
Analysis of Parallel Scan Processing
in Shared Disk Database Systems

Erhard Rahm
Thomas Stiihr

University of Leipzig, Institute of Computer Science
Augustusplatz 10-11, 04109 Leipzig, Germany

E-mail: {rahm I stoehr} @informatik.uni-leipzig.de

Abstract. Shared Disk database systems offer a high flexibility for parallel trans-
action and query processing. This is because each node can process any transac-
tion, query or subquery because it has access to the entire database. Compared to
Shared Nothing database systems, this is particularly advantageous for scan que-
ries for which the degree of intra-query parallelism as well as the scan processors
themselves can dynamically be chosen. On the other hand, there is the danger of
disk contention between subqueries, in particular for index scans. We present a
detailed simulation study to analyze the effectiveness of parallel scan processing
in Shared Disk database systems. In particular, we investigate the relationship be-
tween the degree of declustering and the degree of scan parallelism for relation
scans, clustered index scans, and non-clustered index scans. Furthermore, we
study the usefulness of disk caches and prefetching for limiting disk contention.
Finally, we show that disk contention in multi-user mode can be limited for
Shared Disk database systems by dynamically choosing the degree of scan paral-
lelism.

Keywords: Parallel Database Systems; Shared Disk; Query Processing; Disk
Contention; Dynamic Load Balancing; Performance Analysis

1 Introduction

Parallel database systems are the key to high performance transaction and database pro-
cessing [DG92, Va931. They utilize the capacity of multiple locally clustered process-
ing nodes interconnected by a high-speed network. Typically, fast and inexpensive
microprocessors are used as processors to achieve high cost-effectiveness compared to
mainframe-based configurations. Parallel database systems aim at providing both high
throughput for on-line transaction processing (OLTP) as well as short response times
for complex ad-hoc queries. This requires both inter- as well as intra-transaction paral-
lelism. Inter-transaction parallelism (multi-user mode) is required to achieve high
OLTP throughput and sufficient cost-effectiveness. Intra-transaction parallelism is a
prerequisite for reducing the response time of complex and data-intensive transactions
(queries).

There are three major architectures for parallel database systems: "Shared Every-
thing" (SE), "Shared Nothing" (SN) and "Shared Disk" (SD) [DG92, Va931. Research
has so far focussed on SE and SN, despite the fact that there is a growing number of
commercially available DBMS supporting the SD approach (Oracle, IMS, DB2/MVS,
etc.), although most of them are currently restricted to inter-transaction parallelism.
Presumably, Oracle's "Parallel Server" represents the best-known SD implementation
because it has achieved the highest transaction rates in TPC benchmarks. Furthermore,

486

it is available for a variety of platforms including a growing number of "cluster" archi-
tectures (VaxCluster, SPARCcluster, Sequent, Pyramid, Encore etc.) and massively
parallel systems like nCube. Oracle version 7.1 offers initial support for intra-query par-
allelism. The new DB2-based S/390 Parallel Query Server of IBM also provides intra-
query parallelism.

SE refers to the use of shared-memory multiprocessors (symmetric multiprocess-
ing) for database processing. Since it is limited to relatively few processors, SN and SD
are generally considered the most important approaches for parallel database systems
[Pi90, DG92]. Both architectures consist of multiple loosely coupled processing nodes
(distributed memory) connected by a high-speed network. The software architecture is
homogeneous in that each node runs an identical copy of the DBMS software. Through
cooperation between these DBMS instances, complete distribution transparency (single
system image) is achieved for database users and application programs. SN is based on
a physical partitioning of the database among nodes, while SD allows each DBMS in-
stance to access all disks and thus the entire database. The latter approach therefore re-
quires a global concurrency control protocol (introducing communication overhead and
delays) to achieve serializability. Furthermore, buffer coherency must be maintained
since database pages may be replicated in multiple DBMS buffers [Ra86, Yu87,
MN91]. On the other hand, SN requires communication for distributed query process-
ing, commit processing and global deadlock detection.

The differences between SN and SD with respect to the database allocation have far-
reaching consequences for parallel query processing [Ra93b]. This is particularly the
case for scan operations that operate on base relations 1. Scan is the simplest and most
common relational operator. It produces a row-and-column subset of a relation by ap-
plying a selection predicate and filtering away attributes not requested by the query. If
predicate evaluation cannot be supported by an index, a complete relation scan is nec-
essary where each tuple of the relation must be read and processed. An index scan ac-
cesses tuples via an index and restricts processing to a subset of the tuples; in the
extreme ease, no tuple or only one tuple needs to be accessed (e.g., exact-match query
on unique attribute).

In SN systems, a scan operation on relation R typically has to be processed by all
nodes to which a partition of R has been assigned 2. Hence, the degree of scan parallel-
ism and thus the associated communication overhead are already determined by the
largely static database allocation. Furthermore, there is no choice of which nodes should
process a scan operation. As a result, SN does not support dynamic load balancing for
scan and thus for most operations. SD, on the other hand, permits us to dynamically
choose the degree of scan parallelism as well as the scan processors since each proces-
sor can access the entire relation R. Of course, R must be declustered across multiple
disks to support I/O parallelism. In contrast to SN however, SD offers the flexibility to
choose a degree of processing parallelism different from the degree of I/O parallelism.

