Dealing with Logical Failures for
Collaborating Workflows”

R. Miiller, E. Rahm
University of Leipzig, Germany

Abstract. Logical failures occurring during workflow execution require the dynamic
adaptation of affected workflows. The consequences such a dynamic adaptation may
have for collaborating workflows have not yet been investigated sufficiently. We
propose a rule-based approach for dynamic workflow adaptation to deal with logical
failures. In our approach, workflow collaboration is based on agreements specifying
the delivery time and quality of objects a workflow expects from its collaboration
partners. Our mechanisms decide which collaborating workflows have to be in-
formed when a dynamic adaptation is performed. In particular, we estimate the tem-
poral and qualitative implications a dynamic adaptation has for collaboration part-
ners. Because of the automated handling of logical failures, we expect that our ap-
proach significantly improves the robustness and correctness of collaborating
workflows. The approach has been developed in the context of collaborative work-
flow-based care for cancer patients.

1 Introduction

Failure situations during workflow execution are usually classified into system failures and
logical failures [24]. System failures cover exceptional situations such as malfunctions of
operating system components or database servers. Logical failures refer to application-spe-
cific exceptional situations for which the control and data flow of a workflow is not adequate
anymore. For example, a workflow supporting a physician during a cancer chemotherapy
may become inadequate because the patient suddenly shows a drug allergy. In this case,
structural adaptations such as dropping a drug activity may become necessary to cope with
the new situation. Previous work on dealing with system failures has often been based on
advanced transactional models [13]. Logical failures have been addressed in the field of dy-
namic workflow management [23,12,4,7].

So far little work has dealt with logical failures affecting collaborating workflows.
Workflow collaboration usually means that a workflow provides a result for another work-
flow within a specific time interval or quality range. Thus, a dynamic adaptation of the pro-
viding workflow may imply that this result cannot be delivered timely anymore or only with
reduced quality. Generally, collaborating workflows are processed by different workflow
systems located at separate organizational units so that one side usually has no detailed
knowledge about logical failures and dynamic adaptations occurring to workflows at the
other side. Therefore, a general mechanism is needed that informs collaboration partners in
an appropriate way when a relevant dynamic adaptation has been performed for a workflow.

Collaborating workflows are necessary in many application domains, e.g. for e-business,
banking or medical treatments. In Fig. 1 we illustrate an example that we will also refer to
in subsequent sections. It originates from collaborative cancer treatment. In the shown ex-
ample, we assume that a workflow system at the department of internal medicine supports
the physicians w.r.t. the chemotherapy of a patient, while another workflow system at the
radiotherapy department supports tasks such as the preparation, performance and aftercare
of radiotherapy procedures. Both workflows depend on each other in order to allow for a co-
ordinated treatment of a patient. For example, a treatment may consist of a two weeks che-

* Supported by the GERMAN RESEARCH ASSOCIATION (DFG) under grant number Ra 497/12-1

O. Etzion and P. Scheuermann (Eds.): CooplIS 2000, LNCS 1901, pp. 210—@, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Dealing with Logical Failures for Collaborating Workflows 211

motherapy and parallel units of supporting radiotherapy every two days (for radiotherapy,
the patient has ambulance appointments at the radiological department). If a logical failure
such as an unexpected allergy w.r.t. the drug VINCRISTIN occurs, this may require dynamic
adaptations of the chemotherapy workflow such as deleting the VINCRISTIN node (Fig. 1).
This adaptation may impact the radiotherapy workflow. As a temporal implication the che-
motherapy workflow may be finished earlier so that a radiotherapy unit may be started ear-
lier. As a qualitative implication, additional radiotherapy units may become necessary to
compensate the dropped drug being essential for tumor remission. Thus deletion of nodes in
one workflow can make it necessary to insert additional nodes in a collaborating workflow.

To address logical failures and their impacts on collaborating workflows, we are current-
ly developing the workflow management system AGENTWORK at the University of Leipzig.
Main characteristics of AGENTWORK described in this paper are as follows:

First, AGENTWORK allows to specify at what time a workflow expects which results
from other workflows. In particular, tolerance limits and constraints for delivery times and
result qualities can be specified. Second, based on our previous work [21] we use a rule-
based approach for dynamic workflow adaptation when logical failures occur.

Third, as a main contribution of this paper, we provide a model that enables a workflow
system to decide which collaborating workflows have to be informed in what manner when
a dynamic adaptation is performed. In particular, we propose a predictive strategy estimating
whether constraints for delivery times or result qualities will be violated due to the dynamic
adaptation. In this way we inform collaborating partners in time so that they can prepare
themselves w.r.t. consequences of the logical failure. For example, if the chemotherapy ad-
aptation in Fig. 1 implies that the required total amount of drug dosages cannot be applied
anymore, we inform the radiological department as soon as possible and before the chemo-
therapy has finished. This allows preparing, for instance, additional radiotherapy units to
compensate the reduced chemotherapy which would not have been possible without a pre-
dictive approach. Temporal implications of an adaptation are determined by estimating the
duration that will be needed to execute the dynamically adapted workflow, and by compar-

Preparation of Execution of Check of
— Patient for —> Radiotherapy Clinical —
Radiotherapy Unit A ﬁ Findings
T Execcution of
Workflow System at i Radiotherapy | add ?
Radiological Department (ws-rd) Unit B
. _ x
7 -—
- Implications for ws-rd ? ¥
¥

Infusion of Infusion of

Cyclophos- = Prednison l

phamid
AND- AND- Check of
T osplit |/ e Join || Laboratory >
2 Findings

Infusion of
Vincristin
&drop

Workflow System at E D Logical failure event E: Allergy

Internal M edicine . . .
X implies treatment adaptation
Department (ws-imd)

Fig. 1. Example of two collaborating workflows in a medical domain.
CYCLOPHOSPHAMID, PREDNISON and VINCRISTIN are cancer drugs.

