
Abstract
Data allocation is a key performance factor for parallel
database systems (PDBS). This holds especially for
data warehousing environments where huge amounts of
data and complex analytical queries have to be dealt
with. While there are several studies on data allocation
for relational PDBS, the specific requirements of data
warehouses have not yet been sufficiently addressed. In
this study, we consider the allocation of relational data
warehouses based on a star schema and utilizing bitmap
index structures. We investigate how a multi-dimen-
sional hierarchical data fragmentation of the fact table
supports queries referencing different subsets of the
schema dimensions. Our analysis is based on realistic
parameters derived from a decision support benchmark.
The performance implications of different allocation
choices are evaluated by means of a detailed simulation
model.

1 Introduction
Data warehouses integrate massive amounts of data from
multiple sources and are primarily used for decision support
purposes. They have to process complex analytical queries
for different access forms such as OLAP (on-line analytical
processing), data mining, etc. In addition, successful data
warehouses tend to be used by many users so that the con-
current execution of multiple complex queries must be sup-
ported. Ensuring short query response times in such an
environment is enormously difficult and can only be
achieved by a combination of different approaches, in par-
ticular the use of preaggregated data [12,37], special aggre-
gation operators like cube [13], special index structures
such as bitmap indices [22,24] and parallel query process-
ing.

While the first three approaches have been investigated
extensively in recent work, surprisingly, parallel query pro-
cessing tailored for data warehouses has received very little
attention in the research community. In particular, we are
not aware of research results on data allocation for parallel

data warehouses, which is the main focus of this paper. Of
course, basic approaches of traditional parallel databases
[7] can be employed for relational data warehouses as well.
However, these approaches can only achieve suboptimal
performance as they do not utilize specific characteristics of
the database organization and query types of data ware-
houses. Hence, high performance data warehousing should
be based not only on specialized index structures but also
on tailored approaches for parallel database processing.

We focus on relational data warehouses based on a star
schema [5]. The database thus consists of a huge fact table
and multiple dimension tables. Dimensions are hierarchi-
cally structured, e.g., to group months into quarters, years
etc. Queries typically perform aggregations on the fact table
based on selections among the available dimension levels
(e.g. sales of all products from product group x during quar-
ter y). Such star (join) queries can be efficiently supported
by bitmap indices but still involve substantial processing
and I/O cost. The paper focuses on the design and evalua-
tion of suitable data allocation methods for the fact table
and bitmap indices to allow an efficient parallel processing
of star queries.

While our data allocation methods are applicable to all
major PDBS (parallel database system) architectures, due to
space constraints we concentrate on the „Shared Disk“
approach [7], which is supported by several commercial
DBMS (IBM DB2/OS390, ORACLE). Shared Disk is particu-
larly attractive for data warehousing because the read-dom-
inated workloads largely eliminate the need for concurrency
and coherency control, which are performance-critical for
OLTP [21,28]. Furthermore, there is a high potential for
parallel query processing and dynamic load balancing since
each processing node has access to all disks allowing it to
process any query or subquery [28]. Data allocation for
Shared Disk refers to the placement of tables and index
structures onto disks; there is no fixed assignment of data
partitions to processing nodes. The disk allocation must
support parallel processing and load balancing while limit-
ing disk contention.

We propose a multi-dimensional hierarchical fragmen-
tation of the fact table based on multiple dimension
attributes. Such an approach permits a significant reduction
of processing and I/O overhead for many queries by
restricting the number of fragments to be processed for both
the fact table and bitmap data. Such savings are achieved
not only for the fragmentation attributes themselves but
also for attributes at different levels of a dimension hierar-
chy. The proposed data allocation and processing model
also supports parallel I/O and parallel processing as well as

Multi-Dimensional Database Allocation
for Parallel Data Warehouses

Thomas Stöhr Holger Märtens Erhard Rahm

University of Leipzig, Germany
{stoehr | maertens | rahm}@informatik.uni-leipzig.de

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

273

load balancing for disks and processors. To find a suitable
fragmentation for a given star schema and workload, we
determine and analyze critical parameter thresholds to be
considered. Furthermore, we have developed a comprehen-
sive simulator of a parallel database system allowing a
detailed performance evaluation of the new data allocation
methods. Results of several experiments are presented for
database and query parameters obtained from the decision
support benchmark APB-1. The study leads to several
guidelines that can be used by a database administrator or
implemented within a tool to determine a physical data
warehouse allocation.

The remainder of the paper is organized as follows. In
the next section, we mention related work on data allocation
and look at the approaches of commercial PDBS. In Section
3, we introduce the APB-1 star schema that has been used
in our simulation study and will help illustrate the data allo-
cation methods. We also discuss how bitmap indices are
employed for processing of star queries. Section 4 then pre-
sents our multi-dimensional data allocation approach and
an analysis of major performance factors. After an over-
view of our simulation approach (Section 5) we present per-
formance results of various experiments for the proposed
multi-dimensional database allocation in Section 6. We
conclude in Section 7.