This flexibility of the SD architecture is already significant for parallel query pro-
cessing in single-user mode. This is because different scan operations on R have their
response time minimum for different degrees of parallelism. For instance, a selective
index scan accessing only one tuple is best processed on a single processor, while a re-
lation scan accessing all tuples may require 100 processors to provide sufficiently short

1. Operations on derived data, e.g. join, can be parallelized similarly in both architectures by dy-
namically redistributing the operations' input data among processors.

2. Selections on the partitioning attribute, used to define the relation's partitioning, may be restrict-
ed to a subset of the data processors.

487

response times. SN requires to statically choose the degree of declustering and thus the
degree of scan parallelism for an average load profile [Gh90]. If both scan queries of
our example are processed with equal probability, the relation would thus have to be
partitioned among 50 nodes resulting in sub-optimal performance for both query types
(enormous communication overhead for the index scan relative to the actual work; sub-
optimal degree of parallelism for the relation scan). SD, on the other hand, allows both
query types to be processed by the optimal number of nodes (1 for the index scan, 100
for the relation scan), provided the relation is declustered across 100 disks.

The increased flexibility for parallel scan processing of SD is even more valuable in
multi-user mode, in particular for mixed OLTP/query workloads [Ra93b]. So, OLTP
transactions can always be processed sequentially on a single processing node to mini-
mize the communication overhead and to support high transaction rates. For complex
queries, on the other hand, a parallel processing on multiple nodes can be performed to
achieve short response times. For these queries, we have the flexibility to base the de-
gree of scan parallelism not only on parameters like relation size or query type, but also
on the current system utilization. In particular, it may be advisable to choose a smaller
degree of scan parallelism under high load in order to limit the communication over-
head and the number of concurrent subqueries. Furthermore, complex queries can be
assigned to less loaded nodes to achieve dynamic load balancing. In addition, it may be
useful to assign OLTP transactions and complex queries to disjoint sets of nodes in or-
der to minimize CPU and memory contention between these workload types.

However, SD bears the potential problem of disk contention that may outweigh the
expected benefits discussed so far. Disk contention can already be introduced in single-
user mode if concurrent subqueries of the same query are accessing the same disks. This
problem can particularly be pronounced for parallel index scans because it may not be
possible to prevent that multiple subqueries access index and data pages On the same
disks. Hence, it is unclear to what degree it makes sense employing parallel index scans
for SD 3. The disk contention problem is aggravated in multi-user mode when multiple
independent queries/transactions are accessing the shared disks. Note however, that
disk contention in multi-user mode is not a SD-specific problem but is very difficult to
deal with for SN (and SE) as well.

To investigate the performance of parallel scan processing in more detail, we have
implemented a detailed simulation system of a parallel SD database system. This model
is used to study the relationship between the degree of declustering and the degree of
processing parallelism for scan processing. The analysis is made for the three major
types of scan queries: relation scan (table scan), clustered index scan, and non-clustered
index scan. Furthermore, we study the usefulness of disk caches and prefetching for
limiting disk contention. Finally, we show the usefulness to control disk contention in
multi-user mode by dynamically choosing the degree of scan parallelism according to
the current disk utilization (which is not feasible for SN). While our study focuses on
SD, many of our findings equally apply to SE systems because they offer a similar flex-
ibility for dynamic scheduling and load balancing.

Fig. 1 shows the SD architecture assumed in this paper. There are n processing
nodes each consisting of m CPUs and local main memory. The processing nodes are
loosely coupled, i.e., they communicate by message passing across a network. The
nodes are assumed to be locally "clustered", i.e., they reside in one machine room. Fur-
thermore, each node can access all disks as required for Shared Disk systems. All mes-
sages including I/O requests and data pages are exchanged across a high-speed and

3. Note that Oracle 7.1 only supports parallel relation scans.

488

scalable interconnection network (e.g., hypercube). The main memory of each disk con-
troller is used as a shared disk cache (DC). Each processing node runs private copies of
the SD DBMS, operating system, and application software. Of course, the DBMSs'
support the extensions needed for SD, in particular a global concurrency and coherency
control protocol. Furthermore, parallel processing of scan queries is supported.

I I
high-speed interconnection network

s h a r e d d i s k ~
controllers �9 �9 �9

shared database
and log disks

Fig. 1: Shared Disk architecture

:

:::
. - .- . . . - .- . . . - . . . - .

I
I

The remainder of this paper is organized as follows. The next section briefly dis-
cusses different alternatives for data allocation and parallel scan processing for SD.
Section 3 provides an overview of the simulation model and the implemented approach-
es for concurrency/coherency conlrol. In Section 4 we present and analyze simulation
experiments for various system and workload configurations to study the impact of disk
contention for the different scan query types. In particular, we analyze single-user as
well as multi-user experiments with homogeneous and heterogeneous (query/OLTP)
workloads. The major findings of this investigation are summarized in Section 5.

2 P a r a l l e l S c a n P r o c e s s i n g

To support parallel query processing, we assume that relations and index structures (B+
trees) can be declustered across several disks according to a physical or logical parti-
tioning strategy. Physical partitioning operates on physical distribution granules like
blocks or block sets and can be implemented outside the DBMS, e.g., within a disk ar-
ray [PGK88]. Such an approach supports I/O parallelism for large read operations, but
can cause performance problems in combination with processing parallelism. This is
because if the DBMS has no information on the physical data allocation (declustering)
it may not be possible to split a query into parallel subqueries so that these subqueries
do not access the same disks. Logical partitioning, on the other hand, uses logical data-
base objects like tuples as distribution granules and is typically defined by a partitioning
function (e.g., range or hash) on a partitioning attribute (e.g., primary key). DB2 permits
a logical range partitioning of relations across several disks, while Oracle supports
physical declustering and hash partitioning. Typically, the database allocation in SN
systems is also based on a logical range or hash partitioning.