212 R. Miiller and E. Rahm

ing it with originally fixed time constraints. If time constraints are expected to be violated,
affected collaboration partners are informed immediately. For determining qualitative im-
plications we will introduce so-called quality-measuring objects. Such objects have already
been used for quality control in data warehousing [15] but, to our knowledge, not yet in the
workflow area. In our context, quality-measuring objects are numerical objects of a work-
flow’s data flow that measure the quality of a result provided by a workflow. Such objects
are used to decide whether an adaptation decreases the quality of a collaboration result be-
low a specified tolerance limit so that collaboration partners have to be informed. In our
medical example, the drug dosage applied to a patient can serve as a quality-measuring ob-
jectas it is an important measure for the degree of tumor remission. In financial applications,
price and credit limits may represent such quality objects.

Fourth, AGENTWORK aims at automating as much as possible of this process. This is de-

sirable especially in large-scale workflow environments with many collaborating workflows
running concurrently. By a high degree of automation, we expect to reduce the probability
that collaboration partners are not informed timely about relevant logical failures and dy-
namic workflow adaptations.
The paper is organized as follows: After a discussion of related work in section 2, section 3
gives an overview of the AGENTWORK system. Sections 4 introduces our workflow and col-
laboration model; section 5 explains the rule-based approach for handling logical failures.
In section 6 we outline the approach to determine the temporal and qualitative implications
of workflow adaptation for collaborating workflows. Finally, we summarize and discuss fu-
ture work.

2 Related Work

Collaborative workflow research has focussed on aspects such as interoperability frame-
works, collaboration management infrastructures and workflow-oriented event notification
systems [1,5,9]. However, not much work has been done so far to cope with failure manage-
ment in inter-workflow collaboration scenarios.

For example, in [11] an approach is described for event-based communication between
processes interacting in a consumer-producer relationship. A dependency graph maintains
which processes have been triggered by which events. If a process P fails, the system derives
from the dependency graph which processes depend on P and sends exception events to
them. Notified processes then perform an abort or compensation-based partial rollback. The
possibility that affected processes may continue after a dynamic adaptation is not investigat-
ed by the authors.

In WIDE [6], workflow collaboration is specified via SEND and RECEIVE nodes by which
workflows synchronously can exchange information about results. Failures leading to a
workflow starvation (i.e. a receiver workflow waits in vain for a result) or a deadlock (i.e.
two workflows in vain wait for results from each other) are handled as follows: Either an
alternative control flow path that already has been specified at definition time is executed
when a waiting threshold expires, or the conflict is resolved manually in an ad-hoc manner.
A more detailed communication protocol informing that because of a logical failure a result
will be provided later or with reduced quality is not supported. In particular, it is not inves-
tigated how to adapt a receiver workflow dynamically so that it can better cope, for example,
with a result of reduced quality.

In [18], unexpected terminations of workflows or workflow activities in e-commerce
scenarios are addressed. In case of such a termination, a gateway protocol informs collabo-
rating workflows about the termination reason and the state of the failed workflow or activ-
ity. Furthermore, collaborating workflows may be informed about a modification of an al-
ready agreed-on price for the service or product that is going to be provided by the workflow
affected by the failure. To determine the price modification due to a termination, exception
rules can be assigned to agreements specifying under which termination circumstances

Dealing with Logical Failures for Collaborating Workflows 213

which price modifications shall be applied. However, the approach does not cover failures
not leading to a workflow or activity termination but for example to the dynamic dropping
or adding of activities. Furthermore, considering only price modifications is not appropriate
for many non-commercial domains such as collaborative medical care.

Recently, also approaches from artificial intelligence have been proposed for workflow
failure handling. For example, in [14] business processes are modeled in terms of agents,
services, (re-)negotiations and service failures. In [17], exception handling agents detect and
resolve workflow exceptions using the heuristic classification method [8]. However, both
approaches do not address how failures are resolved in means of structural process adapta-
tions and how the consequences for collaboration partners can automatically be derived.
Other approaches addressing constraint violations during plan execution [3,22] also do not
to the best of our knowledge, specifically address the temporal and qualitative consequences
of plan adaptations for collaboration partners.

3 Layers and Components of AGENTWORK
We are currently developing the

AGENTWORK prototype to support

rule-based dynamic workflow adap- T

tation in order to deal with loglcal i
failures. It consists of three architec-
tural layers (Fig. 2). A communica- Layer for Logical Failure Handling
tion layer based on CORBA is respon-
sible for communication with other Inter-Workflow Agent
workflow systems, databases, users,
etc. The workflow definition and exe- Adaptation Agent
cution layer supports the definition
and execution of workflows. The lay- Event Monitoring Agent
er for logical failure handling pro-
vides three agents to cope with logi- Workflow Definition and Execution Layer
cal failures: . . Workflow Editor ‘ ‘ Workflow Engine
* The event monitoring agent de-

cides which events in the workflow 2

. . . . Communication Layer (Corba)
environment constitute logical fail-

ure events.

* The adaptation agent adapts af-
fected workflows. For example, it
removes or inserts activities so that the workflow can better cope with the new situation
caused by the logical failure event.

* The inter-workflow agent determines whether a dynamic workflow adaptation has any im-
plications for other workflows collaborating with this workflow.

How these tasks are achieved will be explained in the sequel. AGENTWORK is currently ap-

plied to the domain of cancer treatment within the HEMATOWORK project [19] at the Uni-

versity of Leipzig.

