
75 

Evaluation of object-relational database systems for fulltext retrieval 

Erhard Rahm 
Univ. Leipzig, Germany 

rahm@informatik.uni-leipzig.de 

Abstract 
Object-relational database systems add object-oriented features to relational DBMS and allow the 

DBMS's functionality to be extended to new application domains. For the important domain of fulltex.t 

retrieval and document management, we analyze whether current object-relational DBMS arc already 

able to compete with specialized information retrieval (IR) systems. After discussing the main require­

ments, we present a comparison of the ORDBMS Informix and several text data blades with the infor­

mation retrieval system Fulcrum and a relational DBMS extended by IR functionality (Oracle 

ConText) . A qualitative and quantitative evaluation is presented considering the degree of IR function­

ality, performance, and retrieval quality. 

1 Introduction 
Object-relational database systems [St96] extend relational DBMS (RDBMS) by object-oriented fea­
tures, such as support for user-defined data types and functions, reference attributes, inheritance, and 
polymorphism. Furthermore, type constructors such as array, set, tuple, etc. are typically provided fa­
cilitating the construction of complex. objects. Object-relational DBMS (ORDBMS) thus offer a huge 
increase in expressive power and flexibility over the traditional relational approach. They are particu­
larly appealing for the many advanced database applications, such as CAD/CAM, geographic infor­
mation systems, document management, multimedia databases, etc., for which relational DBMS have 
experienced their limitations. In contrast to object-oriented database systems, ORDBMS support all 
features of relational DBMS so there is no need to change existing RDBMS applications. In particular, 
they are compatible with the SQL standard. Language support for the new features of ORDBMS will 

be included in future versions of the SQL standard (SQL3, SQIA). 

A main advantage of ORDBMS is their extensible type system permitting to add new application-spe­
cific data types and functions. ORDBMS vendors arc using different names for such type extensions, 
e.g., data blades (Informix), extenders (DB2), or data cartridges (Oracle). Typically, extensions are 
supported for various multimedia data types (video, audio, image, ... ) , text, spatial data, time series, 
etc. The functions provided with the type extensions can be used within SQL queries, as in the follow­
ing example 

SELECf p.name 
FROM person p 
WHERE contains (p.resume, "Java", relevance) AND p.age < 40 
ORDER BY relevance DESCENDING 

The person table is assumed to have a text attribute "resume" for which the contains function can be 
used to determine whether it contains a given search term. Thus the query finds all persons having the 
word "Java" in their resume and having an age oflcss than 40. It is also assumed that the contains func­
tion returns a relevance parameter that is used to rank the results so that the persons with a resume most 
relevant with respect to "Java" appear first in the result list. 

A key factor whether ORDBMS can really succeed is their performance. Despite the much higher com­
plexity of data and queries, users expect short response times for their database operations. In order to 
achieve acceptable performance, it is imperative that the type extensions are not merely provided by 
an add-on layer to a RDBMS, but that they are closely integrated with the key DBMS components such 



76 

as the query optimizer, record and index manager, buffer manager, and external storage manager. Fur­
thermore, new index structures and intra-query parallelism should be supported. Otherwise, most que­
ries would require sequential table scans with typically unacceptable response times due to enormous 
data volume. To support such an integration, ORDBMS typically provide special APis (application 
programming interfaces) for type extensions that must be used by their developers. 

So far, only few information is available on the performance of commercial ORDBMS. In [As97], the 
so-called Bucky benchmark was proposed to compare the performance of object-relational and rela­
tional DBMS. While the benchmark was tailored to utilize object-relational features such as type con­
structors, navigational access over reference attributes (rather than joins), user-detmed functions etc., 
the performance of the considered ORDBMS was almost twice as slow as for the relational DBMS. 
The benchmark, however, used a very simple and conventional database application so that the OR­
DBMS suitability for an advanced application was not addressed. 