To make physical declustering useful for parallel query processing in SD systems
we assume that the DBMS at least knows the degree of declustering D and the disks
holding partitions for a particular relation. These prerequisites make it easy to support
parallel processing of relation scans without disk contention between subqueries. For a
degree of declustering D this is possible for different degrees of parallelism P by choos-
ing P such that P * k = D,
where k is the number of disks to be processed per subquery. For instance, if we have

489

D=I00 we may process a relation scan with P = 1, 2, 4, 5, 10, 20, 25, 50 or 100 sub-
queries without disk contention between subqueries. Furthermore, each subquery pro-
cesses the same number of disks (k) so that data skew can largely be avoided for equally
sized partitions. CPU contention between subqueries is also avoided if each subquery
is assigned to a different processor which is feasible as long as P does not exceed the
number of processors n*m. The degree of declustering D should at least be high enough
to support sufficiently short response time for a relation scan in single-user mode. As
we will see, multi-user mode may require to have higher degrees of declustering, or de-
grees of scan parallelism P smaller than D,

A physical declustering of index structures is useful to support high I/O rates and
thus inter-query/transaction parallelism (multi-user mode) [SL91]. SD can use a declus-
tered index for sequentially processed index scans without problems. Sequential index
scans incur minimal communication overhead and are therefore optimal for very selec-
tive queries (e.g., exact match queries on unique attribute). However, there may be in-
dex scans (e.g., for range queries) that need intra-query parallelism to achieve
sufficiently short response times. With a physical declustering, this entails the danger
that subqueries may have to access the same disks thereby causing disk contention.
Concurrent access to higher-level index pages (root page and second-level pages) is ex-
pected to be less problematic since these pages can be cached in main memory or the
disk caches. However, disk contention can arise for access to different index leaf pages
and data pages stored on the same disk. The impact of disk contention for data pages is
also expected to depend on whether a clustered or non-clustered index is being used.
Our performance analysis will study these aspects in more detail.

Logicalpartitioning has the advantage that the DBMS knows the value distribution
on disk for the partitioning attribute A. This is useful to restrict scan queries on A to a
subset of the disks even without using an index. Furthermore, queries on A can easily
be parallelized according to the partitioning function without introducing disk conten-
tion. For example, assume that the following range partitioning on A is used for allocat-
ing a relation to 100 disks:

A: (1 - 10,000; 10,001 - 20,000; 20,001 - 30,000;...; 990,001 - 1,000,000).
A range query requesting tuples with A values between 70,001 and 220,000 can be pro-
cessed by 15 (5, 3, 1) parallel subqueries each accessing 1 (3, 5, 15) of the 100 disks. If
there is an index for A, the index scan can similarly be parallelized into 1-15 subqueries.
To avoid contention for the index, it could also be partitioned into D subindices simi-
larly as in SN systems 4.
Scan queries on different attributes than A cannot take advantage of the logical parti-
tioning. They are similarly processed than with a physical declustering. Hence, parallel
index scans for such queries may also suffer from disk contention between subqueries.
A general disadvantage of logical partitioning is that it is difficult to define for the da-
tabase administrator (DBA), in particular for range partitioning. A physical decluster-
ing, on the other hand, may only require specification of the degree of declustering D.

4. Note however that the increased flexibility of the SD architecture regarding scan parallelism and
selection of scan processors is preserved.

490

3 S i m u l a t i o n M o d e l

For the present study, we have implemented a comprehensive simulation model of a
Shared Disk database architecture. The gross structure of this simulation system is de-
picted in Fig. 2. In the following, we briefly describe the used database and workload
models as well as the processing model. Furthermore, we outline the implemented strat-
egy for concurrency/coherency control. The simulation system is highly parameterized.
In Section 4.1, we will provide an overview of the major parameters and their settings
used in this study.

I
I.o o !

I

Fig. 2: Structure of the simulation system

Database and Workload Model
The database is modeled as a set of partitions. A partition may be used to represent a
relation, a relation fragment or an index structure. It consists of a number of database
pages which in turn consist of a specific number of objects (tuples, index entries). The
number of objects per page is determined by a blocking factor which can be specified
on a per-partition basis. Each relation can have associated clustered or non-clustered
B+-tree indices. Relations and indices can be physically declustered at the page level
across an arbitrary number of disks. Declustering of relations is straight-forward, If B
is the number of pages per disk (B = relation size in pages / declustering factor D), we
simply assign the first B pages to the first disk, pages B+I to 2B to the second disk and
so on. Indices are not partitioned as in SN systems, but have the same structure as in
centralized DBMS (only one root page, etc.). Each index level is separately declustered
across D disks similarly to relation declustering (the root page is on a single disk, of
course).

We support heterogeneous (multi-class) workloads consisting of several query and
transaction types. Queries correspond to transactions with a single database operation
(e.g., SQL statemen0. We support the following scan query types: relation scan, clus-
tered index scan and non-clustered index scan. We also support the debit-credit bench-
mark workload (TPC-B) and the use of real-life database traces. The simulation system
is an open queuing model and allows definition of an individual arrival rate for each
transaction and query type.

