
Rule-Based Dynamic Modification of Workflows in a
Medical Domain

R. Müller, E. Rahm

Institut für Informatik, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig
{mueller,rahm}@informatik.uni-leipzig.de

Abstract. A major limitation of current workflow systems is their lack of supporting
dynamic workflow modifications. However, this functionality is a major requirement
for next-generation systems in order to provide sufficient flexibility to cope with
unexpected situations and failures. For example, our experience with data intensive
medical domains such as cancer therapy shows that the large number of medical
exceptions is hard to manage for domain experts. We therefore have developed a rule-
based approach for partially automated management of semantic exceptions during
workflow instance execution. When an exception occurs, we automatically determine
which running workflow instances w.r.t. which workflow regions are affected, and
adjust the control flow. Rules are being used to detect semantic exceptions and to
decide which activities have to be dropped or added. For dynamic modification of an
affected workflow instance, we provide two algorithms (drcd-and p-algorithm) which
locate appropriate deletion or insertion points and carry out the dynamic change of
control flow.

1 Introduction

The need for dynamic workflow changes to manage new situations and unexpected
difficulties during the execution of workflow instances has already been identified as
one of the central workflow research issues (e.g. [She97, SK98]). However, most of
the proposed approaches assume that a human expert decides which changes have to
be applied. Furthermore, they concentrate on transformation frameworks for dynamic
structure changes to achieve consistency of the modified workflow instance w.r.t.
control and data flow aspects. In contrast to this, it has not yet been investigated
sufficiently whether machine agents can be enabled to automatically decide first when
a running workflow instance is no longer adequate, and second which changes of the
original workflow definition have to be applied to better reflect the new situation.

To address this problem we describe a rule-based approach for the detection of
semantic exceptions and for dynamic workflow modification with a focus on medical
workflow scenarios. Dynamic workflow changes are triggered by semantic exceptions
which, in our domain, are medical events such as a newly detected allergy or a critical
laboratory value requiring a change in an ongoing treatment plan (workflow instance).
This is done in several steps: First, a rule-based system decides whether a medical
event for a patient implies that currently planned or processed medical activities are
not appropriate anymore, and whether additional activities become necessary. Second,
it is derived which running workflow instances are affected. Third, for an affected

Preprint of: Buchmann, A.P. (ed.): Proceedings of BTW99,
Freiburg im Breisgau, 1.-3. März 1999. Spinger, Berlin 1999: 429-
448.

workflow instance, the relevant workflow modification region is determined. This
region depends on the type of an exception E and the “temporal influence” of E, so
that changes are only applied to relevant areas. Fourth, within the relevant
modification region, workflow modifications are processed to adjust the instance
w.r.t. the new situation. Fifth, the modified workflow instance is continued.

Our primary focus thus is on (partially) automated dynamic control flow
modifications of workflow instances. We concentrate on local modifications such as
the automated deletion, replacement and addition of single workflow activity nodes,
while the deletion or construction of complete subgraphs is not yet addressed. Data
flow aspects are omitted as well, as they can be viewed, from the semantic point of
view, as a more technical consequence of control flow changes. Furthermore, due to
space restrictions we do not deal with fatal semantic exceptions like the death of a
patient which form – from the technical point of view – a relatively trivial type of
semantic exceptions (they definitely terminate workflow instances).

The work described here is part of the workflow system HEMATOWORK

[MHL+98, MH98], which supports long-term therapy in the domain of distributed
cancer therapy and is currently under development at the University of Leipzig. This
domain is suitable for workflow management, as the treatment is mainly based on
standardized treatment plans. However, as patients react very different to the
aggressive long-term treatment, a significant number of treatments has to be adjusted
partially and in a patient-specific manner. By automatically adjusting workflow
instances we expect our approach to support physicians because the need for time-
consuming manual interactions with the workflow system is reduced. Moreover, the
probability to oversee an important semantic exception can be reduced as well.
Certainly, automated workflow modification will be possible only up to a certain
degree as events and their implications may become arbitrarily complex. But even if
the entire implications of an event cannot completely be derived by a machine agent,
a partially automated management is already helpful. In particular, it is already
helpful to inform the user which workflow instances w.r.t. which control flow areas
are affected by a semantic exception, even if the modifications themselves have to be
determined manually. Furthermore, the approach is orthogonal to the question at
which step during automated modification the decision should be confirmed by a
human expert. For example, the insertion of additional drugs certainly should be
confirmed by a physician, while additional diagnostic examinations may be inserted
without confirmation. While we focus on medical applications, our approach
principally is applicable to other domains as well. In particular, the basic algorithms
and agents do not make assumptions about the domain-specific structure of events
and exceptions.

The paper is organized as follows. Section 2 discusses related work in the context of
dynamic workflows. Section 3 describes the subset of Frame Logic and Transaction
Logic [KLW95, BK94] used for the representation of events, activities and rules. We use
a logic-based approach as the automation of the dynamic modification process
requires formal semantics. F-logic has been selected because it provides object-
oriented modeling capabilities combined with deductive aspects. Transaction Logic is
needed for formal description of database updates. In Section 4 our basic notations of
medical events and activities are formalized. Section 5 contains the model of
workflow instance execution and event-caused instance interruptions. Section 6 then

describes the automated workflow modification system with the drcd-and p-
algorithms. These two algorithms are responsible for locating appropriate deletion or
insertion points and for carrying out the dynamic change. Section 7 completes the
paper with a discussion of the strengths and limitations of the approach, implementation
aspects and future work to be done.

2 Related Work

Although a lot of application domains require increased workflow flexibility, this
functionality currently is not provided by most commercial workflow systems.
Therefore, the development of dynamic workflow systems has been addressed by
several researchers during the last years. An overview and classification of dynamic
change approaches can be found, for example, in [She97, SK98].