4 Workflow Model

We now briefly outline our approach for defining workflows and workflow collaboration.
In particular we introduce temporal and qualitative collaboration agreements. AGENTWORK
definitions are based on an object-oriented meta model mainly consisting of a class hierar-
chy for cases, events, activities and agents. A Case object represents a person or institution
for which an enterprise or organization provides its services (such as a patient or a custom-
er). Objects of class Event represent anything that occurs w.r.t. a case and therefore may im-
pact workflows running for this case. The Event subclass Activity is used for events that do

Fig. 2. Layers and components of AGENTWORK.

214 R. Miiller and E. Rahm

not only happen to a case but are actively performed (e.g. a drug infusion). Activities are per-
formed by Agent objects, such as physicians, clerks or application programs. The agents of
the layer for logical failure handling are also members of this class.

4.1 Workflows and Activities

Workflows are defined based on the sketched meta model. Activities of a workflow are rep-
resented by activity nodes; the control flow is specified by edges and control nodes. AGENT-
WORK provides control node types for conditional branching (node types OR-SPLIT/OR-
JoIN), for parallel execution (AND-SPLIT/AND-JOIN) and loops (LOOP-START/LOOP-END).
For every split node or LOOP-START node there must be exactly one closing join node or
LooP-END node. The data flow is represented by data flow edges. Internal data flow edges
specify the data flow between nodes within one workflow. External data flow edges specify
the data flow between workflow nodes and external data sources such as databases or user
interfaces.

An activity node has an associated ac-
tivity definition to specify what has to be Agent
done when the control flow reaches this . -
. L. Lo i class: Physician
node. In Fig. 3 an activity definition using 63
Lhe Actz_vzty dsubclass .Dr_'ug-lnguszon };as E:eukocyte» Activity-Node
been assigned to an activity node specify- | teuko Name: “Infusion of Vincristin”
ing that the patient has to receive a VINCRI- | 55,
STIN infusion with a dosage of 2 mg. Fur- Activity-Definition:
thermore, it is specified that the agent per- Drug-Infusion{
. drug-name = Vincristin,
forming this activity must be a physician. dosage = 2 mg}
As a shorthand, we use the terms A-ac- oot average-duration = 2 hours
tivity and A-node to denote an activity resp.
?ctlv:y node based on the activity defini- Fig. 3. Workflow definition part.
ion A.

To an activity definition A, meta infor-
mation about the execution duration of A-activities can be assigned. This may be the mini-
mal, maximal or average duration (e.g. in Fig. 3 it is specified that the average duration of
such an infusion is 2 hours). In addition, the workflow engine measures the execution dura-
tions for each activity type. These measurements are used to calculate and to continuously
refine the average, maximal and minimal duration of activities of a specific type. These mea-
surements allow restricting the use of pre-specified duration information to the first phase of
an AGENTWORK installation.

As usual, the term workflow refers to an instantiation of a workflow definition executed
by the workflow engine. In AGENTWORK, a workflow runs for exactly one case (e.g. patient
or customer) but for one case several workflows may be executed concurrently.

4.2 Workflow Collaboration

In AGENTWORK, workflow collaboration is specified on a communication level by defining
when a workflow has to exchange which information to which other workflow system. Note
that we communicate with a workflow system and not directly with its workflows, as a work-
flow modeler at one site usually does not have knowledge about the structure of workflows
at another site. Thus it is the task of the receiving workflow system as our collaboration part-
ner to propagate information messages to those workflows that are affected.

Workflow communication is specified by COMM-OUT and COMM-IN nodes and inter-
workflow objects. A COMM-OUT node specifies when information has to be send to some
collaboration partner. A COMM-IN node specifies when information is expected to be re-
ceived from some collaboration partner. The details are specified by inter-workflow objects
assigned to these nodes. Such an inter-workflow object if of the structure (ws, o: Class, cs)

Dealing with Logical Failures for Collaborating Workflows 215

where ws identifies the collaborating workflow system that shall receive or is expected to

send information.

* oisan object of class Class which is exchanged between collaboration partners and which
contains or describes a product or service.

* csis a Case object and describes the case to which o belongs (e.g. a patient treated collab-
oratively or an industrial customer). The receiving workflow system uses cs to identify the
affected workflows.

In Fig. 4 we extend the workflows of

Fig. 1 with such communication nodes

and inter-workflow objects. For the lower

Radiological Department (ws-rd)

COMM- Preparation of

workflow, the COMM-OUT node and its TN [Rngier;lt for > ...
associated inter-workflow object specify rd-pat: Case adiotherapy
that a Chemo-Report object ¢ has to be T (ws-imd,

sent to the radiological workflow system ! vy erort
ws-rd after the inspection of several labo-
ratory findings. imd-pat identifies the pa- -‘ Communication Layer of ws-rd ’_

tient to whom the report belongs. Vice 4

versa, the upper workﬂqw at .ws-rd con- % Y YNNG F
tains a COMM-IN node with an inter-work-

flow object stating that before the radio- T (W.S'C’;” Revort
therapy preparation a Chemo-Report ob- imd-pat: Case 1 f,',,d_p::‘)o' eporh

ject is expected from ws-imd w.r.t. the Cho o '

patient rd-pat treated by the radiotherapy o | Laboratory |-{COMM=| |

workflow. Based on attribute values of rd- Findings ouT

pat, ws-rd can determine which inter-

workflow object received from ws-imd Internal Medicine Department (ws-imd)

belongs to which of its workflows. To a

CoMM-IN or COMM-OUT node several in-

ter-workflow objects can be assigned, and

a workflow may contain an arbitrary number of COMM-IN or COMM-OUT nodes.

CoMM-OUT and COMM-IN nodes are processed as follows:

* When a COMM-OUT node is reached, for each of its inter-workflow objects (ws, o: Class,
cs) the tuple (o: Class, cs) is sent to ws. This is done asynchronously, i.e. the workflow is
continued after the send operation. If the path with the COMM-OUT node shall not be con-
tinued until ws sends a reply, this can be specified by placing a COMM-IN node directly
after the COMM-OUT node.