2 Related work
In general relational PDBS, data allocation is based on a
horizontal fragmentation of tables, typically round robin,
hash, or range fragmentation [7]. Round robin simply dis-
tributes rows in their insert order, while hash and range
fragmentations are based on a partitioning function applied
on the values of a fragmentation attribute. Such a one-
dimensional fragmentation permits queries on the fragmen-
tation attribute, which may be a concatenation of several
attributes, to be restricted to a subset of the fragments,
thereby reducing work. A number of studies analyzed one-
dimensional data allocation strategies for Shared Nothing
systems, e.g. [4,8,19]. In [9], a multi-dimensional range
fragmentation was proposed for scan processing in Shared
Nothing environments. Furthermore, there are numerous
approaches for multi-dimensional declustering and access
methods for spatial data [11]. However, all of these propos-
als do not exploit the hierarchical structure of dimensions
(fragmentation attributes) and the specifics of star queries.

In [34], a multi-dimensional partitioning strategy on
fact tables is proposed to achieve load balancing for star
queries. The strategy requires exactly processing nodes
and is based on sorting and splitting the fact table on every
dimension. Again, Shared Nothing is assumed and hierar-
chical properties of star schemas are not considered.

Except for our own work, data allocation for Shared
Disk systems has hardly been addressed in research papers.
In [28,30] we have outlined the increased flexibility of the
Shared Disk approach for allocating tables and index struc-
tures. In particular, the number of data partitions per table
does not impact the communication overhead for query pro-
cessing as for Shared Nothing. This supports high degrees
of declustering even for medium-sized tables. Furthermore,
index structures such as B-trees may be partitioned differ-
ently from tables (or not at all) without performance loss. In

[31], the impact of simple data allocations on scan perfor-
mance in single- and multi-user mode was evaluated. In
[18], a new approach for declustering large intermediate
query results on shared disks was proposed and analyzed.
These studies did not consider the specific aspects of data
warehousing.

Numerous studies dealt with physical data allocation at
the disk level in order to support I/O parallelism, e.g.,
within disk arrays [17,16,6,32]. Without additional index
structures, physical declustering of data does not typically
allow the query optimizer to predict which disks have to be
accessed for a query. Hence, queries cannot be restricted to
a subset of the partitions as for logical fragmentations based
on attribute values. Furthermore, employing intra-query
parallelism can lead to disk contention between concur-
rently running subqueries of the same query.
Data allocation in commercial PDBS

Most commercial PDBS have specific support for data
warehousing such as bit index structures and processing of
star queries, e.g., ORACLE8i [25], IBM DB2 UNIVERSAL
DATABASE (UDB) [3], RED BRICK WAREHOUSE [29], and the
ADVANCED DECISION SUPPORT OPTION of INFORMIX
DYNAMIC SERVER [14]. INFORMIX and ORACLE allow choos-
ing a variety of fragmentation options including a multi-
dimensional range fragmentation [15,26]. However, it
remains unclear to what extent multi-dimensional fragmen-
tation is exploited to reduce query work. Furthermore, the
hierarchical structure of fragmentation attributes is not uti-
lized. None of the aforementioned vendors provide suffi-
cient information or even tool support on how to determine
an adequate data allocation for star schemas. Some systems
such as NCR TERADATA V2R3 [2] and MICROSOFT SQL
SERVER 7.0 [10] do not yet support bitmap indices.

Both DB2 UDB and ORACLE8i can dynamically create
and evaluate bitmaps derived from B-tree indices on the
fact table. Furthermore, SYBASE ADAPTIVE SERVER IQ [35]
employs a completely different data allocation and process-
ing strategy based on vertical partitioning of tables and pos-
sible bit-slicing of single attributes (called BIT-WISE INDEX-
ING). Although these approaches have their merits, their
consideration is beyond the scope of this paper.

3 Star schema and star queries
While our approaches can be used for any star schema, we
make our discussions more specific by using the APB-1
schema, which is presented first. We then discuss the use of
bitmap indices for query processing in the central case (no
intra-query parallelism). Parallel query processing will be
explained in Section 4.

3.1 Star Schema used for evaluation
Figure 1 shows our star schema based on the Analytical
Processing Benchmark APB-1 that was proposed by the
OLAP Council to benchmark relational OLAP systems [1].
The schema provides a typical sales analysis environment
with one fact table (SALES) and the four dimension tables
PRODUCT, CUSTOMER, CHANNEL1, and TIME. Every attribute
of the dimension tables refers to a different hierarchy level.

