Critical to the performance of a DB-sharing
system is the protocol used for concurrency and coherency control since these
functions mainly determine the amount of communication for transaction
processing. Both tasks should be solved in an integrated way in order to limit
the number of extra messages.

We presented a performance evaluation of four concurrency and coherency
control protocols for DB-sharing. Unlike other studies, we applied a trace
driven simulation approach and assumed a NOFORCE strategy for update
propagation to disk, together with buffer-to-buffer communication to exchange
modified pages directly between different nodes. Two optimistic protocols and
two locking schemes were examined for concurrency control, with the latter
relying on various improvements to reduce the communication frequency by
utilizing locality of reference. On-request invalidation or broadcast invalida
tion schemes were applied for coherency control.

The primary copy-locking (PCL) protocol generally showed the best perfor
mance (from the implemented protocols). Key factors for the good results
were a coordinated load and PCA distribution with affinity-based transaction
routing, the employment of a so-called read optimization, and an efficient
coherency control. Affinity-based transaction routing does not only help to
limit the communication overhead for concurrency control, but also reduces
the number of physical reads, buffer invalidations, page transfers, and global
lock conflicts. Read optimization limits the dependency of locking schemes on
the number of achievable node-specific localities of reference. Reduction
in the number of global lock requests is greater if locality of read references
is higher and the share of update accesses is smaller. The coherency control
scheme applied to PCL requires neither additional messages for the detection
of buffer invalidations (on-request invalidation) nor for the exchange of
modified pages between different nodes. Affinity-based transaction routing
and buffer-to-buffer communication contributed to improved I/0 behavior for
DB-sharing compared to the centralized case. Thus the response time impact
of communication delays and increased lock contention could at least partially
be compensated for.

The central lock manager (CLM) scheme required significantly more global
lock requests that PCL, and showed unacceptable performance results. This
was mainly due to the weaknesses of the sole interest concept, which helped
to save far fewer messages than the use of PCAs in the primary copy scheme.
Batching of messages reduces the communication overhead, but at the expense
of increased response times and lock contention. Also, the CLM is a poten
tial bottleneck for growing transaction rates and requires special recovery
provisions.

The optimistic schemes generally allowed for the lowest communication
overhead for concurrency control (validation), and were less dependent on the
amount of node-specific locality of reference than the locking schemes. How
ever, they achieved good performance results only for loads with a high share

ACM Transactions on Database Systems. Vol 18, No 2, .June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 373

of read-only transactions, because update transactions suffered from an
intolerably high number of restarts, particularly in the token-ring scheme.
Also, optimistic schemes cannot use on-request invalidation for coherency
control, but are bound to the more expensive broadcast invalidation alterna
tive. The best optimistic protocol was a central validation scheme that
employed a "preclaiming" for failed transactions, where it generally helps
that their second execution ends successfully.

DB-sharing with primary copy locking has similarities to DB-partitioning
systems. There is a partitioning of the database in both approaches which
determines, together with the load distribution, the frequency of internode
communication. However, PCL uses only logical partitioning, which can be
more easily and automatically adapted than can a physical data allocation,
say, on an hourly basis, when significant changes in the load profile are
observed. With DB-partitioning, a transaction is processed for the most part
where the referenced data resides, independent of which node a transaction is
assigned to. With DB-sharing and PCL, however, a transaction ean be largely
executed where it has been routed to, while only global lock requests have to
be processed by the responsible nodes. Thus, PCL preserves a significantly
higher potential for load balancing compared to DB-partioning. A third
advantage of PCL is that the same objects can be read and processed
concurrently at different sites. Read optimization, in many cases, allows a
local synchronization of read accesses for objects belonging to another node's
partition, and reduces dependencies on how far transactions can be routed to
the node controlling most of the data they need. This optimization promises a
better scalability for DB-sharing and PCL than with DB-partitioning, at least
for loads with a higher share of read accesses.

It is interesting to note that our primary copy scheme could also be applied
in a distributed main memory database system. In this case, each node would
hold its entire partition in main memory and would also cache pages from
remote partitions. As outlined in Section 3.2, page and lock requests could be
combined, as well as release of write locks and propagation of the modified
pages to the primary copy node. A coordinated load and PCA allocation
and read optimization for locally buffered pages of remote partitions would
reduce the, number of global lock requests and page transmissions in this
environment as well.