* Vice versa, when a COMM-IN node is reached with an inter-workflow object (ws, o: Class,
cs), the engine checks whether such an object o for case cs has already been received from
ws. If yes, the engine forwards o to all activity nodes of the respective workflow that need
o.If no, the engine waits for o until a deadline is exceeded and then sends a reminder to ws.

By default COMM-OUT and COMM-IN nodes are executed when they are reached during

workflow execution. In addition, at workflow start time or during execution we can assign

absolute (calendar) time points to them to specify when information has to be send to or

when it is expected from a collaboration partner (e.g. send information on 20th July 2000, 6

p-m.). For example, for a long-term workflow covering two phases of a treatment it may be

useful to dynamically assign absolute time points fixing the intended delivery times w.r.t.

the remaining COMM-OUT nodes not before the second phase is entered. Such absolute (cal-

endar) time points can be manually assigned or can automatically be derived by estimating
the execution duration of the path(s) leading to the communication node and by adding this
duration to the workflow’s actual execution time point (similar to [10]). A combination
could consist of a manual assignment and an automated check estimating whether this abso-
lute time point is realistic w.r.t. the workflow definition. We describe such estimation algo-

Fig. 4. Workflow communication example.

216 R. Miiller and E. Rahm

rithms in more detail in section 6 where they are used for determining temporal implications

of workflow adaptations. Relative time points can also be assigned to a COMM-OUT node

(e.g. send information 3 weeks after workflow start), but are converted to absolute time

points by the system.

Furthermore, we assign so-called temporal and quality collaboration agreements to com-
munication nodes in order to specify which deviations, e.g. caused by logical failures, are
tolerable and which not.

Temporal collaboration agreements: To a COMM-OUT node two thresholds acc-threshold

(acc for acceleration) and delay-threshold of the form (v, time-unit) can be assigned (with

v20 and time-unit € {sec, min, hour, day, week, ...}). The semantics is:

o If acc-threshold or delay-threshold is left unspecified, an acceleration resp. delay is
viewed as irrelevant.

* If an absolute time point atp (such as 20th July 2000, 6.00 p.m.) has been assigned to the
CoMM-OUT node, acc-treshold and delay-threshold specify that the workflow containing
this COMM-OUT node should send its information within the interval

[atp - acc-threshold, atp + delay-threshold]
(e.g. within [20th July 2000 - 2 days, 20th July 2000 + 3 days]). Whenever a dynamic ad-
aptation implies that this will not be possible anymore, the collaboration partner has to be
informed.

* If no absolute time point has been assigned to the COMM-OUT node, acc-treshold and de-
lay-threshold refer to the relative change in the execution time due to a workflow adapta-
tion. Let dj,p,, denote the execution time that would have been needed to reach the
COoMM-OUT before the adaptation, and d,g,, the execution time that will be needed to
reach the COMM-OUT after the adaptation. The collaboration partner then has to be in-
formed if:

Apefore = dafier > acc-threshold (workflow accelerated by more than acc-threshold) or
dafier - Apefore > delay-threshold (workflow delayed by more than delay-threshold).

We emphasize that the described semantics of these thresholds serve the specific purposes

of logical failure handling. For handling deadlines and temporal thresholds for workflow ex-

ecution not "disturbed" by dynamic adaptations we refer to [16,10].

Qualitative collaboration agreements: A collaboration partner often expects that a result

provided by its partner will arrive not only in time but also with a certain quality. To express

this AGENTWORK allows to assign qguality constraints to inter-workflow objects. For exam-
ple, the chemotherapy report object ¢ of Fig. 4 may have different subsections for the applied
drugs, for clinical findings and for laboratory findings. Then, by assigning a quality con-
straint to ¢ such as

c.subsection-for-applied-drugs = Mandatory AND

c.subsection-for-laboratory-findings = Mandatory

both collaboration partners could fix the agreement that in the report at least the subsections

for the applied drugs and the laboratory findings have to be filled out as otherwise the radio-

therapy workflow cannot continue because important patient data are missing.

Even more, in many domains the quality of a result can be expressed by a numerical
threshold value. For example, the weighted sum of the report’s drug dosages describes the
quality of the chemotherapy as it closely correlates to the degree of tumor remission’. The
collaboration partners then could also assign a quality constraint such as

c.weighted-sum-of-drug-dosages > 100 mg

to the transferred report c. If this constraint is violated because some drugs had to be dynam-
ically dropped from the chemotherapy workflow, the radiological department has to be in-
formed as it may be necessary to dynamically add some radiotherapy units to compensate
the reduced chemotherapy. Generally, we will refer to a numerical object that is used to mea-

T The sum is weighted as the different drugs have a different strength w.r.t. tumor remission.

Dealing with Logical Failures for Collaborating Workflows 217

sure the quality of a result as a so-called quality-measuring object. Non-medical examples
for quality-measuring objects and constraints on them could be price ranges for e-business
interactions or credit limits for banking applications.

Determining how dynamic adaptations may influence such a quality-measuring object
requires additional quality-related meta knowledge w.r.t. workflow activities. Therefore, in
AGENTWORK quality transformation rules can be assigned to an activity definition A stating
how A-activities transform a quality-measuring object. For example, the activity definition
of Fig. 3

A := Drug-Infusion{drug-name = VINCRISTIN, dosage = 2 mg}
can be augmented by the quality transformation rule

c.weighted-sum-of-drug-dosages += 2 mg
to account for the respective drug dosage increase. Based on this meta knowledge, qualita-
tive implications of adaptations can then be determined as we show in section 6.