In this paper, we evaluate the use of ORDBMS for fulltext retrieval. Due to the explosive growth in 
the number of documents accessible in the internet and within intranets, the need for efficient and ef­
fective full text retrieval has increased enormously. Full text retrieval is a variant of information retriev­
al (IR) for which many commercial systems exist. While such IR systems typically provide good 
support for vague retrieval queries on largely unstructured data like texts, they lack the capabilities of 
DBMS. In particular, they typically do not support queries over structured data (e.g., tables with at­
tributes), transaction processing (concurrency control, logging, recovery), referential integrity, views, 
parallel query processing, etc. However, there is an increasing need for combined IR and DBMS func­
tionality, in particular for queries over both unstructured and structured data (as in the above example 
where the resume text is evaluated and attributes like age or name are accessed). The integration of IR 
and DBMS functionalities can be provided by IR systems extended with DBMS functionality, by 
RDBMS extended with IR functionality, or by ORDBMS with type extensions for text and IR. The 
ORDBMS approach promises a seamless integration of the new functionality as well as the possibility 
to use it in combination with other type extensions, e.g., for multimedia data. 

Our evaluation concentrates on one of the leading ORDBMS, namely lnforrnix Universal Server and 
various text data blades. For comparison purposes, we have also evaluated a commercial IR system, 
namely Fulcrum, which already includes some DBMS functionality. In a previous evaluation of vari­
ous information retrieval systems [Me96] conducted within the German digital library project MeDoc 
[Ba98, Me98], Fulcrum has been chosen as the best system. That evaluation, however, did not include 
object-relational DBMS. In our comparison, we also consider a RDBMS extended with IR functional­
ity, namely Oracle 7.3 with the ConText option. 

The rest of the paper is organized as follows. In section 2, we briefly review the main requirements for 
full text retrieval. Section 3 provides an overview of the evaluated systems, namely Fulcrum, Informix 
Universal Server and several text data blades, and Oracle. This section also contains a qualitative com­
parison of these systems with respect to the text retrieval functionality. In section 4, we then present a 
quantitative comparison. Finally, we conclude. 

2 Text retrieval 
The field of information retrieval [SG83, Sa89] is relatively mature since it has been investigated for 
more than 30 years. Traditionally, the document search is based on bibliographic data (author, title, 
year, etc.) and the key words and index terms associated with the documents. Unfortunately, this ap­
proach requires a time-consuming manual classification and indexing of documents which is no longer 
adequate in the case of digital libraries in the internet or within intranets. The sheer data volume which 
is rapidly increasing renders the manual approach impracticable. Fulltext retrieval is a partial solution 



77 

to the problem as it can consider all words found in a document to answer retrieval queries without 
prior manual classification •. 

The goodness of an IR system is determined by many factors, including retrieval quality, performance, 
functionality, case of usc and administration. cost, etc. A good retrieval quality requires that the most 
relevant documents are found for a given query. This quality is typically measured by the recall and 
precision mctrics. It is difficult to achieve a high value (close to 1) for both metrics together. If only 
save candidates are found (high precision), then many relevant documents may be missed. On the other 
hand, if many potentially relevant documents are returned precision may be poor. Performance refers 
to the response times and processing overhead for retrieval queries. Furthermore, the system should 
scale to very large document collections and many users. In addition, indexing time and the storage 
overhead for index information should be low etc. Functionality can directly impact retrieval quality 
and performance, e.g. depending on the used retrieval model, indexing, and ranking approaches. Other 
important features include relevance feedback and text operations like stemming, similarity search 
(e.g., based on soundex metric), proximity search, wildcards/truncation, thesaurus, etc .. Desirable fea­
tures not directly impacting retrieval quality and performance include support for many text formats, 
multiple languages, many hardware/software platforms, interfaces (SQL, Z39.50, IITTP, ODBC, ... ), 
result highlighting etc. 

Definition and discussion of the various features is beyond the scope of this paper but can mostly be 
found in standard text books on information retrieval. We only stress some particularly important as­
pects. 