There are several areas in the analysis of DB-sharing systems that deserve
further investigation. First, as our simulation results have shown, there is a
need to support concurrency and coherency control below the page level for
some types of database objects, namely free space administration, index
structures, or application-specific high traffic objects. Proposals for dealing
with such objects [28, 47, 49, 63] still need to be implemented and evaluated
quantitatively. Second, adaptive load distribution strategies which take
the current load and system state into account for transaction assignment
should be investigated. Third, parallel query processing strategies tailored
for DB-sharing should be studied and compared to query processing in
DB-partitioning systems. Finally, the use of shared, and possibly nonvolatile,
semiconductor stores [64] needs further evaluation.

ACM Transactwns on Database Systems, Vol. 18, No.2, June 1993.

374 E. Rahm

ACKNOWLEDGMENTS

Many discussions with Theo Harder helped in the design and evaluation
of the algorithms. The detailed comments and recommendations by Gio
Wiederhold and the referees are also gratefully acknowledged. The simu
lation system was implemented by M. Luzcak, G. Petry, and P. Scheug with
the help of U. Lanzer and V. Bohn.

REFERENCES

1. AGARWAL, A., HENNESSY, J , AND HOROWITZ, M. Cache performance and operating system
and multiprogramming workloads ACM Trans. Comput Syst 6, 4 (1988), 393-431.

2. AIM 1 SRCF Functwns and Faczlztzes. Facom OS Tech. Manual 78SP4900E, FuJitsu, 1986
3. ANON ET AL. A measure of transaction processing power. Datamatwn (April 1985),

112-118.
4 BELLEW, M .. Hsu, M .. AND TAM, V. Update propagation in d1stnbuted memory hierarchies.

In Proceedzngs of the IEEE 6th Internatwnal Conference on Data Engzneerzng, (1990),
521-528.

5. BERNSTEIN, P. A, HADZILACOS, V, AND GOODMAN, N. Concurrency Control and Recovery zn
Database Systems. Add1son-Wesley, 1987.

6. BRIDE, A An analysis of three transactwn processmg architectures. In Proceedzngs of the
14th Internatwnal Conference on Very Large Data Bases (1988), 339-350.

7. BLACK, D. L., GUPTA, A, AND WEBER, W. CompetitiVe management of d1stnbuted shared
memory. In Proceedzngs of the IEEE Sprzng CompCon (1989), 184-190.

8. BoHN, V., HARDER, T., AND RAHM, E. Extended memory support for high performance
transaction systems. In Proceedzngs of the 6th (German) Conference on Measurement,
Modelling and Ez•aluation of Computer Systems (Munich, Sept. 1991), Informatik
Fachberichte. vol. 286, Springer-Verlag, 92-108.

9. BORAL, H., ET AL. Prototyping Bubba: A highly parallel database system. IEEE Trans
Knowl. Data Eng. 2, 1 (1990), 4-24.

10. BORR. A Transaction monitoring m Encompass: A non shared-memory multi-processor
approach. In Proceedings of the 7th Internatwnal Conference on Very Large Data Bases
(1981), 155-165.

11. BURKES, D. L., AND TREIBER, R. K Design approaches for real-time transaction processing
remote site recovery In Proceedzngs of the IEEE Sprzng CompCon (1990), 568-572.

12. CAREY, M. J., FRANKLIN, M. J., LIVNY, M., AND SHEKITA, E. J. Data caching tradeoffs m
chent-server DBMS architectures. In Proceedzngs of the ACM SIGMOD Conference (Boulder,
Colo., May 1991), 357-366.

13. CAREY, M. J., AND Lu, H. Load balancmg m a locally distributed database system. In
Proceedzngs of the ACM SIGMOD Conference (1986) 108-119.

14. CHENG, J. M., LOOSLEY, C R. SHIBAMIYA, A, AND WORTHINGTON, P S. IBM Database 2
performance: design, implementation, and tuning. IBM Syst. J. 23, 2 (1984), 189-210.

15. DAN, A, DIAS, D. M., AND Yu, P. S. The effect of skewed data access on buffer hits and data
contention in a data sharing environment. In Proceedings of the 16th Internatwnal Confer
ence on Very Large Data Bases (Brisbane, Aug. 1990), 419-431.

16. DEWITT, D. J., ET AL. The Gamma database machine project. IEEE Trans Knowl. Data
Eng. 2, 1 (1990), 44-62.

17. DIAS, D. M., IYER, B. R., ROBINSON, J. T., AND Yu, P. S. Integrated concurrency-coherency
controls for multisystem data sharmg. IEEE Trans. Softw. Eng. 15, 4 (1989), 437-448.