5 Logical Failures and Intra-Workflow Adaptation

To handle logical failure events, we use event-condition-action rules of the structure
WHEN event WITH condition THEN control action

Such a rule specifies in its event-condition part which event constitutes a logical failure. The

action part states which control action has to be performed for workflow activities to cope

with the failure event. Table 1 lists the supported control actions. A and B denote activity

definitions, c¢s again denotes a case (e.g. a patient or customer).

Control Action Meaning

drop(A,cs) For cs, A-activities must not be executed anymore.

replace(A,B,cs) | For cs, every A-activity execution is to be replaced by a B-activity.
check(A,cs) For cs, every execution of an A-activity has to be checked by a user.
add(A,cs) For c¢s an A-activity has additionally to be executed exactly once.

Table 1. AGENTWORK Control Actions

The check(A,cs) control action is used when there is not enough knowledge available to
decide whether an A-activity has become inadequate or not for c¢s. When a check(A,cs) con-
trol action is triggered, control is shifted to a user who has to specify whether the activity
should, e.g., be dropped or replaced.

An example for a rule triggering a control action is the following (A denotes the activity
definition Drug-Infusion{drug-name = VINCRISTIN}, Hemato-Findings(pat-id, parameter,
value) is a table collecting blood-related patient data):

WHEN INSERT ON Hemato-Findings REFERENCING NEW AS h *)

WITH h.parameter = Leukocyte-Count AND h.value < 1000

THEN drop(A, h.pat-id)
This rule expresses that if a patient has a leukocyte count less than 1000, VINCRISTIN infu-
sions have to be dropped for this patient. With rules such as (¥), AGENTWORK can monitor
any application environment events that may impact workflows.
When a new event E occurs, the following steps are performed: First, the event monitoring
agent checks whether E constitutes a logical failure. E is classified as failure event if at least
one control action is triggered by rules such as (*). Second, if a control action ca(A,cs) has
been triggered, affected workflows running for cs are determined. Concerning drop, replace
and check, a workflow is affected if it contains at least one A-node in the remaining control
flow. Concerning add, the workflow the user has selected for the new A-node is affected. An
affected workflow then is interrupted. With N we denote the interruption node set which is
the set of nodes which were either in execution or prepared for execution (i.e. the predeces-

218 R. Miiller and E. Rahm

Workflow before Adaptation Workflow after Adaptation
,,,,,,,,, N
L&) 2(B) 2
1A ®)

OR-
Split

7 (G)}N .t

g
Legend i Execution path until logical failure event £ —++t> Path not executed by actual workflow

Fig. 5. The regions of interest ROly,p,, and ROl g, . Letters denote activity definitions.

sor nodes have already committed) at the interruption moment. The cardinality of Ng may
be > 1, if the workflow is interrupted during parallel execution (i.e. after an AND-SPLIT or a
non-exclusive OR-SPLIT). In Fig. 5, Ng, consists of nodes 1 and 3.

Third, after the interruption the adaptation agent translates ca(A,cs) into node operators
adapting the control and data flow. By default, all A-nodes in the remaining control flow are
handled, e.g. all A-nodes would be dropped from the remaining control flow if ca(A,cs) =
drop(A,cs). If the adaptation shall be restricted only to a part of the remaining control flow,
a user can graphically select the workflow part to which the adaptation operations shall be
applied exclusively. A new node which has to be added because of an add control action is
— by default — inserted directly after a node of Ng. If such a new node shall be inserted some-
where later in the control flow, this has to be specified by a user. In Fig. 5, the adaptation
agent has dropped an E-node (5) from the control flow because of a drop(E,cs) control action
and has added a new H-node (8) because of an add(H,cs) control action.

AGENTWORK also supports the semi-automated determination of an appropriate part to
which the adaptation shall be restricted. This is mainly achieved by the possibility to assign
a valid time interval to the action part of a failure rule, such as:

WHEN event WITH condition THEN drop(VINCRISTIN,cs)

VALID-TIME [now, now + 3 days]
stating that the drug VINCRISTIN shall be dropped only for the next three days (starting from
“now” which is the moment when the control action was triggered). The adaptation agent
estimates which part of the remaining control flow will be executed during the next three
days, and applies the adaptations operation only to this part.

The consistency of adapted workflows is achieved as follows: First, the consistency of
failure handling rules is ensured by rule consistency algorithms as proposed in [2]. This
avoids that for example drop(A,cs) and add(A,cs) are triggered for the same workflow at the
same time. Second, consistency constraints reject adaptations leading, for example, to an ac-
tivity node for which input objects are not provided by data flow edges. Third, only autho-
rized users such as senior physicians may contribute to adaptations.

As we want to concentrate on the inter-workflow aspects of workflow adaptation, we re-

Dealing with Logical Failures for Collaborating Workflows 219
fer to [21] for further details w.r.t. our intra-workflow adaptation approach.

6 Managing Inter-Workflow Implications of Adaptations

Before an adapted workflow is continued, the inter-workflow agent is invoked if the work-
flow contains COMM-OUT nodes in its remaining control flow. This agent has to determine
whether the adaptation affects any collaborating workflow. Principally, it operates as fol-
lows:

First, it determines the so-called region of interest RO/ (Fig. 5). This is the workflow
region which starts at the interruption node set N and contains all adapted workflow parts.
If all adaptations from Ng occurred within a sequence of activities not belonging to a split/
join region, ROI simply ends with the last node (having the largest distance to Ng) that was
dropped, replaced or added. If the last adaptation took place within a split/join region (e.g.
between an OR-SPLIT and an OR-JOIN node), ROI ends beyond these last adapted parts at the
first AND-JOIN or OR-JOIN node joining all reachable paths starting from nodes of Ni even
if one of these paths has not been adapted at all. This is necessary, as especially the temporal
influence of an adaptation often can only be determined by considering all reachable paths
starting at Ng up to this joining node. For example, in Fig. 5 for COMM-OUT, the temporal
influence of the shown adaptation requires considering the path 1—2 although it has not
been adapted. This is because the execution duration of path 1—2 may be longer than that
of the adapted paths. Therefore, in Fig. 5 both paths starting at Ng have to be considered up
to the closing OR-JOIN.