2k

1. We understand the APB-1 dimension CHANNEL to describe
distribution channels.

274

For instance, we have a 6-level product hierarchy differenti-
ating several product divisions, each consisting of several
product lines, each consisting of several product families,
etc. Individual products are identified by product codes. As
usual for star schemas, dimension tables are denormalized
to reduce join overhead. The fact table SALES holds the mea-
suring attributes UnitsSold, DollarSales and Cost for calcu-
lating aggregations. In addition, there is a foreign key per
dimension each referring to the lowest hierarchy level. That
is, each sales row refers to a specific product code, cus-
tomer store, distribution channel and month.

APB-1 assumes a time frame of 24 months and scales
the cardinality of the other dimension tables according to
the number of channels. Our evaluations are based on a
configuration of 15 channels resulting in the dimension car-
dinalities indicated in Figure 1. The cardinality of the fact
table is determined by a density factor applied on the maxi-
mal number of possible value combinations (product of the
dimension cardinalities). We used a density factor of 25%
resulting in almost 2 billion fact rows. The benchmark also
defines certain ratios between the attribute cardinalities
within dimension hierarchies which we follow. Table 1
below shows the respective values for the PRODUCT dimen-
sion.

We assume typical star queries, also derived from APB-
1, aggregating over one or multiple dimensions at different
hierarchy levels. Expressed in SQL, a sample query called
1MONTH1GROUP is
SELECT SUM(UnitsSold),SUM(DollarSales)
FROM Sales S, Product P
WHERE S.RefToTime = MONTH
AND P.Group = PRODUCTGROUP
AND S.RefToProduct = P.Code

1MONTH1GROUP represents a two-dimensional star join
query aggregating the measures UnitsSold and DollarSales
for one product group within one month. One-dimensional
queries used in our experiments are 1CODE, 1MONTH and
1STORE, each referring to the specified hierarchy level.

3.2 Star query processing with bitmap indices
Such star queries involve a join between the fact table and
one or more dimension tables. Standard join implementa-
tions such as hash join would require one or more full scans
of the fact table. Due to the huge size of the fact table, such
full scans are very costly and must be avoided whenever
possible even when parallel scans can be utilized. This is
also because for most queries, only a small fraction of the
fact data is relevant.

Bitmap indices allow a much faster processing of star
joins and selections on fact tables [22]. A standard bitmap
index contains one bitmap per possible value of a given
attribute; the bitmap consists of one bit per row to indicate
whether or not that row matches the respective attribute
value. A selection for a specific attribute value (e.g., RefTo-
Time=MONTH in query 1MONTH1GROUP) thus has to read
only one bitmap to precisely identify all relevant fact rows.
A variation are so-called bitmap join indices where each
bitmap indicates which fact rows match an attribute value
of the dimension table (via the respective foreign key).
Hence, such bitmaps represent the precomputed result of a
join between the fact table and a dimension table. For our
sample query, a bitmap join index on product group would
be beneficial. The join query can then be processed by read-
ing and intersecting (AND-ing) the two bitmaps for MONTH
and PRODUCTGROUP. The resulting bitmap represents the
rows to be read from the fact table. Since the bitmaps are
much more compact than the fact table and only the rele-
vant fact rows are to be read, performance can be substan-
tially improved compared to a full scan of the fact table. Of
course, the sketched approach can be applied for an arbi-
trary number of query dimensions and multiple values per
dimension; it is supported by several commercial DBMS.
Note that more complex queries require additional process-
ing steps (for instance, a join to the PRODUCT dimension
may still be necessary if aggregation results are to be
grouped by the product classes within a selected product
group). This will not be considered further because the
associated processing cost is typically much smaller than
for fact table processing.

Simple bitmap indices become inefficient for high-car-
dinality attributes resulting in a large number of bitmaps
and thus high storage overhead (which may be reduced by
compressing the bitmaps). In this case, encoded bitmap
indices [36] can help by encoding attribute values from a
domain of size in approximately bits,
thereby reducing the number of bitmaps necessary to repre-
sent the index. The trade-off is that selecting a single value
in an encoded bitmap index requires finding a specific pat-
tern in all of the bitmaps, rather than a single bitmap. This
may, however, be ameliorated by an appropriate encoding.
Specifically, [36] suggested an encoding scheme that repre-
sents individual hierarchy elements of star to support selec-
tions on the inner dimension levels.
For our study, we employ encoded bitmap join indices on
the higher-cardinality dimensions PRODUCT and CUSTOMER.
We utilize a hierarchical encoding that avoids a separate bit-
map index per hierarchy level but only requires one index
per dimension. This is illustrated in Table 1 for the PROD-
UCT dimension where we use separate bit sub-patterns to
encode DIVISIONs, LINEs within DIVISIONs, FAMILIEs within
LINEs etc. We only need 15 bits to identify a particular prod-
uct code so that the index only consists of 15 bitmaps
instead of 14.400 which would be needed for simple bit-
maps. Locating all fact rows of a specific product code thus
needs to evaluate 15 bitmaps (which we will access in par-
allel). The hierarchical encoding reduces the access cost for
attributes at a higher level of the dimension hierarchy. For
instance, CODEs (fact rows) belonging to the same GROUP