In [RD98], Reichert and Dadam suggest an elaborated workflow execution model
and workflow transformation calculus (ADEPTFLEX) which is able to modify the control
and data flow at run-time while maintaining correctness and consistency. Related to
this, the WASA approach [VW98, Wes98] provides a set of operators which are able
to change the control flow w.r.t. activity instances, such as SkipInstance(i) or
RepeatInstance(i). However, mechanisms that could enable an automated agent to
decide when and what structural change should be applied to a workflow instance are
not discussed in both cases.

In the MOBILE system [BJ96, HSS96], (sub-)workflow definitions can be left
incomplete at pre-defined points, if a final decision about an appropriate subworkflow
logic can only be determined at run-time. An incomplete definition is described in
terms of goals and partially defined process patterns. However, methods to
automatically derive the workflow completion, when the control flow arrives at this
point and relevant data are available, are not discussed by the authors.

Within the WIDE workflow model and architecture, Casati et al. [CGP+97]
describe a typology of workflow exceptions and an exception handling approach
which is mainly based on condition-reaction pairs; if a condition is violated and an
exception raised, an informative (informing an agent) or a corrective reaction is
triggered. The latter for instance may be of type CANCEL_TASK or CANCEL_CASE, or,
in general, by aborting or redirecting the control flow. However, the authors do not
discuss any reaction sequences which are able to modify the running instance through
structural changes.

In [MH98], we sketch an approach to modify workflow instances in a knowledge-
based manner. Unfortunately, this approach requires meta information within the
workflow definitions indicating at which nodes dynamic modification have to be
processed. Furthermore, the approach basically is restricted to dynamic workflow
hierarchical refinement, and does not support dynamic changes in general.

In summary, to our knowledge, strategies to automatically identify semantic
exceptions and change a workflow instance have not yet been investigated
sufficiently.

3 Representation Methods

For the purposes of this paper, we use a combination of F-Logic and Transaction
Logic (TL) [KLW95, BK94, BK95] to formalize the interaction between semantic
exception events, rules and workflow instances. F-Logic is used to represent both the
data model for medical events and activities, and rules expressing dependencies
between events and activities in a natural object-oriented manner. As F-Logic is a
pure retrieval-oriented language and does not support database updates, we
additionally use several constructs of TL to express, for example, the generation of
new medical orders when semantic exceptions occur1.

F-Logic class definitions are of the form:

person [name => string, birthday => date], patient::person, physician::person,
patient [diagnosis => string, responsible-doctor => physician],
physician [degree => {trainee, assistant, senior}, patients =>> patient]

where “=>>” arcs denote set-valued attributes, and “::” is the is-a operator. Object
instances are expressed, for example, via:

Bob:patient [name → „Miller, Bob“, birthday → 12/5/1967,
diagnosis → „Leukemia“, responsible-doctor → Steve]
Steve:physician [name → “Taylor, Steve“, ..., patients →> {Bob, Fred, Mary}]

where “:” is the is-instance-of operator. Alternatively, we use “.” expressions like
bob.responsible-doctor.degree[d] for bob[responsible-doctor → D [degree→ d]].

Queries and rules are expressed with the ?- and ← operator, e.g. (in compact “.”
expression notation):

?- P:patient ∧ P.diagnosis[“lymphoma”] ∧ P.responsible-doctor.name[“Taylor,
Steve“] // find patients with lymphoma where responsible doctor is Taylor, Steve

D.name[“Miller, John“] ← P:patient ∧ P.diagnosis[“leukemia type AML”] ∧
P.responsible-doctor[D]
// if patient suffers from special leukemia of type AML, then Miller, John is the
// doctor of this patient (as, for example, he is the AML-specialist in the hospital)

From TL, we use the standard update operators del and ins, which can be applied
to every database predicate, e.g. patients.ins (patient-oid) (with patients being the
predicate extension of the patient class above). del and ins have a formal semantics
(in contrary, for example, to Prolog’s assert and retract), and any sequence involving
database updates can be specified as a transaction via the serial conjunction operator
⊗. This means if any step of the ⊗–sequence fails, the sequence is rolled back.

1 Note that we do not use TL to model the workflows themselves (as, for example, in
[DKR+98]).

Further TL-operators such as the | operator for concurrent execution are not needed
here as we do not use TL for workflow definition.

4 Medical Events and Workflows

In the following, we formalize our notation of medical events, activities, semantic
exceptions, and workflows over medical activities.

4.1 Medical Events, Activities, and Semantic Exceptions

Fig. 1 shows the F-Logic data model hierarchy of event and activity classes we use in
this paper. The class medical-event is the abstract super class of everything that
“happens” to a patient and that has a medical relevance. The medical-event subclass
diagnostic-event is the root class for all data describing diagnostic information about
the patient, while the subtree starting from medical-activity provides classes for the
storage for all medical activities done with the patient (e.g. drug applications). For the
purposes of this paper, we assume in a patient database DB the two associated basic
predicates:

diagnostic-events (D) with D : diagnostic-event

drug-name => string
drug-dosage => float
drug-unit => unit // mg, g

identified-by
=>>diagnostic-activity

medical-event

Object

medical-activity ordered-by => agent
confirmed-by => staff-member
processed-by => agent
priority => integer

agent

staff-member

diagnostic-event

symptom finding diagnosis

diagnostic-activity

therapeutic-activity

identifies =>>diagnostic-event

drug -applicationsurgical-activity

...

...

physician nurse technician

... ...

machine-agent

legacy-program

laboratory-finding radiology-finding

... ...

medical-device

radiological
-activity

patient

pat => patient
occurred-during=>interval

events =>> medical-event

hematological-finding

clinical-finding

drug-allergy

Figure 1: General F-Logic class hierarchy for agents, events and activities in a
medical domain. A legacy-program is a machine agent which may not allow to be
compensated or aborted in a controlled way (e.g. w.r.t. a 2PC protocol). Dots
indicate (omitted) subhierarchies for particular subdisciplines.

which is the object extension storing all diagnostic events that have been observed
or detected w.r.t. the patients, and

activities-ordered (A) with A : medical-activity

which records all activities that already have been ordered or suggested by human
or automated agents (but may not yet have been carried out).