In the sequel, ROl and ROl ., denote the region of interest before resp. after the
adaptation. They may cover the whole remaining control and data flow or only a part of it
(e.g. if the user manually has restricted the adaptation to such a part). As the control actions
of Table 1 only affect activity nodes, ROl resp. ROl 4., contain the same set of com-
munication nodes. We write ROI instead of RO, or ROl g, if the distinction between
the region before and after the adaptation is irrelevant.

Second, the relevant temporal and qualitative implications of the adaptation are deter-
mined. This is mainly done by estimating and comparing the execution durations and “qual-
ities” of the regions ROI},,f, ., and ROL,z,,. Whether the entire regions ROl and ROl 4,
are considered or only parts of them depends on the location of the COMM-OUT nodes. This
will be discussed below. The execution duration of a workflow region is estimated on the
base of several path duration algorithms of [20]. The guality of ROIp,y,,, and ROl is de-
termined and measured by using quality constraints and quality-measuring objects (section
4.2). If temporal thresholds or qualitative constraints are violated for an inter-workflow ob-
ject because of an adaptation, the affected collaborating workflow system is directly in-
formed.

Third, when the workflow is continued, the actual execution is monitored by the inter-
workflow agent. For example, unexpected delays of activity executions or external data ac-
cesses caused by system failures can be detected by this monitoring, and the inter-workflow
agent can refine its estimations. If necessary, the collaboration partners are informed about
such refined estimations.

A workflow system ws can handle temporal or qualitative effects about which it was in-
formed as follows: It may itself have failure rules stating how to react on constraint viola-
tions caused by (remote) logical failures of a collaborating workflow system. Alternatively,
users of both workflow systems together may decide how ws should react.

6.1 Determining Temporal Implications

We first sketch the principal algorithm of determining temporal implications. Then, we de-
scribe how execution durations are estimated.
The principal algorithm is as follows (Fig. 6):

220 R. Miiller and E. Rahm

1. Handling nodes within ROI: For each COMM-OUT node within ROI the subregion
SROI ;.- 1s determined leading from the interruption node set to the COMM-OUT node. For
example, for COMM-OUT in Fig. 5 SROI;,, consists of nodes 3, 8, 4, 6 and the AND-SPLIT/
AND-JOIN nodes. After this, it is estimated how long it will take to execute SROI g, -

If an absolute calendar time point is assigned to the COMM-OUT node, it is then checked
whether the estimated execution duration of SROI4,, violates a temporal threshold for any
inter-workflow object (ws, o: Class, cs) of the COMM-OUT node. If yes, ws is informed (left
branch of Fig. 6). If no absolute time point is assigned to the COMM-OUT node, the duration
that would have been needed to execute SROI},,p,,, has to be estimated, too. Then, it is
checked whether there is a mismatch between the durations of SROI},.f, ., and SROI g, Vi-
olating any temporal thresholds of an inter-workflow object (ws, o: Class, cs) of the COMM-
OUT node. If yes, ws is informed (middle branch of Fig. 6).

2. Handling nodes beyond ROI: For COMM-OUT nodes beyond ROI* — such as ComM-OUT,
in Fig. 5 — the same procedure is performed as for COMM-OUT nodes within ROI with the
only difference that we now consider the entire region ROI instead of a subregion SROI
(right branch of Fig. 6). In particular, it is estimated how long it will take to execute ROI ;-
Then, for every inter-workflow object of one of the COMM-OUT nodes beyond ROI we check
whether any temporal constraints are violated. For example, if an absolute time point azp has
been assigned to a COMM-OUT node beyond ROI it may be that already the duration of
ROI, 5, makes it impossible to reach the node before atp + delay-threshold. If such a con-
straint is violated, the affected workflow systems are immediately informed. Obviously, for
the duration estimations w.r.t. ROl fio,/pefore the results w.r.t. SROL s, pefore Can be re-used.

Note that estimating the time duration of ROI does not take into account the execution

time of nodes that have to be executed between the end of ROI and the COMM-OUT node.

l W orkflow interruption and adaptation (moment “now”) ‘

For COMM-OUT nodes
beyond ROI:

For each COMM-OUT node within ROI:

/

Determine SRO1,,,
leading to COMM-OUT node

Continue from (*) on with
_--4 ROI,,, instead of SROI,;,,
Estimate d;,, of SROI,,, ‘ (*) «-~ (WITHOUT checking (**))
For each COMM-OUT node
Foreach COMM-OUT without afp:
with atp:
’ Estimate d,,,,, of SROI, .,

IF now +d,,,, > atp + delay-threshold IF dg e, - dyeore > delay-threshold
OR now +d,,,, <atp - acc-threshold (**) OR dy.fpre - dypier > acc-threshold
for any (ws, o: Class, cs) of for any (ws, o: Class, cs) of
COMM-Out node: COMM-Out node:

Fig. 6. Algorithm checking temporal implications for collaborating workflows (afp = absolute
time point, dyefyre/ufier = €Xecution duration before/after adaptation). The acceleration check
(**) is not done for a COMM-OUT node beyond ROI as there may be further nodes between
ROI and the COMM-OUT node.

Note that ROI pefore a1d ROl 5, do not differ w.r.t. communication nodes.