Workload allocation takes place at two levels. First, each incoming transaction or
query is assigned to one processing node acting as the coordinator for the transaction/
query. For this placement we support different strategies, in particular random alloca-
tion. Furthermore, we can allocate transaction and query types to a subset of the pro-
cessing nodes allowing us to assign OLTP transactions and complex queries to disjoint

491

sets of nodes. The second form of workload allocation deals with the assignment of sub-
operations to processors for parallel query processing. These assignment can be made
statically (e.g. random) or dynamically based on the current processor utilization. The
number of subqueries (degree of intra-query parallelism) can also be chosen statically
or dynamically, e.g., based on the current disk utilization. Details are provided in the
next section.

Processing Model
Each processing node of the Shared Disk system is represented by a transaction and
query manager, CPU servers, a communication manager, a buffer manager, and a con-
currency/coherency control component (Fig. 2). The transaction and query manager
controls the execution of transactions and queries. The maximal number of concurrent
transactions and (sub)queries (inter-gansaction parallelism) per node is controlled by a
multiprogmmming level. Newly arriving transactions and queries must wait in an input
queue until they can be served when this maximal degree of inter-transaction parallel-
ism is already reached. Parallel query processing entails starting all subqueries, execut-
ing the individual subqueries and merging their results. Locks may be requested either
by the coordinator before starting the subqueries or by the individual subqueries. Sim-
ilarly, all locks may be released by the coordinator or by the individual subqueries (see
below).

The number of CPUs per node and their capacity (in MIPS) are provided as simula-
tion parameters. The average number of instructions per request can be defined sepa-
rately for every request type. To accurately model the cost of transaction/query
processing, CPU service is requested for all major steps, in particular for transaction ini-
tialization (BOT), object accesses in main memory, I/O overhead, communication over-
head, and commit processing. The communication network models transmission of
"long" messages (page transfers) and "short" messages (e.g., global lock request).
Query result sets are disassembled into the required number of messages (long or short).

The database buffer in main memory is managed according to a LRU replacement
strategy and a no-force update strategy with asynchronous disk writes. Log information
is written on separate log disks (1 page per update transaction). The buffer manager
closely cooperates with the concurrency control component to implement coherency
control (see below).

Database partitions (relations, indices) can be declustered across several disks as
discussed above. Disks and disk controllers have explicitly been modelled as servers to
capture potential I/O bottlenecks. Furthermore, disk controllers can have a LRU disk
cache. The disk controllers also provide a prefetching mechanism to support sequential
access patterns. If prefetching is selected, a disk cache miss causes multiple succeeding
pages to be read from disk and allocated into the disk cache. Sequentially reading mul-
tiple pages is only slightly slower than reading a single page, but avoids the disk access-
es for the prefetched pages when they are referenced later on. The number of pages to
be read per prefetch I/O is specified by a simulation parameter and can be chosen per
query type.

Concurrency and Coherency Control
For concurrency and coherency control, we have implemented a primary copy locking
scheme [Ra86] because this approach has performed best in a comprehensive, trace-
driven performance study of several concurrency/coherency control schemes [Ra93a].
This approach partitions the global lock authority (GLA) for the database among pro-

492

cessing nodes so that each node handles all global lock requests for one database parti-
tion. Hence, communication is only required for those lock requests belonging to the
partition of a remote node. With this scheme, a large portion of the locks can locally be
processed by assigning a transaction to the node holding the GLA for most of the ob-
jects to be referenced. For OLTP transactions, such an affinity-based routing can be im-
plemented by a table indicating for each transaction type the preferred nodes.
Furthermore, the lock overhead can be spread among all nodes in contrast to a central-
ized locking scheme.

For page-level locking, coherency control can efficiently be combined with the
locking protocol by extending the global lock tables with information (e.g., sequence
numbers) to detect invalid page copies. We have implemented such an on-request in-
validation approach since it allows us to detect obsolete pages during lock request pro-
cessing without extra communication. To propagate updates in the system, we assume
that each node acts as the "owner" for the database partition for which it holds the GLA.
The owner is responsible of providing other nodes with the most recent version of pages
of its partition and for eventually writing updated pages to disk. With this approach, an
updated page is transferred to the owner at transaction commit if it has been modified
at another node. This page transfer can be combined with the message needed for re-
leasing the write lock. Similarly, page transfers from the owner to another node are
combined with the message to grant a lock [Ra86, Ra91].

To support query processing, we have implemented a hierarchical version of this
protocol with relation- and page-level lockingL Relation-level locking is used for rela-
tion scans and larger index scans because page-level locking could cause an extreme
overhead in these cases. Page-level locking is applied for selective queries accessing
only few pages. Relation locks are acquired by the coordinator before the subqueries
are started and released after the end of all subqueries. In the lock grant message for a
relation lock, the global lock manager indicates all pages of the relation for which an
invalidation is feasible at the nodes where the query is to be executed. The respective
pages are immediately removed from the buffers and requested from the owner during
the execution of the subqueries.

4 Performance Analysis
Our experiments concentrate on the impact of disk contention on the performance of
parallel scan processing in SD database systems. For this purpose, we study the rela-
tionship between the degree of declustering D and the degree of parallelism P for both
single-user and multi-user mode as well as for relation scans, clustered and non-clus-
tered index scans. We additionally investigate in how far prefetching is useful for par-
allel query processing to improve performance. Furthermore, we show that the SD
architecture allows us to control disk contention in multi-user mode by a dynamic query
scheduling approach that determines the degree of scan parallelism based on the current
system state.