A semantic exception is a diagnostic-event instance which implies that the current
treatment has to be modified (e.g. because of an allergy). The interpretation whether
or not an event constitutes a semantic exception is the task of a rule base RB and a
rule interpreter RI. Furthermore, we assume a knowledge base KB incorporating RB
and containing patient-independent information about medical events, such as the
duration and dosage of a specific drug application (see fig. 2).

4.2 Derived Predicates on Activities

As RI derives statements about medical activities, we now introduce predicates on
medical-activity instances. Therefore, let Pred = {drop, replace, check, delay,
process} be our set of activity predicate symbols, A an object of class medical-activity,

 KB RB Patient DB

RI (Rule Interpreter)

Workflow Modification System

Determination of
drop, replace, check,
delay and process
implications of E

E : diagnostic-event

drop(A1), process(A2,T),...

Figure 2: Basic components for the detection of semantic exception events and
the derivation of implications for medical activities. The modification system is
described in sec. 6.

and T a temporal constraint. T, for example, may specify the interval during which an
activity should be processed. Then we define with

drop(A) // drop activity A
replace(A1,A2) // replace A1with A2

check(A) // check whether activity A is still appropriate
delay (A,T) // delay A w.r.t. temporal constraint specified by T
process(A,T) // process A within the temporal constraint specified by T

// (e.g. apply drug D within the next two days)

the associated predicate molecules. The first four predicates deal with semantic
failures of activities. drop and replace express “hard” failures (with the consequence
“do not process activity anymore”), while check and delay address “weak” failures.
Fig. 3 contains some sample rules concerning implications of semantic exceptions.
Rule 1 orders the discontinuation of the drug ETOPOSID when the leukocyte count is
less than 1500 per mm3, while rule 2 suggests the administration of the so-called
GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF) for hematological recovery
when the leukocyte count is less than 2000.

The main task of the modification system we will describe in sec. 6 is to translate
derived predicates on activities into workflow instance modifications. However, we
first briefly describe our workflow representation and execution model.

4.3 Workflow

In our context, we view a workflow as a control flow over medical activities. A
workflow node n represents exactly one activity (e.g. a drug application or a x-ray

Rule 1:

drop(D)
←
L : hematological-finding[pat → P, parameter → LEUKOCYTE-COUNT,
unit → #/mm3, value → V] ⊗ V < 1500 ⊗ D:drug-application[pat → P’,
drug-name → „E TOPOSID“] ⊗ P’ == P ⊗ activities-ordered.del(D).

Rule 2:

process(D, [0, 2 days]) // give drug D within two days
←
L:hematological-finding[pat → P, parameter → LEUKOCYTE-COUNT,
unit → #/mm3, value → V] ⊗ V < 2000 ⊗ D:drug-application ⊗ new-id(D) ⊗
D.init[pat → P, drug-name → „G-CSF“, drug-dosage → 300, drug-unit → µg]
⊗ activities-ordered.ins(D)

Figure 3: Sample rules deriving implications for medical activities.

examination) which is processed when the control flow reaches n.2 For workflow
build-time purposes, we call a construct of the form

class-name[attr1 →3 val1, ..., attrn → valn] with class-name::medical-activity,
e.g.
drug-application[drug-name→“C ISPLATIN”,drug-dosage→200, drug-unit→ mg]

a medical-activity instance definition. Such an instance definition can be assigned
to a node to indicate that the node at run-time manages (i.e. processes) an activity
instance with this properties (the definition is called partial if some attribute values
are not specified at build-time but will be determined at run-time4).

Let Activities be a set of (partial) activity instance definitions. A workflow W over
Activities is a 6-tuple W=(NodesW , NAMW , EdgesW , ETMW , ECMW , SemSeqW)
where

• NodesW is a set of workflow nodes with NodesW = Activity-NodesW ∪ Control-
NodesW. While Activity-NodesW is the set of activity nodes, Control-NodesW
contains the control flow nodes of types START, END, OR-SPLIT, AND-SPLIT, OR-
JOIN, LOOP-START, or LOOP-END.

• the function NAMW : Activity-Nodes → Activities maps (partial) activity object
instance definitions to the activity nodes.

• EdgesW ⊂ NodesW × NodesW is the set of directed (control flow) edges. The subset
EdgesW,sync ⊂ EdgesW contains synchronization edges (see, for example,
[RD98,ASE+96]). The semantics of a synchronization edge e = (n,m) is that m
may only be activated when n has completed, or when n is not reachable anymore
by the control flow5.

• ETMW : EdgesW → TemporalObjects assigns a temporal object such as an exact
duration (e.g. “4 days”) or an interval to an edge to indicate temporal transition
conditions such as “Next chemotherapy starts exactly 4 days after previous one”.
By convention, ETMW maps the temporal NULL object to an edge when no
temporal transition condition exists.

• ECMW : EdgesW → Conditions assigns a F-Logic condition such as ”... [parameter
→ LEUKOCYTE-COUNT, value → V] ∧ V < 1500” to an edge, which must be
fulfilled when the control flow wants to pass an edge. Again, by convention, we
set ECMW(e) = NULL when there is no transition condition.

2 We could also assign several activities to a node. However, we favor a 1:1
relationship between nodes and activities, as this facilitates and unifies workflow
modification such as dropping an activity.
3 or →> for set-valued attributes
4 E.g. the particular dosage of a drug may not be determined before node execution.
5 See [RD98] for a more detailed typology of synchronization edges. For the scope of
this paper, however, we restrict these edges to the “standard” type described above.

• SemSeqW ⊂ { {k1 ,..,km} ⊂ Activity-NodesW  k1 ,..,km is sequence within W} is the
set of activity sequences that should not be broken up by inserting additional
activity nodes.