18. DuBOis, M., ScHEURICH, C., AND BRIGGS, F. A Synchronization, coherence, and event
ordering in multiprocessors. IEEE Computer 21, 2 (Feb. 1988), 9-21.

19. EFFELSBERG, W., AND HARDER, T. Principles of database buffer management. ACM Trans.
Database Syst. 9, 4 (1984), 560-595.

ACM Transactwns on Database Systems, VoL 18, No 2, June 1993.

Performance Evaluation of Concurrency and Coherency Control Protocols 375

20. ELHARDT, K., AND BAYER, R. A database cache for high performance and fast restart in
database systems. ACM Trans. Database Syst. 9, 4 (1984), 503-525.

21. FRANASZEK, P. A., ROBINSON, J. T., AND THOMASIAN, A. Access invariance and its use in high
contention environments. In Proceedings of the 6th IEEE International Conference on Data
Engzneering (1990), 47-55.

22. GARCIA-MOLINA, H., AND ABBOTT, R. K. Reliable distributed database management. Proc.
IEEE 75. 5 (1987), 601-620.

23. GOLDSTEIN, A. C. The design and implementation of a distributed file system. Digital Tech.
J. 5 (Sept. 1987), 45-55.

24. GRAY, J .. ET AL. One thousand transactions per second. In Proceedmgs of the IEEE Sprzng
CompCon (1985), 96-101.

25. GRAY, J., ED. The Benchmark Handbook for Database and Transaction Processzng Systems.
Morgan Kaufmann, 1991.

26. GRAY, J. N., LORIE, R. A. PUTZOLU, G. R., AND TRAIGER, I. Granularity oflocks and degrees of
consistency in a shared data base. In Proceedings of the IFIP Working Conference on
Modelling in Data Base Management Systems, North-Holland, 1976, ·365-394.

27. HARDER, T. Observations on optimistic concurrency control. Inf Syst. 9, 2 (1984), 111-120.
28. HARDER, T. Handling hot spot data in DB-sharing systems. Inf Syst. 13, 2 <(1988), 155-166.
29. HARDER, T., PEINL, P., AND REUTER, A. Performance analysis of synchronization and recov

ery schemes. IEEE Database Eng. 8, 2 (1985), 50-57.
30. HARDER, T., PETNL, P., AND REUTER, A. Optimistic concurrency control in a shared database

environment. Tech. Rep., Computer Science Dept., Univ. of Kaiserslautern, 1985.
31. HARDER, T., AND RAHM, E. Quantitative analysis of a synchronization protocol for DB

sharing. In Proceedings 3. GijNTG Conference on Measurement, Modelling and Evaluation
of Computer Systems, Informatik-Fachberichte, vol. 110, Springer-Verlag, HJ85, 186-201 (in
German).

32. HARDER, T., AND RAHM, E. Multiprocessor database systems for high performance transac
tion systems. Informationstechnik 28, 4 (1986), 214-225 (in German).

33. HARDER, T., AND REUTER, A. Principles of transaction-oriented database recovery. ACM
Comput. Suru. 15, 4 (1983), 287-317.

34. HARDER, T., ScH<)NING, H., AND S!KELER, A. Evaluation of hardware architectures for
parallel execution of complex database operations. In Proceedings of the 3rd Annual Parallel
Processzng Symposzum (1989), 564-578.

35. HELLAND, P., ET AL. Group commit timers and high volume transaction systems. In Pro
ceedmgs of the 2nd Internatzonal Workshop on High Performance Transaction Systems
(Asilomar, 1987). Also in Lecture Notes m Computer Science, uol. 359. Springer-Verlag,
1989, 301-328.

36. Hsu, Y.-P. Performance evaluation of data sharing transaction processing systems. Master's
Thesis, Dept. of Electrical and Computer Eng., Univ. of Mass. at Amherst, 1988.

37. IYER, B. R., Yu, P. S., AND DONATIELLO, L. Analysis of fault-tolerant multiprocessor architec
tures for lock engine design. Comput. Syst. Sci. Eng. 2, 2 (1987), 59-75.

38. JOSHI, A. M. Adaptive locking strategies in a multi-node data sharing Emvironment. In
Proceedings of the 17th International Conference on Very Large Data Bases (]Barcelona, Sept.
1991), 181-191.

39. JOSHI, A.M., AND RoDWELL, K. E. A relational database management system for production
applications. Dzgital Tech. J., 8 (Feb. 1989), 99-109.