Product
Divison

Line
Family
Group
Class
Code

Channel
Channel

Sales
RefToProduct

RefToCustomer
RefToChannel

RefToTime

UnitsSold
DollarSales

1,866,240,000 facts

1,440 stores

24 months

14,400 codes

15 channels

Time
Year

Quarter
Month

Customer
Retailer

Store

Fig. 1: Considered star schema (derived from APB-1

Dom Dom2log

275

share the same prefix (dddllfffgg) of the full bit pattern
(dddllfffggcoooo) and can be precisely located with access
to only 10 of the 15 bitmaps.
The encoded bitmap indices on PRODUCT and CUSTOMER
need 15 and 12 bitmaps, respectively. For the low-cardinal-
ity dimensions TIME and CHANNEL we use simple bitmap
indices consisting of up to 34 (24 for month, 8 for quarter, 2
for year) and 15 bitmaps each. This results in a maximum
of 76 bitmaps for our configuration. As we will see, our
multi-dimensional fragmentation permits eliminating some
bitmaps, thus improving storage and access overhead.

4 Data allocation
In this section, we present our fragmentation and allocation
strategy for star schemas supporting parallel query process-
ing. We focus on the fact table and its bitmap indices.
Dimension tables and their (B*-tree) indices usually cover
only a very small fraction of the whole database so that they
do not need special treatment. For instance, our four dimen-
sion tables only occupy 1 MB and can easily be stored on a
single disk. Frequently accessed dimension data will auto-
matically be cached in main memory.

Data allocation of the fact table and bitmap indices is
determined in two steps. In the first step, we define a multi-
dimensional horizontal fragmentation of the fact table
resulting in n disjoint fact fragments. These fragments are
our units for disk placement as well as for query processing.
The fact table fragmentation is also to be applied to the bit-
map indices meaning that each bitmap of any bitmap index
is partitioned into n bitmap fragments. This ensures that the
bits of a bitmap fragment refer to exactly one fact fragment
and allows different fact fragments to be processed inde-

pendently (in parallel). Of course, a bitmap fragment is
much smaller than a fact fragment2. The second allocation
step assigns all fragments onto disks. Typically, the number
of fact fragments, n, is much higher than the number of
disks, d, to support high degrees of parallelism and effec-
tive load balancing.

Figure 2 illustrates our data allocation approach. A sim-
ple round robin allocation of fact fragments to the disks is
used. Each of the k bitmaps (from all indices) is partitioned
into n bitmap fragments. We place the k bitmap fragments
belonging to the same fact fragment onto consecutive disks
to enable intra-query parallelism for bitmap processing. For
instance, if fact fragment frag i is placed on disk j, the asso-
ciated bitmap fragments of all k different bitmaps are
placed on disk j, , .. 3.

In Section 4.1, we will introduce our approach of multi-
dimensional hierarchical fragmentation, followed by a dis-
cussion how it reduces query work and bitmap require-
ments (Section 4.2). After a brief discussion of our parallel
processing strategy in Section 4.3, we present some basic
thresholds for fragmentation parameters in Section 4.4.
Section 4.5 quantifies the I/O cost for different types of
queries, and Section 4.6 discusses the physical allocation of
table and index fragments to disks. Finally, Section 4.7 lists
a set of guidelines for multi-dimensional star schema declu-
stering derived from these considerations.

4.1 Multi-dimensional fragmentation of the fact table
To reflect the inherent multi-dimensional and hierarchical
organization of star schema data and queries, we propose a
multi-dimensional hierarchical fragmentation called
MDHF for partitioning the fact table. It allows choosing
multiple fragmentation attributes from different hierarchy
levels of the dimension tables. Each fragmentation attribute
refers to a different dimension. For each fragmentation
attribute – and thus for each dimension – a range partition-
ing can be specified consisting of disjoint value ranges for
the attribute’s domain. For completeness, the union of the
value ranges must cover the whole domain. As in general
multi-dimensional range fragmentation [9], a fragment then
consists of all (fact) tuples belonging to one value range per
fragmentation attribute.