Dealing with Logical Failures for Collaborating Workflows 221

For a COMM-OUT node with no absolute time point this is irrelevant as the algorithm then
only has to check whether there is a relative temporal mismatch w.r.t. the durations before
and after the adaptation. As nodes beyond ROI have not been adapted, this mismatch is en-
tirely determined by ROI. For a COMM-OUT node with an absolute time point the nodes be-
tween it and ROI are relevant, but the COMM-OUT node may be far away from ROI so that
estimating the time durations between ROI and such a node would be inherently imprecise.
Yet, by considering the changed duration of ROI we already enable an early notification for
workflow adaptations with significant impact on execution times (e.g. we detect if already
the duration of ROI ., makes it impossible to reach the COMM-OUT node in time). For those
CoMM-OUT nodes outside ROI not affected by the change of the ROI execution time, we
switch to a continuous monitoring approach. That is, after the workflow adaptation it is con-
tinuously checked for these COMM-OUT nodes whether their timing constraints can still be
met. By combining the predictive approach with continuous monitoring we achieve early
notifications even when only partial or imprecise execution time estimates are possible. The
overhead for the additional checks is considered acceptable because first the number of af-
fected COMM-OUT nodes is limited and second workflow adaptations due to logical failures
should be relatively rare.

We now sketch how the execution duration of workflow regions is estimated. In the cur-
rent implementation, estimations are based on the average duration of activity executions.
Worst-case durations using the maximal activity duration are viewed as too pessimistic, as
too often delays would be predicted which would not really occur.

The duration of a sequence is estimated by iteratively summing up the average activity
durations. Control edges are assumed to have a negligible duration. The duration of an AND-
SPLIT/AND-JOIN region (such as nodes 4, 5, 6 in ROI},,, in Fig. 5) is the maximum of the
estimated durations of all its paths.

If an OR-SPLIT/OR-JOIN region is discovered, it is tried either to predict which of the
paths starting at the OR-SPLIT will qualify for execution when the workflow will be contin-
ued, or the maximum of all paths is taken as a worst-case estimation (as not all paths may be
executed actually). A prediction may be possible if the workflow interruption has occurred
close to the OR-SPLIT, e.g. when data needed for the decision which paths will qualify for
execution is already available. For example, at an OR-SPLIT one path may qualify for exe-
cution if the patient has liver metastases, the other one if the patient has no liver metastases.
If it is definitely known at adaptation time that the patient has liver metastases, then only the
duration of the metastases path would have to be taken into account. Furthermore, instead
of worst-case estimations one could also determine (and later on execute) the path with the
smallest duration or highest quality, if constraints otherwise would be violated. However, as
OR splits usually contain data-related conditions (such as IF Leukocyte-Count > 2500 in Fig.
3), this often is not appropriate or at least requires some user intervention.

The duration of a loop is estimated by determining the duration of the loop’s body se-
quence and then by trying to estimate how often the loop will be iterated. AGENTWORK sup-
ports three principal ways for the latter (used with decreasing priority): First, the engine
records all loop executions and calculates an average number of iterations for every loop
(analogously to the monitoring of activity executions). Second, at workflow definition time
heuristic information about the average number of iterations can be specified (such as “On
average, the radiotherapy unit of type A has to be repeated three times until the tumor van-
ishes”). Third, it is tried to resolve the loop’s termination condition in a similar way as it is
done w.r.t. OR splits (i.e. by inspecting whether necessary data is already available).

Duration information w.r.t. data flow edges (e.g. for accessing external data sources) is
obtained by measuring the average duration of such data accesses.

The described mechanisms estimate the duration of workflow regions in a primarily av-
erage-based manner. If an OR-SPLIT can not be resolved and therefore the maximum of all

222 R. Miiller and E. Rahm

(average) path durations has to be taken, this estimation locally becomes a worst-case esti-
mation (but not as much as it would be the case when using the maximal duration for all
workflow activities). In case nothing can be said about a loop, the region estimation remains
incomplete but may nevertheless be helpful as, for example, relevant delays w.r.t. the rest of
the region may still be predictable and can be communicated to collaboration partners.

6.2 Determining Qualitative Implications

For qualitative implications, the inter-workflow agent uses a modification of the temporal
algorithm of Fig. 6 restricted to COMM-OUT nodes within ROI. Instead of estimating the du-
rations of regions such as SROI ., it determines the qualitative effects of the activities by
using the quality transformation rules of section 4.2. Then, it checks whether the derived
quality w.r.t. the adapted workflow violates any quality constraints (instead of temporal) of
an inter-workflow object. The restriction to COMM-OUT nodes within ROI is made as
AGENTWORK views qualitative estimations for COMM-OUT nodes far away from the adapt-
ed workflow region as being inherently imprecise.

If no qualitative implications can be determined because of missing quality-oriented
meta knowledge, the inter-workflow agent at least informs the collaboration partners which
activities have been dropped or added due to the dynamic adaptation. However, as this re-
quires that the activities performed by one workflow are meaningful for the collaboration
partner, AGENTWORK views this only as an “emergency solution”.

The temporal and qualitative estimation approaches work if an AGENTWORK workflow
is “well-formed” in the sense that an object o sent by a COMM-OUT node is only produced
by predecessor nodes of this COMM-OUT node. For Fig. 5 this means that the objects sent by
CoMM-OUT; may only be provided by nodes 3, 5, 6, 4 (before adaptation) resp. 3, 8, 4, 6
(after adaptation) or predecessors of 3, but not by node 1 or 2. If, for example, node 2 would
contribute to an object of COMM-OUT| (and therefore, for example, could delay the execu-
tion of COMM-OUT or influence qualitative constraints) then COMM-OUT; would have to
be placed behind the OR-JOIN node. However, the algorithm can easily be extended to cope
also with “cross-over” data flow edges (e.g. a data flow edge transferring data from node 1
to COMM-OUT; in Fig. 5): For each COMM-OUT node within RO! the subregion SROI .,
has to be recursively extended by all nodes contributing to the objects send by the COMM-
OUT node. Syntactically, these are the nodes from which internal data flow edge paths are
leading to the COMM-OUT node.