- Retrieval model: Mostly, a simple Boolean retrieval model is supported where queries consist of 
atomic expressions connected with the three logical operators "and". "or", and "not" (e.g. fmd doc­
uments with "author=Gray" and "subject=databases"). This model results in a binary decision 
whether or not a document qualifies for a query and only the documents which fully qualify are 
included in the result. Typically, much bener results arc achieved with a so-called vector space 
model [SG83, Sa89]. This model represents both the documents and the queries as weight vectors. 
Given a query, the documents are ranked according how "similar" their corresponding vectors arc 
to a given query vector. More recent models like probabilistic retrieval [Fu93] are not yet support­
ed by commercial systems. 

- Ranking is a must for any IR system to order the documents of a result list according to their rel­
evance. This is to allow quick access to the most important documents even for large result lists, 
obtained due to the vagueness of queries. The key issue is how the system determines the relevance 
of documents for a query (e.g. by considering the frequency of index terms within a document, 
giving higher weight to term occurrences within title or abstract of documents, etc.). The weight 
vectors of the vector space model directly support ranking, but ranking is also possible for boolean 
retrieval models. 

- Relevance feedback allows the user to iteratively refine a query based on the relevance of previous 
query results. This manual interaction often leads to significantly improved retrieval quality. 

- Index ing: All relevant terms and key words of the documents are maintained in an index, repre­
sented as an inverted list. The index allows to quickly locate all relevant documents for a given 
search term. For fulltext retrieval, all words of a document are considered, possibly with the ex­
ception of words maintained in a stop list. Some systems maintain statistics for indexed terms like 
their frequency and their exact position within a document in order to improve retrieval quality. 

• In general, it cannot be guaranteed that all relevant documents are found due to the use of specific vocabularies, 
synonym/homonym problems etc. 



78 

Indexing is important for retrieval performance and quality. On the other hand, it requires a sub­
stantial storage overhead and update cost. It should be possible to index new documents incremen­
tally without having tore-index the entire document collection. 

In addition to these requirements, we demand support for both IR and DBMS functionality. In partic­
ular, the SQL query language should be supported with the possibility to access both structured data 
(attributes) and unstructured data (text). Furthermore, it should be possible to store documents not 
merely in the file system but within the database in order to protect them with transaction mechanisms 
(concurrency control, recovery), to enable parallel processing on them, etc. It is also desirable to sup­
port an internal structuring of documents in order to refme queries and query results to document parts, 
such as individual chapters. 

3 Overview of fulltext DBMS and qualitative comparison 
For our comparison, we consider the IR system Fulcrum, the object-relational DBMS lnformix with 
four text data blades, and the relational DBMS Oracle 7.3 with an integrated fulltext component. The 
described functionality refers to the versions as of 1997. 

3 .1 Fulcrum 
Fulcrum is a well-established information retrieval system with some DBMS functionality [Fu96]. In 
particular, it follows the relational data model as all information is organized in tables and an SQL di­
alect is supported. Each row in a document table refers to exactly one document. However, the docu­
ments are not stored within the database but are kept in their original format as separate ftles. The 
names of these ftles are kept in a system-defined column of a document table. Additional columns (at­
tributes) can be specified, e.g. to maintain bibliographic information (author, title, year, etc.) to support 
queries on both these structured data as well as on the document contents. Access to the document ftles 
is performed by text readers which are provided for more than 150 formats. For indexing, Fulcrum 
reads the documents with the help of the text readers and converts them into an internal format. Index­
ing can be performed immediately for every new document or in batch mode. Documents can be di­
vided into several "zones" which allow separation of text portions like title, abstract, main text, and 
references. 

Fulcrum supports three retrieval models and four different ranking algorithms that can be specified by 
the user. The retrieval models are strict boolean, fuzzy boolean, and vector space model. The fuzzy 
boolean model also considers documents that only satisfy a subset of and-connected conditions, similar 
to an or-operator. This can lead to an improved recall compared to strict boolean, while the ranking 
should help keep an acceptable precision for the most relevant documents. Queries are formulated with 
an SQL dialect containing proprietary extensions for document retrieval. In addition to boolean query 
expressions it is possible to specify queries with weighted search terms as well as natural language que­
ries. Fulcrum supports a large spectrum of text operators (wildcards, proximity search, ... ) and other 
features (relevance feedback, result highlighting, ... ) as summarized in Table 1. Furthermore, multiple 
languages are supported. The ranking algorithms use information like the frequency of terms within 
documents, the frequency of different terms per document, and the frequency of terms in the entire 
document collection. 