For simplicity, we will focus on „point fragmentations“
where each value range consists of exactly one attribute
value of a fragmentation attribute. This approach is feasible
for data warehousing due to the well-defined domains of

DIVISION LINE FAMILY GROUP CLASS CODE total

#total elements 8 24 120 480 960 14,400 14,400

#elements within parent 8 3 5 4 2 15

#bits for encoding (log2) 3 2 3 2 1 4 15

sample bit pattern ddd ll fff gg c oooo dddllfffggcoooo

Table 1: Hierarchy representation in encoded bitmap join indices

frag 0

b0,f0

frag 1 frag d

bitmap k-1

bitmap 1
bitmap 0

frag 0 frag d frag n
fact table

fragmentfrag i: fragment i of fact table
bi, fl: fragment of bitmap i, associated to frag l

b0,f1

month 1, month i, month M,

b1,f0

b0,fd

b1,fd-1

bk-1,fn

group 1 group g group G

frag 1

month 1,
group 2

disk 0 disk 1 disk d

Fig. 2: Fragmentation and allocation of a star schema

2. Bitmaps store 1 bit per fact tuple. Therefore, the size of a fact
fragment is times the size of bitmap
fragments. (SizeFactTuple denotes the size of a fact tuple in
bytes)

3. For Shared Nothing, the bit fragments would have to be allo-
cated to the same processing node as the fact fragment thus
restricting the number of disks for allocating bitmaps.

8 SizeFactTuple⋅()

j 1+ j k 1–+ modulod()

276

dimensional attributes. Point fragmentations eliminate the
need to define value ranges for fragmentation attributes and
allow a high number of fragments of reduced size. The
number of fragments is simply determined by the product
of the fragmentation attributes’ cardinalities. Note that
point fragmentations still result in range fragmentations at
lower levels of the dimension hierarchy because for each
value at a specific dimension level, we have an associated
value range at the lower levels. For instance, a specific
product group covers a range of product classes and product
codes.

We denote an m-dimensional (point) fragmentation F by
specifying its fragmentation attributes in the form

F = { , , ..., } with
 = ’Dimensioni::Hierarchy-leveli,j’. i = 1..m

Every fact fragment obtained for such a fragmentation F
contains all fact rows with one particular value per frag-
mentation attribute4. For instance, the fragmentation

FMonthGroup = {time::month, product::group}
refers to a two-dimensional fragmentation on product group
and month. Each fact fragment of this fragmentation com-
bines all fact rows referring to one particular product group
and one particular month. Based on the cardinalities given
in Section 3, FMonthGroup results in fact
fragments. The order in which the fragmentation attributes
are specified is irrelevant for the contents of fact fragments.
However, we use a specific logical ordering of the dimen-
sions for placing the fragments to disks. For instance, Fig-
ure 2 shows an allocation for FMonthGroup for M (= 24)
months and G (= 480) groups where we first allocate the G
fragments for the first month, followed by the G fragments
of the second month etc.

4.2 Reducing query work and bitmap requirements
MDHF not only allows queries on the fragmentation
attributes to be confined to a subset of the fragments but
also many other query types by utilizing the hierarchical
structure of dimensions. We can distinguish the following
four basic cases or query types Qi for which such an
improvement is possible. Each case has several subcases
depending on whether all fragmentation dimensions are
involved in the query or only a subset, and on whether
attributes not belonging to a fragmentation dimension are
additionally to be evaluated.
• Q1: Queries on the fragmentation attributes

Queries referencing all fragmentation attributes can be
confined to the minimal number of fragments. For exact-
match predicates on all fragmentation attributes we have
only 1 fragment to process. This holds for our query
1MONTH1GROUP from Section 3 and the above fragmen-
tation FMonthGroup. Note that every fact row of the
selected fragment is relevant for this query so that there is
no need to use bitmaps for the query attributes.
Queries referencing a subset of the fragmentation
attributes still can be confined to comparatively few frag-

ments but more than in the previous case. For exact-
match queries the number of fragments to be processed
increases by the cardinality of the fragmentation
attributes not accessed. For instance, if we want to aggre-
gate all facts for one product GROUP - over all 24 months
- for fragmentation FMonthGroup, we have to process 24
fragments. Again, there is no need to access bitmaps for
the query attribute because we have to completely pro-
cess the fragments.
Bitmap access is only needed for additional query
attributes not belonging to any fragmentation dimension.
For instance, to aggregate over 1 product GROUP and 1
STORE we have to process 24 fact fragments but can use a
bitmap index on CUSTOMER to restrict processing to the
relevant fact rows.