In the next subsection, we provide an overview of the parameter settings used in the
experiments. Afterwards, we analyze the performance of parallel relation scans (4.2)
and index scans (4.3) for different values of D and P in single- and multi-user mode.
Finally, we describe experiments for homogeneous and heterogeneous workloads

5. Since the GLA for a relation can be partitioned among several nodes in our implementation, we
in fact support the additional lock granularity of a relation fragment, consisfinz of all tuoles/oales
of a rela66n for which one node holds the GLA. To simplify the description, ~,e assum~ her~ that
the GLA for each relation (and for each index) is assigned to only one node.

493

showing the need for dynamically determining the degree of parallelism P based on the
current disk contention.

4.1 Simulation Parameter Settings
Fig. 3 shows the major database, query and configuration parameters with their settings.
Most parameters are self-explanatory, some will be discussed when presenting the sim-
ulation results. The scan queries used in our experiments access a 100 MB relation with
125.000 tuples. In the case of index scans, only 1% of the tuples is accessed (scan se-
lectivity). Relation scans also generate a result set of 1250 tuples, but must access the
entire relation. The number of processing nodes is varied between 1 and 32.

Parameter Settings

number of nodes (n) 1 - 32 communication
#processors per node (m) 1 bandwidth
CPU speed per processor 30 MIPS

Parameter Settings

relation properties:
avg. no. of instructions: #tuples
BOT 25000 tuple size
EOT 25000 blocking factor
I/O initialization 3000 index type
scan object reference 1000 storage allocation
send shortmessage (128 B) 1000 degree ofdeclustering D
receive short message 1000
send long message (page) 5000
receive long message 5000 scan queries:

scan type
buffer manager:
page size 8 KB
buffer size per node 500 pages I

disk devices:
controller service time 1 ms
prefetch pages 8 pages
avg. disk access time

1 page 11 ms
prefetching 8 pages 18 ms

cache size (#pages) 1000

scan selectivity
no. of result tuples
size of result tuples
arrival rate

query placement

scan parallelism P

10 MB/s

(100 MB)
125.000
800B
10 (data), 200 (index)
clustered / non-cL B§
disk
varied

relation scan /
clustered index scan /
non-clustered index scan
1.0 %
1250
800B
single-user, multi-user
(varied)
random (uniformly over
all nodes)
varied

Fig. 3: System configuration, database and query profile.

The duration of an I/O operation is composed of the controller service time, disk ac-
cess time and transmission time. For sequential I/Os (e.g. relation scans, clustered index
scans), prefetching can be chosen resulting in an average access time of 18 ms for 8 pag-
es rather than 8" 11 ms if the pages were read one by one. For message and page trans-
fers we assume a communication bandwidth of 10 MB/s and that no bottlenecks occur
in the network. This assumption is justified by the comparatively small bandwidth re-
quirements of our load as well as by the fact that we focus on disk contention in this
study.

To capture the behavior of OLTP-style transactions, we provide a workload similar
to the debit-credit benchmark. Each OLTP transaction randomly accesses four data pag-
es from the same disks accessed by the scan queries.

494

4.2 Parallel Processing of Relation Scan
We first study the performance of relation scans in single-user mode for the cases with-
out prefetching (Fig. 4a) and with prefetching of pages into the disk cache (Fig. 4b). We
vary the number of nodes n from 1 to 32 and use one subquery per node (i.e., P---n) since
we assumed a single processor per node. Three cases are considered for declustering the
input relation. A degree of declustering D=-I refers to the case where the entire relation
is stored on a single disk, while D=n assumes a declustering of the relation across n (=P)
disks. D=-n/2 assumes two processors per disk for n > 2 (1 disk for n =1). For compari-
son purposes, we have also shown in Fig. 4b the results where the entire relation fits
into the disk cache (or is kept in a solid-state disk).

The results for the cache-resident case show that response times are indeed domi-
nated by disk access times. This is particularly true without prefetching (Fig. 4a) where
response times are up to a factor 5 (for D=I) higher than with prefetching. The results
show that storing the entire relation on a single disk (D=I) makes parallel scan process-
ing useless since disk utilization is already 85% for sequential scan processing (P =1).
Increasing the number of subqueries improves the CPU-related response time portion,
but completely overloads the disk preventing any significant response time improve-
ment for P>2. On the other hand, having one disk per subquery (D=n) avoids any disk
contention for relation scan in single-user mode allowing optimal response time speed-
up.

A declustering across n/2 disks is significantly better than D=-I, but still suffers from
disk contention in particular for smaller degrees of parallelism (P <__ 8).

150

100

50

.• : 500

X [~D=121 4 0 0 ~ ,D=n,P refetchin

r L im D = 4n, prefetchingl 201 200 ~ ~ c h e - r e s i d e n t l [100

1~0 2'0 0 I1~10-- ~- ~)'" "" "';'0 ~
nodes n (= P)

a) single-user, no prefetching b) single-user, prefetching c) multi-user

Fig. 4: Performance of relation scan

Prefetching (Fig. 4b) is very effective for both sequential and parallel processing of
relation scans. Not only response times are significantly reduced, but also disk utiliza-
tion (55% for P=I). This lowers disk contention and supports smaller degrees of declus-
tering. Even for D=I, response times can be improved for up to 4 nodes and a speedup
of 1.7 is achieved. Response times for D=n/2 are almost as good as for D=-n thus per-
mitting the use of fewer disks.