On the other hand, the considered Fulcrum version (V3.5) has significant SQL limitations as only a 
small subset of SQL-92 is supported. Moreover, not even joins are supported between tables! Further­
more, there is no support for user administration in the version considered. 



79 

3.2 lnformix Universal Server 
Informix Universal Server represents one of the leading object-relational DBMS in the market. It was 
developed by extending the relational Informix DBMS with object-oriented features and the data blade 
technology pioneered by lllustra, which was acquired by Informix in 1996. Compared to other OR­
DBMS, Informix already supports many object-oriented concepts, in particular inheritance, type con­
structors, overloading, encapsulation, etc. Data blades allow the incorporation of new application­
specific data types and functions into Informix which can then be used in combination with the built­
in DBMS functionality as well as with other data blades. Currently, more than 20 data blades are avail­
able, mostly developed by third-party companies. A DataBlade Developers Kit (DBDK) helps devel­
oping and integrating data blades. This is a complex task as a data blade must cooperate with several 
Informix components, in particular the SQL parser, query optimizer, query and function executor, ac­
cess methods, and storage manager. It is also possible to specify parallel processing for data blade 
functions [0196]. 

Several text data blades are available to support fulltext retrieval. Some of them use the Inforrnix LOB 
(large object) features for storing documents in the database. Similar to SQL3 [PB97], Inforrnix dis­
tinguishes between binary LOBs (BLOBs), e.g., for storing multimedia data like images or video, and 
character LOBs (CLOBs) for text documents. For our evaluation, information was available for four 
text data blades*, for which the main features are summarized in Table 1. All data blades support bool­
ean retrieval and ranking. Furthermore, each data blade provides a special text access structure to sup­
port indexing and proprietary language extensions for retrieval. The documents can be stored either in 
the database or in the ftle system. Unfortunately, the information available in manuals and internet doc­
uments is partially limited, in particular with respect to the details of indexing, ranking, etc. 

Some specific remarks on the selected data blades follow. 

- TDB Text data blade 
This was the frrst available text data blade already provided by illustra [lll94]. It offers only lim­
ited functionality as can be seen from Table 1, and supports only few text formats (Ascii, Post­
script, SGML, Tex). About 30 additional formats are available by the combined use of a separate 
Text Conversation data blade. 

- Verity Text Search data blade [Ve97] 
This data blade is provided by the US company Verity Inc. It supports more retrieval functions 
than TDB (thesaurus, similarity and proximity searches, etc., see Table 1 ). Retrieval queries are 
possible for both indexed and non-indexed text attributes. Indexing requires that documents are 
converted to Ascii at frrst. Currently, 11languages are supported but only few(< 10) text formats 
(support for about 130 formats is planned). 

- Excalibur Text Search data blade [Ex97] 
The data blade is developed by the US company Excalibur Technologies [Ex97] and offers a sim­
ilar functionality than the Verity data blade. Currently, only few text formats are supported. 

- PLS Text Search data blade (developed by Personal Library Software Inc.) 
In contrast to the previous data blades, PLS Text Search [PLS96] supports a vector space retrieval 
model as well as natural language queries. Indexing is always immediate for new documents; only 
canonical forms of words are maintained in the index. Ranking is based on comprehensive statis­
tics, in particular term frequencies per document, inverse document frequency (higher relevance 

* There are several additional text data blades available or announced, including a data blade developed by Ful­
crum. Unfortunately, there is not yet sufficient information available. 



80 

for documents containing rare terms), and breadth of match (higher relevance for documents with 
many distinct query terms). 