• Q2: Queries on „lower-level“ attributes of the fragmen-
tation dimension
Queries accessing attributes from the dimension of a frag-
mentation attribute but below in the hierarchy can also be
restricted to the minimal number of fragments. This is
because each value of such an attribute belongs to exactly
one value of the fragmentation attribute and is thus con-
fined to a small number of fragments. Ideally, only 1 frag-
ment needs to be accessed when all fragmentation dimen-
sions are involved (e.g. a query 1CODE1MONTH
aggregating over 1 product CODE and 1 MONTH for
FMonthGroup). Queries not referencing all fragmentation
dimensions need to process a correspondingly larger
number of fragments as in the previous case (e.g. query
1CODE aggregating for 1 product CODE and all MONTHs
involves 24 fragments).
In contrast to Q1, only a subset of the fragment rows is
relevant even if only attributes from the fragmentation
dimensions are accessed. Bitmaps may be used within the
fragmentation dimension to select the relevant rows (e.g.,
for product code) and to allow Boolean operations with
other bitmaps.

• Q3: Queries on „higher-level“ attributes of the fragmen-
tation dimension
Queries accessing attributes from the dimension of a frag-
mentation attribute but higher in the hierarchy can also be
restricted to a subset of the fragments but to more than in
the cases before. This is because each value of such an
attribute has multiple associated values of the fragmenta-
tion attribute and thus a correspondingly higher number
of fragments. For instance, if we want to aggregate a
product GROUP over a QUARTER we have to access three
fragments rather than one. Again, the number of frag-
ments increases if only some fragmentation dimensions
are involved. For instance if want to aggregate for one
QUARTER – over all product GROUPs – we have to process

 fragments (one eighth of all fragments).
As in case Q1, all tuples of the selected fragments are rel-
evant (no bitmap access for fragmentation dimension).

• Q4: „Mixed“ queries on fragmentation dimensions
For queries referencing at least two fragmentation dimen-
sions, mixed cases are possible involving both attributes
at a lower (or equal) and at a higher (or equal) level than a
fragmentation attribute. An example for this case, is a
query for a specific product CODE and QUARTER under

4. More formally, a fragment of fact table , dimension tables
, and fragment attributes contains the result of the fol-

lowing relational expression for a specific combination of
attribute values ():

 (... (()) ...
)

fi
f1 f2 fm

fi

T
Di fi

wi i 1…m=
πT-attributes T σf1 w1= D1() σf2 w2= D2()
σfm wm= Dm()

24 480⋅ 11,520=

480 3⋅

277

FMonthGroup. This query can be restricted to 3 fragments
because 1 product CODE and 3 MONTHs are involved. As
for Q2, only a subset of the fact rows of the selected frag-
ments is relevant.

Thus, all queries referencing at least one attribute of any
fragmentation dimension can be confined to a subset of the
fragments. Furthermore, MDHF implies that for selections
on fragmentation attributes and on higher-level attributes of
a fragmentation dimension all tuples of a fact fragment are
relevant so that there is no need to use bitmaps for these
attributes (cases Q1 and Q3). This allows us to completely
eliminate bitmaps for these attributes (because they would
only contain „1“ bits) resulting in substantial storage and
processing savings. For our fragmentation FMonthGroup, we
do not need any bitmaps for the TIME dimension because for
each query on MONTH, QUARTER, or YEAR all rows of the
selected fact fragments are relevant. For the product dimen-
sion, we do not need bitmaps for product GROUP and higher
levels, thus saving 10 bitmaps (cf. Table 1). Compared to
the maximum of 76 bitmaps (Section 3.2), for FMonthGroup
at most 32 bitmaps are thus to be maintained.

4.3 Parallel processing of star queries
We employ two levels of intra-query parallelism for star
queries. For each fragment to be processed, we assign a
subquery processing the fact fragment and the associated
bitmap fragments. Within each subquery, I/O parallelism
can be used, e.g. to concurrently access multiple bitmaps.
The fragmentation only defines the maximal number of
subqueries. The actual degree of intra-query parallelism and
the assignment of subqueries to processing nodes is deter-
mined by the scheduling and load balancing strategy (see
Section 5). To improve sequential I/O performance for both
the fact table and bitmaps, we read multiple consecutively
stored pages per I/O. Such prefetch granules typically range
from 1 to 8 pages.

The following steps are performed for processing a star
query with respect to a given fragmentation F:
1. Determine fact fragments to be processed based on the

query’s attributes and the fragmentation attributes of F
2. For each query attribute qi, determine all associated bit-

map fragments. Bitmap access is needed for a qi, iff
- the dimension of qi is not represented in F, or
- the dimension of qi is represented in F, but on a higher
hierarchy level.

3. Assign a subquery to each fact fragment and its corre-
sponding bitmap fragments

4. For each subquery scheduled for execution
a)access and process a set of consecutive pages of all rel-

evant bitmap fragments to determine hit rows.
b)access fact pages containing hits and process aggrega-

tion
Iterate steps 4a and 4b until all pages of the fragment are
processed.