Remarks: The partition of transition conditions into temporal and “non-temporal”
conditions is mainly motivated by the introduction of so-called interval covering
workflow regions in sec. 5, which need ETMW for determination. The problem that a
“non-temporal” transition condition such as “L EUKOCYTE-COUNT < 1500” implicitly
has a temporal aspect in the meaning of “Wait the number of days until LEUKOCYTE-
COUNT < 1500“ is discussed in this sec. too.
SemSeqW denotes meta information for the modification system w.r.t. the question
which sequences – from the application view – form semantic and “atomic” units (e.g.
Perform Chemotherapy Toxicity Test → Prepare Patient for Chemotherapy →
Perform Chemotherapy) and should not be broken up by inserting additional
activities. In this case, the modification agent, for example, tries to insert a parallel
branch for the additional activity. s ∈ SemSeqW can be user-defined or constructed by
the inter-activity-dependency predicate (see sections 5 and 6).

ActivitiesW denotes the set of all medical-activity instance definitions used by W.
Furthermore, to reduce formal complexity, we do not consider nested workflow
definitions (i.e. workflows with abstract aggregated nodes representing
subworkflows). If nested workflows are defined at build-time, we assume that such a
workflow definition is transformed at run-time into a flat workflow by replacing the
aggregation nodes by their subworkflows.

5 Workflow Execution and Interruption

We now formalize our execution model and notion of an event-caused instance
interruption: With iW, we denote a run-time instance of the definition W, and assign a
control agent CAiW

to every iW, which controls and processes the instance.
Furthermore, CAiW also is responsible for dynamically modifying the control flow of
iW (what will be described in sec. 6). To every instance iW, we can assign exactly one
object P : patient treated by iW. This assignment is expressed by the function get-
patient(iW).

When iW is generated by the engine, the following initializing routine is processed:

for a ∈ ActivitiesW : // a is used by W
A:medical-activity ⊗ new-id(A) ⊗ copy-values(A,a) ⊗ A.pat[get-patient(iW)] ⊗
activities-ordered.ins(A)

where new-id is a TL predicate binding A to a new oid each time this predicate is
evaluated6, and copy-values a function that copies the values of the partial instance
definition a to the attributes of A. This is necessary as the automated modification

6 see [KLW95], sec. 17.4, for details concerning object generation in F-Logic/TL

system of sec. 6 has to reason about the activities the instance is currently processing
or will perhaps process depending on the control flow. 7

At the occurrence of an event E during execution, an activity node n ∈ Activity-
Nodes has a state described by the function stateE(n) ∈ {untouched, activated,
currently-processed, committed, failed}, where

• untouched means that the control flow has not yet reached node n (or will never
reach n at all w.r.t. the particular workflow instance iW).

• activated means that control flow has reached the input edges of n, and that the
conditions ETM(e) and ECM(e) are fulfilled for every input edge e.

• currently-processed means that n is currently processed by CAiW.

• committed means that the processing of n has been successfully completed.
• failed means that n is not appropriate anymore. Each of the states untouched,

activated, currently-processed may change directly to failed. The relationship of
the failed state with the failure predicates drop, replace, check and delay of sec.
4.2 is that after RI has derived, for example, a drop(A) statement for an activity A,
it is automatically explored which workflow nodes w.r.t. which workflow
instances are affected. These nodes are then temporarily set to state failed, and
then replaced or dropped by the dynamic modification system (see sec. 6).
Technical failures of steps (e.g. because of an engine crash) are beyond the scope
of this paper.

5.1 Exception-Caused Workflow Interruption

We say that iW has been E-interrupted at node set NE={n1,..,nk}, if CAiW
has interrupted

the control flow of iW because of the occurrence of an event E, and if – at the moment
of the interruption – stateE(ni) is activated or currently-processed for all ni. The
cardinality of NE is > 1, if iW is interrupted within parallel execution (i.e. after an
AND-SPLIT).

5.2 Exception-Related Workflow Modification Regions

An important subproblem of dynamic workflow modification is the question for
which workflow region it is “sensible” at all to reason about structural changes when
a semantic exception occurs. For example, if it is detected during a chemotherapy that
a patient has an allergy w.r.t. one of the drugs, it makes sense to delete every node in
the workflow instance which applies this drug (as it is too dangerous to administer
this drug furthermore). However, if the patient only shows a moderate toxicity w.r.t.
an important drug, it makes sense to delete the drug nodes only in a „nearer“
neighborhood, and to assume that in workflow areas „far away“ the drug will be
applied again, as patients usually recover from moderate toxicity effects and are then
able to take this drug again after a while. Furthermore, in domains where semantic

7 We omit techniques to iteratively and on-demand generate the medical-activity
objects during instance execution, as this is a performance aspect.

exceptions occur frequently, it is useless to reason about workflow modifications
which would affect regions which are – w.r.t. the number of activities – „further
away“ from the current control flow, as another exception may happen in the
meantime creating a new situation. The basic problem of modification regions is, of
course, that they hardly can be specified at build time, but depend on the type of the
exception event E.