3.3 Oracle with ConText option 
Oracle's fulltext support is closely integrated with the DBMS by a so-called ConText option. This op­
tion was already available for the relational DBMS Oracle 7.3, which we will consider here, and will 
also be supported by future object-relational Oracle versions. 

Oracle ConText provides comprehensive support for IR functions (Table 1) in the form of specific 
SQL operators. Additional flexibility is gained by supporting two-step queries, where the results (hit 
list) of an initial query arc kept within a temporary table that is then processed by a second query. This 
also allows relevance feedback to be achieved. Currently, only few text formats are directly supported, 
but there is the possibility for the user to provide filters for additional formats. Stemming is provided 
for six languages, while many other systems only support English in this respect. 

Several indexing options exist (based on bit vector indexing) which can be specified by the user. The 
position of terms within documents can be recorded in the index in order to enable fast phrase and prox­
imity searches. Furthermore, parallel indexing is possible to reduce the indexing time for large collec­
tions. Ranking is primarily based on the frequency of terms within the documents. Documents are 
either stored in the database or accessed via file names or URLs if kept separately in the file system or 
in the intranet/internet. Documents can linearly be partitioned, e.g., to distinguish between individual 
chapters. 

ConText features special linguistic capabilities to automatically classify English text documents and 
identify key themes. For instance, a document frequently mentioning interest rates and money supply 
could be classified as a financial document. Furthermore, so-called theme summaries can be generated 
which are supposed to indicate the main topics covered within a document that can be used for query­
ing. 

3 .4 Qualitative comparison 
The feature lists in Table 1 allows for a qualitati vc comparison of the six systems. As could be expect­
ed, Fulcrum excels by a strong IR functionality including relevance feedback, flexible ranking algo­
rithms, and support for vector space model. Moreover, queries can be posed in natural language 
permitting a much simpler user interface than with a boolean retrieval model. Furthermore, Fulcrum 
currently is the only system supporting many text formats and a Z39.50 interface, which is an impor­
tant standard for bibliographic databases [Z39]. Oracle also has a rather comprehensive IR functional­
ity despite its DBMS origin. The considered text data blades, on the other hand, still miss important IR 
features. Relevance feedback is not s upported at all, a vector space model and natural language queries 
are only offered by the PLS data blade. This data blade thus comes closest to the functionality of Ful­
crum and Oracle. 

All systems offer a WWW (HTrP) interface to their data. Moreover, they all support SQL and the 
combination of text retrieval and attribute queries. However, Fulcrum does not provide full-level 
DBMS functionality as Inforrnix and Oracle (no joins, no user administration, etc.). Furthermore, doc­
uments cannot be stored in the database but only in the tlle system. This may be sufficient for many 
applications since it allows documents to be easily displayed in their original format and avoids extra 
storage overhead (except for indexing). On the other hand, the documents and their storage cannot be 
controlled by the DBMS. As a result they can be deleted, modified, renamed, etc. by users without 
DBMS intervention so that file names kept in the documents table may become invalid (no referential 
integrity). Furthermore, there is no transactional protection for documents (logging, locking, ... ), no 



81 

lnfonnix Universal Server 9.12 Oracle 7.3/ 
Fulcrum TDB Verity Excalibur PLS ConText 

Version 3.5 1.2 1.1 1.1 1.1 1.1.2 

Homepage www. www.inior- www. www. www. www. 
fulcrum.com mix.com vcrity.com excalib.com pls.com oracle.com 

boolean boolean, boolean, retrieval model (strict/fuzzy), boolean boolean boolean vector "lhemauc" vector space space 
ranlang + + + + + + 

indexmg + + + + + + 
relev. feedback + - - - - + 

natural language 
queries + - - - + -

thesaurus + - + + - + 
stemming + + + - + + 
wildcards + ? + + + + 

similarity queries - - + + + + 
proxtmi ty search + - + + + + 

phrase search + - + + + + 
stop word lists + + + + + + 

result highlighting + - + + - + 

file system file system file system file file system document location file system system or or DB or DB or DB DB 
or DB 

document 
+ -structure - - - + 

combined text/ 
attribute queries + + + + + + 

support of many yes limited limited limited limited limited text formats 

interfaces Z39.50, SQL, SQL, SQL, SQL, SQL, 
SQL, WWW www www www www www 

Table l: Qualitative comparison of fulltext DBMS (as of 1997) 

intra-query parallelism, no specific storage structures etc. These benefits are supported by both Oracle 
and Informix. 