For the multi-user experiment (Fig. 4c) we study a homogeneous workload of rela-
tion scans on the same relation. The arrival rate is increased proportionally to the num-
ber of nodes because we want to support both short response times as well as linear
throughput increase. We used an arrival rate of 0.07 queries per second (QPS) per node

495

resulting in a CPU utilization of about 30%. We found that this arrival rate cannot be
processed if we have fewer disks than processors (D < n) due to disk over-utilization.
The response time results in Fig. 4c refer to the cases of D=n and D----4n and with or
without prefetching. For comparison, we again show the results for a cache-resident re-
lation (no disk I/O).

We observe that for D=-n, response times are several times higher than in single-user
mode (Fig. 4) due to disk waits. Parallel scan processing only allows for very modest
response time improvements for 2-4 processors (speedup of 1.25). More nodes lead to
significantly aggravated disk contention because we increase both the degree of inter-
query (arrival rate) and the degree of intra-query parallelism linearly with n. As a result,
the load can no longer be processed for more than 8 nodes and D=n. As Fig. 4c shows
the disk bottleneck is largely removed for our arrival rate if we decluster the relation
across 4 times as many disks as there are processors (D=4n). While prefetching cannot
prevent the disk bottleneck for D=n and more than 8 nodes, it allows for substantially
improved response times (factor 5). Furthermore, for up to 4 processors its response
times for D=n are better than without prefetching and the four-fold number of disks! For
D--4n, prefetching allows us to approach the optimal response times of the cache-resi-
dent case. These results demonstrate that multi-user mode requires substantially higher
degrees of declustering than single-user mode to keep response limes acceptable and to
achieve linear throughput increase. Furthermore, prefetching is even more valuable in
multi-user mode to keep disk contention low and to limit the number of disks.

4.3 Parallel Processing of Index Scans
We now focus on the performance of parallel index scans in single- and multi-user
mode. For our relation (125,000 tuples) we use a 3-level B + tree with 625 leaf pages. A
range query with scan selectivity of 1% thus requires access to 2 higher-level index pag-
es and 7 leaf pages. The number of additional accesses to data pages for the 1250 result
tuples depends on whether a clustered or non-clustered index is used. For the clustered
index scan, the tuples are stored in 125 consecutive data pages while up to 1250 differ-
ent data pages may have to be accessed for the non-clustered index scan. For parallel
index scan processing, we assume that the range condition on the index attribute can be
decomposed into P smaller range conditions so that each subquery has to access the
same number of tuples.

We In'st analyze the performance of clustered index scans (Fig. 5). In this case, we
always use prefetching for data pages. The number of nodes n and the degree of paral-
lelism are again varied from 1 to 32. In single-user mode, we study the following de-
grees of declustering: D=I, D=n/2 and D=n. In multi-user mode, we consider different
arrival rates for a homogeneous load of clustered index scans only. Furthermore, the
number of disks is up to 8 times higher than the number of processors. The index is al-
ways declustered across the same disks than the relation's data pages.

Let 's In'st look at the single-user response times (Fig. 5a). Sequentially processing
the clustered index scan achieves an average response time roughly 100-times better as
for the relation scan with prefetching (due to the scan selectivity of 1%). However in
contrast to the relation scan (Fig. 4b), intra-query parallelism is little useful for the clus-
tered index scan not only for D=I, but also for D=-n/2 and even for D=n. This is because
in most cases the relevant index and data pages reside also on only one disk due to the
clustering according to the index attribute (e.g., for D=-32 we have about 390 data pages
per disk compared to 125 relevant data pages). The small improvement of D=n/2 over
D=I comes from the fact that the relevant pages for some queries may be on two instead

496

0.5 1.0 t
F,

0.4

0.3
0.5

0.2

0.1 ~ #
, nodes n (= P)

0 1 1'0 20 3'0 0 1 1'0 ~0 30
a) Single-user mode b) Mufti-user mode

Fig. 5: Performance of clustered index scan

of one disk (the probability of this case increases with D). D = n offers a small improve-
ment for n > 16 since the data of multiple disks needs to be processed in this range. Still,
compared to sequential processing only a speedup of 2 is achieved which is clearly not
cost-effective.

Multi-user mode (Fig. 5b) leads to increased disk contention so that only modest ar-
rival rates are attained if intra-query parallelism is used. For instance, an arrival rate of
2 QPS per node cannot be sustained for more than a few nodes even if we increase the
number of disks proportionally with n (e.g., D=n or D=4n). This shows that selective
clustered index scans should be processed sequentially to support high throughput. A
small degree of intra-query parallelism may be useful if the data of multiple disks needs
to be processed.

For non-clustered index scans prefetching is not employed since the result tuples
may be spread over many disks. In single user-mode (Fig. 6a), the sequential response
time for non-clustered index scan is about a factor 10 better than for the relation scan
without prefetching (Fig. 4a) since we have to access about 10% of the data pages. In
contrast to clustered index scans, parallel processing of non-clustered index scan is rath-
er effective if the relation is declustered across at least n/2 disks (speedup of 15 for
P=32). This is because accesses to the data pages are spread across all disks so that
much smaller disk contention arises. However, in contrast to parallel relation scan pro-
cessing disk contention cannot completely be eliminated even for D=-n because of index
accesses (not all leaf index pages could be cached). Furthermore, it cannot be excluded
that subqueries have to access data pages on the same disks although the probability of
this event becomes smaller with higher degrees of declustering. For these reasons, a de-
clustering factor of 4n provides slightly better response times than D=n in single-user
mode.
Note however, that a sequentially processed clustered index scan (Fig. 5a) still offers
better response times than a 32-way parallel non-clustered index scan. On the other
hand, the non-clustered index scan remains always better than a relation scan with
prefetching (Fig. 4b) although the differences between the two approaches become
smaller for larger degrees of parallelism.