For our purposes, we formalize a modification region (MR) as follows: Given a
workflow W, an event E and an interruption node set NE = {n1,..,nk} ⊂ NodesW , a MR
rW,E,NE syntactically is a complete subgraph of W containing NE and having the strict-

forward characteristic. The latter means, that for all m ∈ rW,E,NE
, there exists a nm ∈

NE and a path nm → k1 → ,...,→ kj → m with nodes from rW,E,NE
(i.e. the control flow

starting at nm may reach m during execution)8.
The determination of a MR rW,E,NE

is done in three basic steps: First the interval T
expressing the “temporal influence” of E is determined. Second, for every path
starting from NE a subpath covering T is determined. Third, rW,E,NE

is constructed by
the union of this subpaths. These steps are now described in detail:

Temporal influence of events: For this, we have to assume some heuristic knowledge
about the „temporal scope“ of events. We therefore assume in our medical knowledge
base KB patient-independent information about events (similar to the average duration
of medical activities above), such as the definition of drug-caused hematological
toxicity and the average time a patient needs to overcome such a drug-caused side
effect (although this is complex knowledge, it is often already available in current
medical knowledge-based systems; see, for example, [MSN+97, MTD+96]). The KB
predicate for MR determination is kb-temporal-scope (kb-E, T), where kb-E is a
(partial) instance definition of a KB class hierarchy, and T an interval information. kb-
temporal-scope represents the usual or average time period during which an event
with the characteristics of kb-E affects the activities processed for an usual patient.
For example, for a drug allergy we would have kb-temporal-scope (kb-drug-allergy[],
[0,∞]) to represent that a detected drug allergy influences the therapy of the patient
for the whole remaining treatment (whatever its particular characteristics are). In
opposite to this, for a moderate hematological side-effect such as a decreased
leukocyte count as a consequence of aggressive drugs, we would have

kb-temporal-scope (kb-hematological-finding
[type → CYTOSTATIC-DRUG-CAUSED-HEMATO-TOXICITY,

 leukocyte-interval → [500 #/mm3, 2500 #/mm3],
[0,2 weeks])

8 Non-strict forward-oriented MRs make sense, when we have to consider that the

workflow is rolled back and reset to a node from which additional nodes become
reachable. The construction of such roll-back insensitive MRs may be appropriate for
dangerous events (such as a serious hematological toxicity w.r.t. a drug D) so that in
case of a roll-back it is guaranteed that D will also not be applied. Because of limited
space, we do not address this type of MRs.

to represent that such an event influences the workflows only for a period of about
2 weeks (during which the responsible drugs should be dropped), as it can be assumed
that the patient will recover during these two weeks and will be able to take the drugs
again9.

Interval covering region: Given a workflow definition W, a node n and an interval T
of type [0, k time-units], the T-covering region rcover,W,n,T is a strict forward-oriented
region that covers those nodes that will – in the normal case (i.e. if no additional
semantic or technical exceptions occur) − be processed during the interval T
(beginning with n). The determination of a T-covering region rcover,W,n,T is achieved as
follows: For every path pn starting from n the following is done: for the direct
successor activity node m of n (w.r.t. pn) heuristic information in the knowledge base
KB about the normal duration of the associated activity is retrieved. Then, the
transition time w.r.t. the successor of m is determined (by using the function ETMW).
This is done iteratively until the subpath p’n ⊂ pn is found with the characteristic that
the subpath (p’n + next successor) would exceed the duration specified by T. rcover,W,n,T

is then constructed by the union of all of these subpaths p’n originating from n.

Remark: The determination of rcover,W,n,T faces two problems: First, if for an edge e of
a path pn it holds that ECMW != NULL, this means that the transition duration is
unpredictable at determination time of rcover,W,n,T . At the moment, we consider such an
e simply with a duration of max(0,ETM(e)), with the consequence that rcover,W,n,T may
contain nodes that are executed after the interval T. In other words, the nodes of
rcover,W,n,T in this case form a superset of the nodes executed during T.10 Second, if a pn

contains a loop with a termination condition such as Do Chemotherapy activities until
x-ray cannot detect any tumor remainder anymore the execution time of the loop is
unpredictable too. Again, without additional meta knowledge we can only assign a
default duration such as the duration of its activity sequence to this loop, with the
consequence that rcover,W,n,T again becomes a non-minimal T-covering region. In both
cases, rcover,W,n,T only is “close” to the region which will in fact be executed during T.
However, this is still better than changing the workflow w.r.t. regions which are not
relevant at all.

Final construction: The MR rW,E,NE is then constructed by the union of all rcover,W,n,T

for n∈ NE.

9 If not, the rule system would derive another semantic exceptions after this period
stating that the patient shows an exceptional recovery pattern that requires additional
procedures.
10 The determination of the minimal rcover,W,n,T in such cases would require additional
meta knowledge such as the average time tC,lastValue it takes for a patient after a
chemotherapy of type C to increase the LEUKOCYTE-COUNT from lastValue to 1500.
As there exist detailed biomathematical models for cell colony growing in the
oncological domain, we can assume this knowledge, for example, for HEMATOWORK.

6 The Dynamic Workflow Modification System

We now describe the dynamic workflow modification system in detail (see fig. 4 for
an overview). We therefore assume that E is a new event inserted into diagnostic-
events(D) in the patient DB (of fig. 2). This triggers the rule interpreter RI, which fires
a set of rules R1 ,..., Rn. For the sample rules of fig. 3, the event

E : hematological-finding[parameter → LEUKOCYTE-COUNT ,..,value → 1200]

would induce rules 1 and 2, which would derive that the drug ETOPOSID should be
dropped and that for hematological recovery an additional drug, the so-called G-CSF
(GRANULOCYTE COLONY STIMULATING FACTOR), should be given.

GWEC (Global Wf Exception Controller)

CAiW1

CAiWn

OR End

OR

OROR

Determination of affected instances and propagation
of drop etc. derivations of E to instance control agents

...

...

OROR

Transformation of drop, replace, check, delay and
process derivations into graph operations (drcd- and
p-algorithm)

...

Result: workflow instances with modified control
flow, continuation of execution

Input received from RI: drop(A1), process(A2,T), ...

derivations of an exception event E

E-interruption

OR

OR

End

W
or

kf
lo

w
 M

od
ifi

ca
tio

n
S

ys
te

m

Figure 4: The workflow modification system.

RI then passes the set of all derived predicates dp = {drop(A1),.., replace(Am ,
Am+1) ,.., delay(An ,..) ,.., check(Ao) ,.., process(Ap ,..) ,..} 11 to the global workflow
exception controller GWEC. This agent, which constitutes the first layer of the
modification system, identifies the set of possibly affected instances paiE={iW1

,..,iWn}
for the respective patient (by checking whether get-patient(iW)=E.pat holds). The
further modification steps depend on the activity predicate type and are described in
sections 6.1 and 6.2.