Compared to relational full text systems like Oracle 7 .3, the text data blades have the advantage that 
they can be used in combination with other data blades, e.g. for images, geographical data, etc., as well 

as with the object-oriented features of the underlying ORDBMS (here Infonnix Universal Server). Ob­
ject-oriented features like reference attributes and object identity are helpful to better model the inter­
nal structure of complex documents than with a linear document partitioning currently provided by 
Fulcrum and Oracle. This not only relates to the hierarchical chapter structure but also to cross-refer­
ences within and between documents. It has been shown that the arbitrary complex strucrure of SGML 
documents can adequately be modeled by object-oriented DBMS [Bo97] so that it is to be expected 
that ORDBMS are similarly well suited in this respect. Currently however, s uch an internal structuring 
is not yet supported by the available text data blades but would have to be modeled by the user. 

A general problem for all systems is that they usc proprietary SQL extensions for text retrieval. This 
is because there is not yet an SQL standardization for this important area. Hence, there is no compati­
bility between different vendors making it even more important to select the system that meets there­
quirements best. 



82 

4 Quantitative comparison 
In this section, we present results of a quantitative evaluation for some of the systems discussed in the 
previous section. Results are given for Fulcrum and Informix with two data blades (Verity, Excalibur) 
which we cou1d install in our department. From a related study [Or97], we can also use some compa­
rable results for Oracle ConText. Our measurements have been performed in single-user mode on a 
Sun Ultra system, 200 MHz, 128MB main memory, under So1aris 2.5. 

We f"'trstlook at the storage requirements of the fulltext DBMS themselves. Then we compare results 
for the so-called Time suite with respect to indexing time, index size and retrieval quality. Finally, we 
discuss additional observations for other text collections. 

4.1 Storage requirements of fulltext DBMS 
Table 2 shows the storage requirements for the fulltext DBMS. Fulcrum is by far the "leanest" system, 
while the Informix installations are three to four times as large. Significantly more resources are need­
ed for Oracle/ConText consuming already 230MB under NT [Or97]; Unix requirements are even 
higher. Of course, these large differences arc mainly because of the huge resource demands of the 
DBMS components of Informix and Oracle. However, since most companies need a full-fledged 
DBMS anyway, the additional resources for the text components are less critical (the data blades typ­
ically require less than 20MB). A specific text retrieval system like Fulcrum, on the other hand, is bet­
ter suited if no or only little DBMS functionality is needed. 

lnformix lJniv. Server 
Fulcrum Verity Excalibur 

storage require- 33MB 115MB 98MB ments 

Table 2: Storage requirements (disk) of fulltext DBMS 

4.2 Time suite results 

Oracle 7.3 I ConText 

>=230MB 

The Time suite is a small text collection that has been used in several IR benchmark studies, including 
[Me96] and [Or97]. It consists of 423 articles from the magazine Time just encompassing 1.5MB. 

We first look at the time required to build an index for this collection as well as at the index size com­
pared to the collection size (Tab1e 3). We see that Fulcrum is clearly the best system for both metrics. 
Its index size is only 54% of the collection size which is a good value for an IR system considering all 
words in the index (except stop words). Indexing only takes about 7 s while the text data blades require 
more than 1 minute (Excalibur) or even more than 1 hour (Verity)! On a slower hardware, Oracle re­
quired about 3 minutes for building the index [Or97] indicating a comparable performance to Infonnix 
with the Excalibur data blade. The very fast indexing time of Fulcrum is favored by the fact that this 
system is rather small and optimi.£cd for IR tasks. The larger Informix incurred a certain setup time; 
further, the cooperation between the data blades and the DBMS core for 110 and buffer access intro­
duces overhead. In addition, the generated index is about 2 to 3 times as large as for Fulcrum. The very 
poor results for Verity are not fully explainable; however, they were confirmed for other text collec­
tions (see below). Oracle generates an even larger index than the data blades with more than 3 times 
the size as for Fulcrum. The Time suite defines 83 queries to be processed. Query response time was 
fast in all cases (about 1 s or below) and all systems. Hence, the object-relational DBMS were compet-