40. KENT, C. A. Cache coherence in distributed systems. Res. Rep. 87/4, DEC Western Research
Lab., 1987.

41. KING. R. P., HALIM, N., GARCIA-MOLINA, H., AND POLYZOIS, C. A. Management of a remote
backup copy for disaster recovery. ACM Trans. Database Syst. 16, 2 (June 1991), 338-368.

42. KRONENBERG, N. P., LEVY, H. M., AND STRECKER, W. D. VAX clusters: A closely coupled
distributed system. ACM Trans. Comput. Syst. 4, 2 (1986), 130-146.

43. KuNG, H. T., AND ROBINSON, J. T. On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6, 2 (1981), 213-226.

ACM TransactiOns on Database Systems, Vol. 18, No. 2, June 1993.

376 E. Rahm

44. LI, K., AND HUDAK, P. Memory coherence in shared virtual memory systems. ACM Trans.
Comput. Syst 7, 4 (1989), 321-359.

45. LITTLE, J.D. A proof of the queuing formulate L ~ AW. Oper. Res. 9 (1961), 383-387.
46. LYON, J. Tandem's remote data facility. In Proceedzngs of the IEEE Spring CompCon

(1990), 562-567.
47 MoHAN, C., AND NARANG, I. Recovery and coherency-control protocols for fast intersystem

page transfer and fine-granulanty locking in a shared disks transaction environment. In
Proceedings of the 17th Internatwnal Conference on Very Large Data Bases (Barcelona, Sept
1991), 193-207.

48. MoHAN, C., NARANG, I., AND PALMER, J. A case study of problems in migrating to drstributed
computmg: data base recovery using multiple logs in the shared disks environment. IBM
Res. Rep. RJ 7343, San Jose, Calif., 1990.

49. MoHAN, C., NARANG, I., AND SILEN, S. Solutions to hot spot problems in a shared disks
transaction environment. In Proceedrngs of the 4th Internatzonal Workshop on H1gh Perfor
mance Transaction Systems (Asrlomar, 1991).

50. NECHES, P.M. The anatomy of a database computer-revisrted. In Proceedings of the IEEE
CompCon Spnng Conference (1986), 374-377.

51 NELSON, M. N., WELCH, B. B , AND OusTERHOUT, J. K. Caching in the Sprite network file
system. ACM Trans. Comput. Syst. 6, 1 (1988), 134-154.

52. NITZBERG, B., AND Lo, V. Distributed shared memory: a survey of rssues and algorithms.
IEEE Computer (Aug. 1991), 52-60.

53. Oracle for masswely parallel systems-technology oueruzew. Oracle Corp., part 50577-0490,
1990.

54. PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for redundant arrays of mexpensive
disks (RAID). In Proceedings of the ACM SIGMOD Conference (1988), 109-116.

55. PIRAHESH, H., ET AL. Parallelism in relational data base systems: Archrtectural issues and
desrgn approaches. In Proceedings of the 2nd Internatwnal Symposwm on Databases rn
Parallel and Dzstrzbuted Systems (Dublin, 1990).

56. QUENON, M., AND VoRIS, D. IMS VS data sharing gmdelmes. IBM Tech. Bull. G320-0590,
1987.

57. RAHM, E. Primary copy synchronization for DB-sharing. Inf Syst 11, 4 (1986), 275-286.
58. RAHM, E. Integrated solutions to concurrency control and buffer mvahdation in database

sharmg systems. In Proceedzngs of the 2nd IEEE International Conference on Computers and
Applications (1987), 410-417.

59. RAHM, E. Design of optimistic methods for concurrency control in database sharing systems.
In Proceedzngs of the 7th IEEE Internatzonal Conference on Distrzbuted Computing Systems
(1987), 154-161

60 RAHM, E Concurrency control in multiprocessor database systems-Concepts, realization
strategies and quantitative evaluation. Doctoral dissertation (in German), Informatik
Fachbenchte, vol. 186, Springer-Verlag, 1988.

61. RAHM, E., ET AL. Goal-oriented workload management in locally distributed transaction
systems. IBM Res. Rep. RC 14712, Yorktown Heights, N.Y., 1989.

62. RAHM, E. A framework for workload allocation m drstnbuted transaction systems. J. Syst.
Softw. 18, 3 (1992), 171-190.