An important subproblem w.r.t. all predicate types is to determine whether a
modified workflow definition leads to new inter-activity dependencies which have to
be expressed. For example, if it is necessary to insert a new activity node, it must be
decided whether this node can be directly executed „after“ the interruption location,
or whether inter-activity constraints do require that it has to be executed somewhere
later on. For instance, if it is has been derived that a drug D1 should be given
additionally, but that D1 should never be applied directly before a drug D2 (as D2 may
neutralize or weaken the effects of D1), then the node representing the application of
D1 must be executed after the D2 node.

To handle this problem of inter-activity constraints, we assume in our knowledge
base KB information about dependencies w.r.t. the temporal order or the exclusion of
medical activities. In particular, we assume a predicate of the form

inter-activity-dependency(A1,A2,Type,T)

where Ai is a medical-activity instance definition (see sec. 4.3). Type may, for
example, have the values BEFORE or EXCLUSION, and T is an (optional) temporal
object such as an interval. For example, the predicate

inter-activity-dependency(drug-application[drug-name→ “V INDESIN”],
 drug-application[drug-name→ “C ISPLATIN”],
 BEFORE, 1 hour)

expresses that the drug VINDESIN must be given exactly one hour before the drug
CISPLATIN. This knowledge type is already incorporated in many medical knowledge-
based systems such as the one of HEMATOWORK.

6.1 Management of drop, replace, check and delay derivations (drcd-algorithm)

To identify the set of in fact affected instances aiE, drop, replace, check, delay , it is first
checked by GWEC for every iW ∈ paiE , whether an activity Ak , for which drop,
replace, check or delay has been derived, matches at least one entry of ActivitiesW

.

For iW ∈ aiE,drop, replace, check, delay , GWEC then sends an interrupt request to CAiW ,
which performs an E-interrupt of iW at a node set NE. CAiW

now determines the E-

 11 We assume that the knowledge base itself has checked that its knowledge is
consistent in the meaning that, given any event constellation, it cannot be derived that
an action A has to be processed and has to be aborted simultaneously. This can
achieved by the usual knowledge verification strategies (e.g. [SSS82]).

related MR rW, E, NE and − within rW, E, NE − the set of affected activity nodes by using
the function NAMW . In the example of fig. 5, where the large rectangle represents the
MR for the considered event E, it would be detected that the derived predicate of rule
1 in fig. 3 (“drop drug with name ETOPOSID”) affects node l1, as its activity instance
definition represents the application of this drug. Depending on the particular
predicate type (drop, replace etc.), graph operations are then started to, for example,
eleminate nodes from the control flow (as the node l1 in fig. 5). In the case of a
replace predicate (new node!) or delay predicate (existing node at new location!),
CAiW

furthermore inspects the inter-activity-dependency(A1,A2,Type,T) predicate in kb
to check if there are dependencies with other existing activities. A BEFORE

dependency, for example, is translated into a synchronization edge which is inserted
into the workflow graph as well.

6.2 Management of process derivations (p-algorithm)

The insertion of new nodes (because of a derived process(Anew ,T) predicate) is
different from the dropping or replacing of nodes, as we first have to identify where
the node should be placed at all.

The brute method simply could be to generate a new workflow instance with the
new activity as the only node. However, this strategy is not appropriate in scenarios
where semantic exceptions occur frequently (such as in HEMATOWORK). First,
workflow management overhead would be a consequence, because the system must
initialize, register etc. a lot of small instances. Second, dependencies between the new
activity and activities of already running instances would be difficult to manage.

If we therefore want to insert the new activity into existing instances, we have to
decide which instance iW with get-patient(iW)=E.pat should take over the task of
performing this new activity. This problem certainly cannot be solved in general, as it
depends on the particular structure of the workflow system and application domain.
However, we can identify the following possibilities of a semi-automated
identification of an appropriate iW:

• Identification by meta knowledge: This means that GWEC can access basic
meta information about the semantic scope of an iW. For example, in
HEMATOWORK, for every treated patient there are two workflow instances, one
for the therapeutic activities and one for monitoring tasks for the parallel
diagnostic control. Therefore, if the derived activity would be of type
therapeutic-activity, then HEMATOWORK’s GWEC would select the therapeutic
instance.

• Using ActivitiesW: If the provided high-level meta knowledge is not sufficient,
we can directly use the set ActivitiesW, which contains the activity instance
definitions referenced by W (sec. 4.3).

This

set, however, may contain an arbitrary

mixture of diagnostic and therapeutic activities. Therefore, we can only use
aggregation strategies such as determining the cardinality of the subset of
diagnostic or therapeutic activities, to identify if W is a “more” diagnostic or
therapeutic workflow, and to derive some statements about the semantic scope of
W.

• User-driven selection: If an automatic identification is not possible, the domain
expert has to select the appropriate iW. This can be used in combination with the
two strategies described before (e.g. automated suggestion, confirmation by
user).

If an iW has been identified for the new activity Anew and then E-interrupted, it has to
be decided how the Anew-node has to be inserted.