4.4 Fragmentation thresholds
As we have seen, both fragmentation and bitmap indices
allow identifying which fact data is relevant for a query,
thereby reducing processing work. While bitmap indices
are effective in many cases they require a substantial stor-
age and processing overhead. For our configuration, each
bitmap occupies 223 MB. Since our fragmentation

approach eliminates the need for bitmaps for all fragmenta-
tion attributes and higher-level attributes of the respective
dimension, it seems desirable to choose a fine-grained frag-
mentation. However, choosing a fragmentation with too
many fragments causes a substantial administration over-
head and deteriorates I/O performance as we will discuss.
On the other hand, the number of fragments must not be too
small in order to support a larger number of disks and pro-
cessors. In particular, there should be at least 1 fragment per
fact table disk.

The finest possible fragmentation would be to use all
dimensions at the lowest level, i.e. {time::month, prod-
uct::code, customer::store, channel::channel}. This would
eliminate all bitmaps but result in more fact fragments (7.5
billion) than fact tuples. The four-dimensional fragmenta-
tion {time::quarter, product::group, customer::retailer,
channel::channel} reduces the number of fact fragments to
about 9 million plus about 440 million bitmap fragments.
The administration overhead for maintaining such a number
of fragments is considered prohibitive. Ideally, the size of
the fragmentation information should be small enough to be
cached in main memory.

As our simulation experiments have revealed, a high
number of fragments can be even more harmful with
respect to I/O performance. This holds particularly for que-
ries based on bitmap processing (e.g., for attributes not
belonging to a fragmentation dimension). This is because
even for huge fact tables a high number of fragments can
reduce the average size of a bitmap fragment under the size
of a prefetch granule (or even under 1 page). This strongly
increases the number of bitmap I/Os and deteriorates I/O
times. To ensure a minimal bit fragment size of Prefetch-
Gran pages (size of prefetch granule) an upper threshold for
the number of fragments nmax should be observed with

nmax =
In this formula, N denotes the number of fact tuples and

PgSize the page size (in Bytes). For instance, with Prefetch-
Gran = 4 and PgSize = 4K we get nmax = 14,238. For a fact
tuple size of 20 B, this corresponds to a minimal fragment
size of 2.5 MB.

This is an important threshold eliminating already a
substantial number of fragmentation choices. For our sam-
ple schema, there are 168 possible fragmentations. As can
be seen in Table 2, to almost of these options can
be ruled out by demanding a specific minimal bitmap frag-
ment size. In particular, of the 36 possible four-dimensional
fragmentations only 1 results in a bitmap fragment size of at
least one page and none guarantees at least a size of four
pages.

fragmentation
dimensions

minimum bitmap fragment size

any ≥ 1 page ≥ 4 pages ≥ 8 pages

1 12 12 12 11

2 47 37 31 27

3 72 22 13 9

4 36 1 – –

total 167 72 56 47

Table 2: Number of fragmentation options under size
constraints

N 8 PgSize PrefetchGran⋅ ⋅()⁄

1 2⁄ 3 4⁄

278

4.5 I/O cost introduced by a fragmentation
Minimizing the I/O requirements and I/O time of a query is
of prime importance for achieving a suitable response time.
If a fragmentation F restricts the number of fragments to be
processed for a query Q, it as well reduces the number of
fact table and bitmap pages that need to be accessed. This is
because in this case, all relevant hit rows are co-located
within a smaller subset of all pages, increasing the number
of hits per page and improving prefetch efficiency. Further-
more, as we have seen, a fragmentation can avoid bitmap
access, e.g. if all rows of a fact fragment are relevant for a
query.

In order to analytically quantify the I/O performance of
different fragmentations, we have developed a set of mathe-
matical formulas estimating the number of fact table pages
containing hit rows and the number of bitmap pages to be
accessed for a query. Details on this are provided in [33].
For simplicity, the estimates assume a uniform distribution
of query hits within each relevant fragment and page. Fur-
thermore, it is assumed that all pages of a fragment are
stored consecutively on disk.

Based on the cases Q1 – Q4 discussed in Section 4.2,
we roughly distinguish two classes of queries with respect
to their I/O overhead for a given fragmentation. We denote
these I/O overhead classes as IOC1 and IOC2. In the fol-
lowing, we characterize the I/O behavior of these classes
and quantify 2 extreme cases. With we denote the
dimensions represented in a set S, determines the
hierarchy level of an attribute h, denotes the cardi-
nality of an hierarchy attribute h. Finally, denotes a frag-
mentation attribute of the same dimension of a query
attribute q.