lnformix Univ. Server 
Fulcrum Verity Excalibur Oracle [Or97] 

index time 7,3 s 1 h : 20 min. : 20 s 1 min: 3 s -

index size 54% 152% 97% 168% 

Table 3: Indexing performance for Time suite 



83 

itive in this important aspect as they were able to usc the index thus avoiding scanning the entire doc­
ument collection. Since the relevance of all documents is known for the query set, the Time suite 
allows measuring the retrieval quality of a system. The recall and precision metrics are determined for 
then documents that are ranked first in the result list. In this way, the ranking quality is also evaluated. 

All queries arc formulated in English so that only Fulcrum supporting natural language queries did al­
lov.. a direct evaluation of recall and precision values. For the systems based on the boolean retrieval 
model. the queries were approximated by a boolean expression using an Or-connection of all query 
words. Unfortunately, only Oracle produced meaningful results with this approach. Hence, Table 4 
only shows the recall and precision values for Fulcrum and Oracle for the first 5 and 10 results accord­
ing to the ranked result list. Fulcrum achieves in all cases about 20% bener results than Oracle indicat­
ing a superior retrieval quality, despite its smaller index. 

Fulcrum Oracle [0r97] 
n=5 0.55 I 0.37 0.46/0.30 

n = 10 0.6910.26 0.60 I 0.22 

Table 4: Time suite recall/ precision values for the first n documents 

The Verity and Excalibur data blades, on the other hand, obtained very large result sets for the queries 
with an identical relevance rating for the first 100 hits making it impossible to specify recall and pre­
cision for the first 5 or 10 hits. This indicates a poor ranking approach of the two data b lades. Together 
with the other IR limitations (Table 1) we conclude that the retrieval quality of the data blades is likely 
to be significantly worse than for Fulcrum. 

4 .3 Further results 
We have additionally tested the systems for two larger text collections, namely a collection of news 
group articles (183MB) and for 1000 HTML pages from our WWW server. For both cases the superior 
performance of Fulcrum compared to the data blades was confirmed. While the index sizes for Ful­
crum and the data blades were comparable for these collections (40-55%), Fulcrum's indexing times 
were again at least one magnitude of order better. Furthermore, Excalibur' s indexing performance was 
again much better than Verity's. Fulcrum's indexing time for the 183MB collection was about 22 
minutes underlining its ability to scale to larger collections. 

Our results indicate that fast query response times are obtained by all systems, including the OR­
DBMS, due to the use of an text index. In terms of retrieval quality and indexing performance, Fulcrum 
outperforms the two data blades by far. While the indexing performance of the Verity data blade was 
intolerable, Excalibur's indexing time and index size arc comparable or better than for Oracle. 

5 Conclusions 
There is a large and increasing need for fulltext DBMS supporting both comprehensive database man­
agement and information retrieval functionality. These systems must be capable of efficiently process­
ing queries on both structured and unstructured data. They must be able to scale to many users and 
large volumes of documents stored either directly in the database or externally in the file system. Ob­
ject-relational DBMS are an attractive approach to satisfy these and other requirements by exploiting 
their extensibility to support new application domains. New functionality like for text retrieval can be 
added to the DBMS and be used in combination with other type extensions and built-in object-oriented 
features such as inheritance, complex object support, etc. Unfortunately, the text retrieval functions 
have not yet been standardized so that DBMS vendors offer proprietary and incompatible SQL exten­
sions. 