The multi-user results (Fig. 6b) illustrate that the high I/O requirements of non-clus-
tered index scans allow for significantly lower throughput than clustered index scans.
While we could support 0.6 QPS for up to 32 nodes and D=8n without problems for
clustered index scans (Fig. 5b), this arrival rate causes significant disk contention for
non-clustered index scans and cannot be supported for more than 8 nodes. Put differ-

497

15

10

5

80

40

C
, i |

0 1 10 20 30 0 10 20

a) Single-user mode b) Multi-user mode

1
0.3 QPS/node, D=4n
0.6 QPS/node, D=8n
0.3 QPS/node, D=-Sn
single-user, D=4~

t
30 # nodes n (= P)

Fig. 6: Pe r fo rmance of non-c lus t e red index scan

ently, non-clustered index scans require a much higher degree of declustering to meet
a certain throughput. Similarly as for relation scans (Fig. 4c), in multi-user mode the
effectiveness of intra-query parallelism is much smaller than in single-user mode. In-
creasing the degree of intra-query parallelism while increasing the workload propor-
tionally with n, is only effective for comparatively low disk utilization, i.e., for low
arrival rates or few processors.

4.4 The Need for Dynamic Query Scheduling
The experiments discussed so far always used the maximal degree of intra-query paral-
lelism P=n. In combination with inter-query parallelism this caused a high level of disk
contention for a larger number of processors even when the number of disks is increased
proportionally to n. We now study the impact of the degree of parallelism P for different
arrival rates and a fixed number of nodes and disks. This experiment is performed for
relation scans using prefetching and a system of 16 nodes and 64 disks.

Fig. 7:

50

30

.5 QPS

~ 1.0QPS

~ . - - . . _ _ _ . _ . ~ l e - u s e r

1 2 4 8 16
degree of parallelism P

Degree of parallelism vs. arrival rate (n=16, D=64)

Fig. 7 shows that for sequential processing (P=I) multi-user response times are only
slightly higher than in single-user mode, but that the effectiveness of intra-query paral-
lelism decreases with growing arrival rates. In single-user mode response times contin-
uously improve with increasing degrees of parallelism and reach their minimum for
P=16. For an arrival rate of 1 QPS and 1.5 QPS, on the other hand, the response time
minimum is achieved for P=8 and P=4, respectively. Further increasing the degree of
parallelism causes a response time degradation, in particular for the higher arrival rate

498

1.5 QPS. These results show that the optimal degree of scan parallelism depends on the
current system state, in particular the level of disk contention. Under low disk conten-
tion (single-user mode or low arrival rates), intra-query parallelism is most effective
and achieves good speedup values even for higher degrees of scan parallelism, e.g.,
P=n. However, the higher the disks are utilized due to inter-query parallelism the lower
the optimal degree of intra-query parallelism becomes. Hence, there is a need for dy-
namically determining the degree of scan parallelism according to the current system
and disk utilization. Note that such a dynamic query scheduling approach is feasible for
Shared Disk, but not for Shared Nothing. Hence, Shared Disk is better able to limit disk
contention in multi-user mode by reducing the degree of intra-query parallelism accord-
ingly. However, we found that disk utilization must be rather high (> 50%) before vary-
ing the degree of scan parallelism has a significant impact on performance.

In our final experiment, we studied a heterogeneous workload consisting of relation
scans and OLTP transactions. This experiment is based on the same configuration than
before (n--16, D=64) but introduces disk contention between OLTP transactions and re-
lation scans. Each OLTP transaction randomly accesses four data pages from the D
disks. A fixed OLTP arrival rate was chosen such that it causes an average disk utiliza-
tion of about 25%. In addition to this base load, we process relation scans with arrival
rates of 0.5 QPS and 1 QPS. The resulting response times for different degrees of par-
allelism for the relation scans are shown in Fig, 8. For the queries (left diagram), we
observe a similar response lime behavior than for the homogeneous workload. In par-
ticular, for higher query arrival rate (disk contention) only a limited degree of scan par-
allelism proves useful. While P=8 achieved the best response lime for 1 QPS and
without OLTP load, the optimum is now achieved for P=4. This underlines that the de-
gree of scan parallelism should be chosen according to the current disk utilization, irre-
spective of whether disk contention is due to concurrent OLTP transactions or other
queries.

OLTP response limes (right diagram of Fig. 8) are very sensitive to the number of
concurrent scan queries as well as the degree of inlra-query parallelism. While a query
arrival rate of 0.5 QPS did not cause any significant response time degradations for

50

"3

o 30

. I . l i l

l 4 8 16

. degree of parallelism P

0.5

0.4

0.3 [
~ .0.2

O 0.1

0

- = o.sQvs
I 4 8 16

degree of parallelism P (for relation scans)

Fig. 8: Response times for mixed query/OLTP workload

OLTP, this was no longer true for 1 QPS. In this case, OLTP response times deteriorate
proportionally to the degree of scan parallelism due to increased disk contention. This
shows that limiting the degree of intra-query parallelism is not only necessary for ob-

499

raining good throughput, but also for limiting the performance penalty for OLTP trans-
actions that have to acee~ the same disks. Furthermore, keeping OLTP response times
acceptably small may require a lower degree of scan parallelism than the one minimiz-
ing query response lime.