Principally, there are two ways to integrate Anew into MR: It can be inserted into an
existing sequence (1), or we can add an AND-SPLIT/AND-JOIN-sphere, which contains
(only) the Anew-node as one parallel branch, and the already existing “local” nodes as
the other parallel branch (2). Possibility (1), for example, is not appropriate, when a
sequence A1→ ...→ An being a candidate for insertion of Anew forms a logical unit (i.e.
is an element in SemSeqW) that should not be “destroyed” by inserting other activities.
If the sequence A1→ ...→ An allows the integration of Anew, we have to consider
ordering constraints stored in the inter-activity-dependency predicate, and perhaps
have to reorganize the sequence. Otherwise, if an AND-sphere is inserted, ordering
constraints have to be managed via the additional insertion of synchronization edges.
In particular, the p-algorithm (pa) works as follows: (see [Mül99] for the full
algebraic notation):

OR

OROROR

Start

(E:hematological-finding
 [parameter->Leukocyte-Count,..,
 value->1200]

drug-application
[drug-name->"Etoposid",
drug-dosage->100,
drug-unit ->mg]

n1 l1

l2

rW, E, {n1, n2}

AND

n2

E

E

...AND

drug-application
[drug-name->"G-CSF",
drug-dosage->300, ...

ORAND AND

...

Execution path of
workflow instance iW

E
Occurence of event E

OR

Figure 5: Dynamic node deletion and insertion after an instance interruption
caused by exception event E. The large rectangle rW, E, {n1,n2} is the modification
region (MR), the gray nodes (e.g. l2 = Anew) and edges have been inserted because
of a process predicate (the dashed edges denote synchronization edges).

After the E-interrupt of iW at node set NE, pa first selects a n ∈ NE as starting
point12. It then determines the relevant modification region MR which is the
intersection of the E-related MR rW, E, NE and the T-covering region rcover,W,n,T. Within
MR, pa determines the sequence n=k1 ,.., km= c, where c is the next control node of
type AND-SPLIT/OR-SPLIT (or the last node of the sequence within MR). If k2 → ,.., →
km-1 is not an element in SemSeqW , Anew is inserted into this sequence in a way not
violating any constraints in inter-activity-dependency(...). If (k2 → ,.., → km-1)∈
SemSeqW , or no constraint-compliant sequence k2 → ,.., Anew ,.., → km-1 is possible, pa
alternatively inserts an AND-SPLIT after n and an AND-JOIN before c, and inserts AND-
SPLIT → Anew → AND-JOIN as one branch, and AND-SPLIT → k2 → ,.., → km-1 →
AND-JOIN as the other path. However, if an inter-activity dependency of type
EXCLUSION with one ki does not allow the insertion of Anew in the (k2 → ,.., → km-1)-
context at all, pa moves to the c-node. If c is an AND-SPLIT, pa tries to insert Anew

into one of the parallel sequences after c by the same criteria described above. In case
of c is an OR-SPLIT, pa tries to directly insert an AND-SPLIT before c and an AND-
JOIN after the corresponding OR-JOIN, with AND-SPLIT → Anew → AND-JOIN as one
parallel path and the OR-sphere as the other parallel path (see fig. 5). This moving to
the next SPLIT-control is done iteratively until Anew has been inserted, or until pa
leaves MR. In the latter case, additional user input is required specifying, for example,
that a sequence in MR is not anymore in SemSeqW, and therefore can be used for the
insertion of Anew.

After Anew has been successfully inserted, the next step now is to determine inter-
activity dependencies w.r.t. already existing activities. This is done by scanning inter-
activity-dependency(A,B,Type,T) in kb, and translating them, in the case of a BEFORE

dependency, into a synchronization edge. In fig. 5, for example, Anew = l2 (a G-CSF-
node) is synchronized with two other nodes.

7 Summary, Discussion and Future Work

We described an approach for automated detection of semantic exceptions, and the
partially automated derivation of the implications for running workflow instances.
The approach is mainly motivated by our experiences with the system HEMATOWORK

supporting long-term treatment in cancer therapy. One basic problem of domains such
as oncology is the enormous amount of diagnostic and monitoring data, and that a
significant number of patients suffer from very specific drug-side effects and other
exceptions, so that their treatment workflows have to be modified partially. Therefore,
the approach basically intends first to filter exception events out from “normal”
events by a rule base, second to automatically derive which workflow instances are
affected w.r.t. which control flow areas, and third to automatically adjust − as much
as possible − the affected areas w.r.t. their control flow (by dropping and adding new
activities). For this purpose, two basic control flow modification algorithms (drcd-and
p-algorithm) have been introduced. Even if they fail (if, for example, the p-algorithm

12 Please recall that the cardinality of NE is > 1 iff the interruption occurred during a
parallel path execution. Therefore, Anew must be integrated only into one sequence.

is not able to determine an insertion point meeting all constraints), and modification
control must be shifted to the domain expert, the system can provide at least
information in which region the insertion should take place.
Of course, argument could be made, that the cascade of deletion and insertion
operations may lead to incorrect workflows. The counter-argument is, that as long as
the original workflow definitions and the underlying rule base are consistent, the
modified workflow should be consistent as well. Consistency of rule bases has been
addressed by several artificial intelligence approaches (e.g. [SSS82]), while semantic
consistency of (human-defined) workflows still is an open research problem, which is,
however, orthogonal to our approach of translating rules as procedural fragments into
workflow modification operations.

Furthermore, the modification agents described need a lot of declarative
knowledge to derive modification implications when events occur. While this may not
be readily available in all domains, this approach is well suited for medical domains
where knowledge bases are commonly available and can thus be extended for the
additional purposes. A further characteristic of our approach is the high percentage of
temporal aspects, as we, for example, have to determine appropriate modification and
interval-covering workflow regions. Currently, we use user-defined “temporal”
objects to express heuristic temporal constraints, but a more explicit system-supported
approach by using temporal databases in connection with temporal logic could, from
the formal point of view, model some aspects better.

At the moment, we are only able to delete or insert single nodes according to
derived predicates which definitely could have been evaluated to true. However, as
changing a workflow instance must be viewed as a very time-consuming process, it is
desirable to support larger workflow changes. For this, it can be useful to insert larger
subgraphs containing activity nodes which may not necessarily will be processed but
are likely – because of the particular type of E – to become relevant during further
execution of the workflow instance iW. For example, if it has been derived that a drug
D should be applied because of an event, and if it is known that most of the patients
receiving this drug have some side-effects after a few days implying additional
measures, it makes sense to directly integrate this additional activities into the control
flow, as it is likely that the patient will need at least one of these additional activities.
Further work will concentrate on these topics.