7 Summary and Discussion

We have introduced a model to deal with logical failures and dynamic adaptations for col-
laborating workflows. If a workflow is adapted, the temporal and qualitative implications for
collaborating workflows are automatically determined. Relevant failures causing agreed-on
temporal and qualitative constraints to be violated are immediately communicated to affect-
ed collaborating workflow systems. By this approach, we expect that the frequency of failure
situations inducing local workflow adaptations but not reported timely to affected collabo-
ration partners can be reduced significantly.

Our approach is based on knowledge such as activity durations, quality-measuring ob-
jects and quality transformation rules. We expect that in many application domains — due to
the increasing importance of quality management and quality assurance — the duration and
quality transformation ,,behavior* of activities can be obtained quite exactly. In particular,
in most real-world collaboration scenarios, there will be at least one object (such as a docu-
ment) containing information which in some way measures the quality of products or results
provided by the collaboration partners. Our approach does not need significantly more spec-
ifications than other workflow failure handling approaches where, for example, compensat-
ing activities have to be defined for every ,,normal‘ activity [13]. Of course, it is not possible
to derive all implications of a logical failure automatically because the internal structure of

Dealing with Logical Failures for Collaborating Workflows 223

workflows can be arbitrarily complex. If the most significant problem cases can be handled
this would already be of great value.

Currently, we are completing the implementation of the sketched approach within the

HEMATOWORK project. We are also evaluating the applicability of the approach in different
application domains like electronic inter-business workflows. The approach shall also be ex-
tended by using additional activity meta information (such as the resources required to exe-
cute an activity) and by determining the respective implications of adaptations. Furthermore,
we plan empirical studies on the quality of temporal estimations for real-world workflows.

References

1.
2.
3.

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
23.

24,

Georgakopoulos, D., Schuster, H., Cichocki, A., Baker, D.: Managing Process and Service
Fusion in Virtual Enterprises. Information Systems 24 (1999) 429-456

Baralis, E.: Rule Analysis. In: Paton, N. (ed.): Active Rules in Database Systems. Springer
(1999) 51-67

Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. Artificial Intelli-
gence 90 (1997) 281-300

Borgida, A., Murata, T.: Tolerating Exceptions in Workflows: a Unified Framework for Data
and Processes. WACC (1999) 59-68

Bussler, Ch.: Workflow Interoperability Classification and its Implication to Workflow Man-
agement System Architectures. EDBT Workflow Workshop (1998): 45-54

Casati, F.: Semantic Interoperability in Interorganizational Workflows. WACC Workshop on
Cross-Organizational Workflows (1999)

Chiu, D.K.W., Li, Q., Karlapalem, K.: A Meta Modeling Approach to Workflow Manage-
ment System Supporting Exception Handling. Information Systems 24 (1999) 159-184
Clancey, W.J.: Heuristic Classification. Artificial Intelligence 25 (1985) 289-350

Dogac, A., Kalinichenko, L., Ozsu, T., Sheth, A. (eds.): Workflow Management Systems and
Interoperability. Springer (1998)

lziggrég) (,) Panagos, E., Rabinovich, M.: Time Constraints in Workflow Systems. CAiSE (1999)
Hagen, C., Alonso, G.: Beyond the Black Box: Event-based Inter-Process Communication in
Process Support Systems. ICDCS (1999) 450-457

Heinl, P., Horn, S., Jablonksi, S., Neeb, J., Stein, K., Teschke, M.: A Comprehensive Ap-
proach to Flexibility in Workflow Management Systems. WACC (1999) 79-88

gailjgo9d7i;1, S., Kerschberg, L. (eds.): Advanced Transaction Models and Architectures. Kluwer
Jennings, N. R., Faratin, P., Norman, T. J., O'Brien, P., Odgers, B.: Autonomous Agents for
Business Process Management. Journal of Applied Artificial Intelligence 14 (2000) 145-189
Jeusfeld, M.A., Quix, C., Jarke, M.: Design and Analysis of Quality Information for Data
Warehouses. ER (1998) 349-362

Kafeza, K., Karlapalem, K: Temporally Constrained Workflows. ICSC (1999) 246-255
Klein M., Dellarocas C.: A Knowledge-Based Approach to Handling Exceptions in Work-
flow Systems. Journal of Computer-Supported Collaborative Work 9 (2000) 399-412
Ludwig, H: Termination Handling in Inter-Organisational Workflows - An Exception Man-
agement Approach. Workshop on Parallel and Distributed Processing (1999) 122 - 129
Miiller, R., Heller, B.: A Petri Net-based Model for Knowledge-based Workflows in Distrib-
uted Cancer Therapy. EDBT Workflow Workshop (1998): 91-99

Marjanovic, O., Orlowska, M.E.: On Modeling and Verification of Temporal Constraints in
Production Workflows. Knowledge and Information Systems 1 (1999) 157-192

Miiller, R., Rahm, E.: Rule-Based Dynamic Modification of Workflows in a Medical Do-
main. German Database Conference (BTW). Springer (1999). http://dol.uni-leipzig.de
Schwalb, E., Dechter, R.: Processing Disjunctions in Temporal Constraint Networks. Artifi-
cial Intelligence 93 (1997) 29-61

Reichert, M., Dadam, P.: ADEPTy, i - Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information Systems 10 (1998) 93-129

Worah, D., Sheth, A.: Transactions in Transactional Workflows. In [13]: 3-34

	Introduction
	Related Work
	Layers and Components of AGENTWORK
	Workflow Model
	Workflows and Activities
	Workflow Collaboration

	Logical Failures and Intra-Workflow Adaptation
	Managing Inter-Workflow Implications of Adaptations
	Determining Temporal Implications
	Determining Qualitative Implications
	Summary and Discussion