5 Conc lu s ions

We have presented a performance analysis of parallel scan processing in Shared Disk
(SD) database systems. In contrast to Shared Nothing (SN), SD offers a high flexibility
for scan processing because the number of subqueries is not predetermined by the de-
gree of declustering (D) but can be chosen with respect to the query characteristics (re-
lation scan, clustered index scan of non-clustered index scan, selectivity, etc.) as well
as the current load situation (disk utilization, CPU utilization, etc.). Furthermore, the
scan processors themselves can be selected dynamically to achieve load balancing.

However, even in single-user mode the effectiveness of intra-qnery parallelism can
be reduced by disk contention between subqueries. We found that this problem prima-
rily exists for clustered index scans where the relevant index and data pages typically
reside on a single disk. Hence, clustered index scans are best processed sequentially un-
less the data of multiple disks needs to be accessed. In this case, the number of disks to
be accessed determines the maximal degree of parallelism. On the other hand, parallel
processing of relation scans permits optimal speedup in single-user mode by assigning
the subqueries to disjoint sets of disks. This is easily feasible by choosing the degree of
parallelism P such that P = k*D. Parallel processing of non-clustered index scans is also
quite effective if the relation is declustered across a sufficiently large number of disks
(e.g., D=-n). Disk contention on the index cannot generally be avoided but is typically
less significant for a larger number of data pages to be accessed 6. A general observation
is that physical declustering of relations and indices could effectively be used for par-
allel query processing indicating that SD database systems can make good use of disk
arrays.

Multi-user mode inevitably leads to increased disk contention and therefore requires
higher degrees of declustering if an effective intra-query parallelism is to be supported.
Prefetching was found to be very effective for relation scans not only to improve re-
sponse times, but also to reduce disk contention and to support smaller degrees of de-
clustering, in particular in multi-user mode. Even for a high degree of declustering (e.g.,
D---4n), high arrival rates can lead to significant levels of disk contention and thus high
response times for both complex queries and OLTP transactions. In such situations, we
found it necessary to choose smaller degrees of intra-query parallelism to limit disk
contention and response times degradations. In particular, the degree of scan parallel-
ism should be chosen the smaller the higher the disks are utilized. This flexibility for
dynamically controlling disk contention in multi-user mode is not supported by the SN
architecture.

While we believe that disks constitute the most significant bottleneck resource for
parallel query processing, in future work we will study additional bottleneck resources,
in particular CPU, memory and network [RM951. Furthermore, we want to study par-
allel processing of other relational operators (e.g., joins) in SD systems. The impact of
concurrency and coherency control on parallel query processing also needs further in-
vestigation.

6. Of course, selective index scans accessing only few data pages should be processed sequentially.

500

6
DG92

Gh90

MN91

PGK88

Pi90

Ra86

Ra91

Ra93a

Ra93b

RM93

RM95

Se93

SL91

Va93

Yu87

References
DeWitt, D.J., Gray, J.: Parallel Database Systems: The Future of High Performance
Database Systems. Comm. ACM 35 (6), 85-98, 1992

Ghandeharizadeh, S.: Physical Database Design in Multiprocessor Database Sys-
tems. Ph.D. thesis, Univ. of Wisconsin-Madison, Sep. 1990

Mohan, C., Narang, I.: Recovery and Coherency-control Protocols for Fast Inter-
system Page Transfer and Fine-Granularity Locking in a Shared Disks Transaction
Environment. Proc. 17th VLDB Conf., 193-207, 1991

Patterson, D.A., Gibson, G., Katz, R.H.: A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). Proc. ACM SIGMOD Conf., 109-116, 1988

Pirahesh, H. et al.: Parallelism in Relational Data Base Systems: Architectural Is-
sues and Design Approaches. In Proc. 2nd lnt.Symp, on Databases in Parallel and
Distributed Systems, 1990

Rahm, E.: Primary Copy Synchronization for DB-Sharing. Information Systems 11
(4), 275-286, 1986

Rahm, E.: Concurrency and Coherency Control in Database Sharing Systems,
Techn. Report 3/91, Univ. Kaiserslantern, Dept. of Comp. Science, Dec. 1991

Rahm, E.: Empirical Performance Evaluation of Concurrency and Coherency Con-
trol for Database Sharing Systems. ACM Trans. on Database Systems 18 (2), 333-
377, 1993

Rahm, E.: Parallel Query Processing in Shared Disk Database Systems. Proc. 5th
Int. Workshop on High Performance Transaction Systems (HPTS-5), Asilomar,
Sep. 1993 (Extended Abstract: ACM SIGMODRecord 22 (4), Dec. 1993)

Rahm, E., Marek, R.: Analysis of Dynamic Load Balancing Strategies for Parallel
Shared Nothing Database Systems. Proc 19th VLDB Conf., 182-193, 1993

Rahm, E., Marek, R.: Dynamic Multi-Resource Load Balancing in Parallel Data-
base Systems. Proc 21st VLDB Conf., 1995

Selinger, P.: Predictions and Challenges for Database Systems in the Year 2000.
Proc 19th VLDB Conf., 667-675, 1993

Seeger, B., Larson, P.: Multi-Disk B-trees. Proc. ACM SIGMOD Conf., 436-445,
1991

Valduriez, P.: Parallel Database Systems: Open Problems and New Issues. Distr.
and Parallel Databases 1 (2), 137-165, 1993

Yu, P.S. et al.: On Coupling Multi-systems through Data Sharing. Proceedings of
the IEEE 75 (5), 573-587, 1987