84 

We have evaluated the functionality, performance and retrieval quality of the ORDBMS Informix and 
various text data blades in comparison with an established information retrieval system (Fulcrum) and 
an relational DBMS extended with an information re trieval component (Oracle/ConText). All text data 
blades provide basic IR support, in particular they are able to utilize a text index for fast retrieval re­
sponse times. However, at present IR functionality, performance and retrieval quality of the considered 
data blades are substantially worse than for the F ulcrum system. These rather disappointing results are 
consistent with the findings for the Bucky benchmark where ORDBMS were outperformed by rela­
tional DBMS. 

On the other hand, there are large differences between the various data blades and future versions 
should improve on the main shortcomings (ranking, vector space support, relevance feedback, natural 
language queries, support for many text formats, indexing performance, etc.). For instance, the Ful­
crum data blade can be expected to provide s imilar functionality than the stand-alone Fulcrum system. 
Still, it will be difficult to reach the performance of specialized IR systems which are thus the primary 
choice for applications where no or only limited DBMS functionality is required. Parallel database pro­
cessing can help ORDBMS to overcome the performance problems, e.g. for indexing, and support su­
perior scalability to many users and very large document collections. 

6 References 
As97 Asgarian, M., Carey, M.J., DeWitt, D.J. et al.: The BUCKY Object-relational benchmark. Proc. 

Ba98 

Bo97 

Ex97 
FB93 

Fu93 

Fu96 
Ill94 
Me96 

Me98 
0196 

Or97 

PB97 

PLS96 

Sa89 

SG83 
St96 
Ve97 
Z39 

ACM SIGMOD conf., 1997 

Barth, A. et al.: Digital Libraries in Computer Science: The MeDoc Approach. Lecture ~otes in 
Computer Science 1392, Springer 1998 
Bohrn, K. et al.: Structured Document Storage and Refined Declarative and Navigational Access 
Mechanisms in HyperStorM. VLDB Joumal6(4), 296-311, 1997 
Excalibur Text Search DataBlade Module Users Guide Version 1. 1, 1997 
Frakes, W.; Baeza-Yates, R.: Information Retrieval: Data Structures and Algorithms. Prentice 
Hall 1993 
Fuhr, N.: A Probabilistic Relational Model for the Integration of IR and Databases. Proc. SIGIR 
conf., 309-317, 1993 

Fulcrum SearcbServer Version 3.5 ScarcbSQL Reference 1996 
ILLUSTRA Text Conversation DataBlade Guide Version 1.2, 1994 
Meyer, J.: Evaluation of fulltext DBMS for MeDoc. Internal report (in German), OFFIS, Univ. 
of Oldenburg, 1996. Available via [Me98] 
MeDoc-Homepagc: http://medoc. informatik. tu-muencben.de/englishlmedoc.btml 
Olson, M.A. et al.:: Query Processing in a Parallel Object-Relational Database System. Data En­
gineering Bulletin 19(4): 3-10, 1996 

Evaluation of Oracle 7.3 with ConText (in German). Internal reports by Grasser, 1.; PapenfuB, 
C., FH Augsburg; and by S. Kanstinger, FH Karlsruhe, 1997. Available via [Me98] 
Pistor, P ., Blanken, H.M.: The SQL3 Server Interface. In: Multimedia Databases in Perspective 
(Eds.: P.M.G. Apers et al.), 101-116, Springer 1997 
PLS Text DataBladc Module 1.1. 1996. Description available under www .pls.com/products/db­
lade/wp_dblade. pdf 
Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information 
by computer. Addison-Wesley 1989 
Salton, G., McGill, M. 1. Introduction to Modem Information Retrieval, Mac-Graw-Hill1983 

Stonebraker, M.: Object-Relational DBMS- The Next Wave. Morgan Kaufmann 1996 
Verity Text Search DataBlade Module Users Guide Version 1.1, 1997 
Z39.50 Maintenance Agency : http://1cweb.loc.gov/z3950/agency 