63. RAHM, E Recovery concepts for data sharing systems Computer Science Dept., Univ. of
Kaiserslautern, Tech. Rep. 14/89, 1989. A shorter version of this paper appeared in
Proceedrngs of the 21st Internatzonal Symposwm on Fault-Tolerant Computrng (Montreal,
June 1991), IEEE Computer Society Press, 368-375.

64. RAHM, E. Use of global extended memory for distributed transaction processing. In Proceed
zngs of the 4th Internatwnal Workshop on High Performance Transactzon Systems (Asilomar,
1991).

65. RAHM, E. Concurrency and coherency control in database sharing systems. Computer
Science Dept., Univ. ofKaiserslautern, Tech. Rep. 3/91, 1991.

66. RENGARA.JAN, T. K., SPIRO, P. M., AND WRIGHT, W. A. High availability mechanisms of VAX
DBMS software. Digztal Tech. J. 8 (Feb. 1989), 88-98.

ACM Transactwns on Database Systems, Vol 18, No 2, June 1993

Performance Evaluation of Concurrency and Coherency Control Protocols 377

67. REUTER, A. Load control and load balancing in a shared database management system. In
Proceedings of the 2nd IEEE International Conference on Data Engineering (1H86), 188-197.

68. REUTER, A., AND SHOENS, K. Synchronization in a data sharing environment. IBM San Jose
Research Lab., Tech. Rep., 1984.

69. ROBINSON, J. T. A fast general-purpose hardware synchronization mechanism. In' Proceed
mgs of the ACM SIGMOD Conference (1985), 122-130.

70. SACCA, D., AND WIEDERHOLD, G. Database partitioning in a cluster of processors. ACM
Trans. Database Syst. 10, 1 (1985), 29-56.

71. SCRUTCHIN JR., T. W. TPF: Performance, capacity, availability. In Proceedings of the IEEE
Spring CompCon (1987), 158-160.

72. SEKINO, A., ET AL. The DSC-a new approach to multisystem data sharing. In Proceedings
of the National Computer Conference (1984), 59-68.

73. SHOENS, K., ET AL. The AMOEBA project. In Proceedings IEEE Spring CompCon (1985),
102-105.

7 4. SHOENS, K. Data sharing vs. partitioning for capacity and availability. IEEE Database Eng.
9, 1 (1986), 10-16.

75. SMITH, A. J. Disk cache-Miss ratio analysis and design considerations. ACM Trans.
Comput. Syst. 3, 3 (1985), 161-203.

76. SoN, S. H. Synchronization of replicated data in distributed systems. In{ Syst. 12, 2 (1987),
191-202.

77. STONEBRAKER, M. Concurrency control and consistency of multiple copies in distributed
INGRES. IEEE Trans. Softw. Eng. 5, 3 (1979), 188-194.

78. STONEBRAKER, M. The case for shared nothing. IEEE Database Eng. 9, 1 (1986), 4-9.
79. STRICKLAND, J.P., UHROWCZIK, P. P., AND WATTS, V. L. IMSjVS: An evolving system. IBM

Syst. J. 21, 4 (1982), 490-510.
80. The Tandem Database Group. NonStop SQL, a distributed, high-performance, high

availability implementation of SQL. In Proceedings of the 2nd Internatwnal Workshop on
High Performance Transaction Systems (Asilomar, 1987).

81. TPF2 General Informatwn. IBM Manual, GH20-7540, 1988.
82. TRAIGER, I. Trends in systems aspects of database management. In Proceedwgs of the 2nd

International Conference on Databases (ICOD-2), (1983), 1-20.
83. WANG, Y., AND RowE, L. A. Cache consistency and concurrency control in a clientjserver

DBMS architecture. In Proceedings ACM SIGMOD Conference (Boulder, Colo., May 1991),
367-376.

84. WEST, J. C., ISMAN, M. A., AND HANNAFORD, S. G. PERPOS fault-tolerant transaction
processing. In Proceedings 3rd IEEE Symposium on Reliability m Distributed Software and
Database Systems (1983), 189-194.

85. YEN, W. C., YEN, D. W. L., AND Fu, K. Data coherence problem in a multieache system.
IEEE Trans. Comput. 34, 1 (1985), 56-65.

86. Yu, P. S., ET AL. On coupling multi-systems through data sharing. Proc. IEEE 75, 5 (1987),
573-587.

Received June 1988; revised June 1990, December 1991, March 1992; accepted April 1992

ACM Transactions on Database Systems, Vol. 18, No 2, June 1993.