Furthermore, the implementation of HEMATOWORK is still one of the major efforts
to be addressed. Currently, we have developed the patient database DB based on
ORACLE and a knowledge base KB realized with O2. Rules and rule processing
modules (RI) are implemented with the rule shell CLIPS (C-LANGUAGE INTEGRATED

PRODUCTION SYSTEMS; [GR93])13. The implementation of the engine still is an open
problem, as the commercial workflow systems we inspected do not provide sufficient
support w.r.t. run-time interrupts and dynamic changes. Therefore, at the moment, an
own implementation currently is addressed, based on the CORBA implementation of
IONA ORBIX.

13 Although there exists an available prototypical implementation of F-Logic (FLORID

[FHK+97]), we had to implement our rule-related modules with a low-level rule shell
(i.e. CLIPS) because of the restricted API capabilities of FLORID.

Acknowledgements

We are grateful to M. Reichert, who has given valuable comments especially w.r.t.
the graph modification algorithms. Furthermore, we want to thank the anonymous
reviewers for their comprehensive suggestions to improve the paper.

References

ASE+96 Attie, P.; Singh, M.P.; Emerson, E.A.; Sheth, A.; Rusinkiewicz, M.:
Scheduling Workflows by Enforcing Intertask Dependencies.
Distributed Systems Engineering Journal, vol 3, 1996: 222-238.

BJ96 Bussler, C.; Jablonski, S.: Die Architektur des modularen Workflow-
Management-Systems MOBILE. In [Vos96]: 369-388.

BK94 Bonner, A.J.; Kifer, M.: An Overview of Transaction Logic. Theoretical
Computer Science, 133: 205-265.

BK95 Bonner, A.J.; Kifer, M.: Transaction Logic Programming. Technical
Report CSRI-323, Computer Science Research Institute, University of
Toronto, 1995.

CGP+97 Casati, F.; Grefen, P.; Pernici, B.; Pozzi, G.; Sanchez, G.: WIDE
Workflow Model and Architecture. Technical Report, University of
Milano, 1997.

DKÖ+98 Dogac, D.; Kalinichenko, L.; Özsu, T.; Sheth; A. (eds.): Workflow
Management Systems and Interoperability. Springer, Berlin, 1998.

DKR+98 Davulcu, H.; Kifer, M.; Ramakrishnan, C.R.; Ramakrishnan, I.V.:
Logic-Based Modeling and Analysis of Workflows. Proc. PODS98: 25-
33.

FHK+97 Frohn, J.; Himmeröder, R.; Kandzia, P.-Th.; Lausen, G.; Schlepphorst,
C.: FLORID - Ein Prototyp für F-Logik. Proc. BTW97, Ulm, 1997: 100-
117.

GR93 Giarratano, J.; Riley, G.: Expert Systems: Principles and Programming.
PWS Publishing Company, 1993.

HSS96 Heinl, P.; Schuster, H.; Stein, K.: Behandlung von Ad-hoc-Workflows
im MOBILE Workflow-Modell. ITG Fachbericht, STAK '96 –
Softwaretechnik in Automation und Kommunikation, München, März,
1996.

KLW95 Kifer, M.; Lausen, G.; Wu, J.: Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(4), 1995: 741-
843.

MH98 Müller, R.; Heller, B.: A Petri Net-based Model for Knowledge-based
Workflows in Distributed Cancer Therapy. Proc. Intern. EDBT98
Workshop on Workflow Management Systems, Valencia, Spain, March
1998.

MHL+98 Müller, R.; Heller, B.; Löffler, M.; Rahm, E.; Winter, A.: HematoWork:
A Knowledge-based Workflow System for Distributed Cancer Therapy.
Proc. of the GMDS98, Bremen, Sep. 98.

Mül99 Müller, R.: Rule-based Interruption and Modification of Workflow
Instances. Technical Report. Department of Computer Science, Leipzig

University 1999.
MSN+97 Müller, R.; Sergl, M.; Nauerth U. et al.: TheMPO: A Knowledge-Based

System for Therapy Planning in Pediatric Oncology. Computers in
Biology and Medicine vol. 27(3), 1997:177-200.

MTD+96 Musen, M.A.; Tu, S.W.; Das, A.K et al.: EON: A Component-Based
Architecture for Automation of Protocol-Directed Therapy. Journal of
the American Medical Informatics Association 1996 (3): 367-388.

RD98 Reichert, M.; Dadam, P.: ADEPTFLEX - Supporting Dynamic Changes of
Workflows Without Losing Control. Journal of Intelligent Information
Systems 10, 1998: 93-129.

She97 Sheth, A.: From Contemporary Workflow Process Automation to
Adaptive and Dynamic Work Activity Coordination and Collaboration.
Proc. DEXA Workshop on Workflow 1997.

SK98 Sheth, A.; Kochut, K.: Workflow Applications to Research Agenda:
Scalable and Dynamic Work Coordination and Collaboration Systems.
In [DKÖ+98]: 35-60:

SSS82 Suwa, M.; Scott, A.C.; Shortliffe, E.H.: An approach to verifying
completeness and consistency in a rule-based expert system. AI
Magazine 3, 1982:16-21.

Vos96 Vossen, G.: Geschäftsprozeßmodellierung und Workflow-Management:
Modelle, Methoden, Werkzeuge. Thomson, Bonn, 1996.

VW98 Vossen, G.; Weske, M.: The WASA Approach to Workflow Management
for Scientific Applications. In [DKÖ+98]: 145-164.

Wes98 Weske, M.: Flexible Modeling and Execution of Workflow Activities.
Proc. 31st Hawaii Int'l Conf. on System Sciences (HICSS–31), Software
Technology Track (Vol VII), 1998: 713–722.