IOC1: Clustered hits, no bitmap access. A query of
this class achieves near-optimal I/O conditions by not
requiring bitmap access and finding all hits optimally
located (clustered) within pages of the fact fragments. This
is achieved for query types Q1 and Q3 above when only
attributes from the fragmentation hierarchies of F are to be
accessed. Therefore, in mathematical terms, a query Q is
assigned to IOC1, if
 : .
A has to process all pages of the determined
fragments. In the optimal case (subclass IOC1-opt), where
 : ,
queries only have to process one fragment (query type Q1,
restricted to F-dimensions). Every dimension f of F that is
not referenced in Q increases the number of fragments to be
processed with the factor . Accessing an attribute q
with on average increases the number of
fragments by a factor of . An increased
number of fragments also reduces the number of hits per
page, thereby increasing the number of I/O operations.

IOC2: Spread hits and bitmap I/O.This class con-
tains all remaining queries performing bitmap access to
determine the hit rows within the fragments. This covers
queries of types Q2 and Q4 as well as queries accessing
dimensions not represented in F. For these queries, hit rows
are spread across more fragments than for IOC1. This
results in a reduced number of hits per page and prefetching
granule introducing worse I/O efficiency and overhead. In

the worst case, called IOC2-nosupp, a query is not sup-
ported at all by the fragmentation, i.e., it does not reference
any fragmentation dimension. Hence, all bitmap fragments
of all referenced dimensions have to be processed. Assum-
ing more hits than the number of fragments and uniform
distribution of hits, every fact fragment has to be accessed.
Quantitative comparison
The formulas developed in [33] allow determining the num-
ber of fragments to be accessed as well as the number of
fact table and bitmap I/O operations for a given fragmenta-
tion and query type. They can thus be used within a tool to
quantify the I/O performance of different fragmentation
choices for a given query mix to help determine a good
fragmentation. Table 3 illustrates the differences in I/O
work for the one-dimensional sample query 1STORE as
determined with these formulas. The query belongs to
IOC1-opt for the optimal fragmentation
Fopt = {customer::store} and to IOC2-nosupp for, e.g.,
Fnosupp = FMonthGroup = {time::month, product::group}.
We assume a prefetching granule of 8 pages on fact frag-
ments and 5 pages on bitmap fragments (the bitmap frag-
ment size is 4.9 pages for Fnosupp). With Fnosupp, only every
7th page in a fact fragment contains hits, thus strongly
reducing prefetch efficiency. The table shows that a suitable
fragmentation permits improvements in I/O performance by
several orders of magnitude. Our simulation system allows
more detailed performance predictions, in particular with
respect to response time, by considering processor and disk
contention as well as other factors.

4.6 Physical allocation
Having found a suitable fragmentation, the resulting fact
and bitmap fragments have to be allocated onto disks. With
respect to the degree of declustering, our simulations have
confirmed that a full declustering of the fact table utilizing
all available disks is the best approach as it supports the
maximal degree of parallelism and load balancing. While
the minimal number of disks is determined by the capacity
requirements to store the fact table, bitmaps and other data,
a typically much larger number of disk has to be used –
within a reasonable economic range – in order to provide a
high degree of I/O rates and I/O bandwidth.
As already indicated in Fig. 2, we use a special round robin
allocation called staggered round robin to allocate fact frag-
ments and their associated bitmap fragments. In this
approach, the bitmap fragments of a fragment are allocated
onto consecutive disks so that all bitmap fragments needed
for a query can be accessed in parallel during a subquery.

In Section 6.2, we will analyze to which degree this
affects query response times. Additionally, fact fragments
could also be declustered to support I/O parallelism. We

Dim S()
hier h()

card h()
fq

Dim Q() Dim F()⊆ q Q∈∀∧ hier q() hier fq()≥
Q IOC1∈

Dim Q() Dim F()= q Q∈∀∧ hier q() hier fq()=

card f()
hier q() hier fq()>

card fq() card q()⁄

Fopt Fnosupp

#fragments to be processed 1 11,520

#fact table I/O [pages] 795 5,189,760

#bitmap I/O [pages] – 691,200

total I/O size [MB] 25 31,075

Table 3: I/O characteristics for query 1STORE

279

store fact tables and bitmap data onto the same disks to
allow all disks to be used for the fact table.

As we observed in our simulation experiments, care
must be exercised with round robin in order to not artifi-
cially restrict parallelism for certain query classes. This is
because the p fragments to be accessed by a query can get
allocated onto less than p disks, introducing sequential disk
work. For instance, assume our fragmentation FMonthGroup
and disks. To place the 11,520 fragments on disk,
we have to determine an allocation order on the fragmenta-
tion attributes. Assume that we first assign the 480 frag-
ments for month 1 consecutively, then the next 480 frag-
ments for month 2 and so on. Processing query type 1CODE
requires access to 24 of these fragments (1 per month)
which correspond to every 480th fragment. Due to 480 and
100 having a greatest common divisor (gcd) of 20, all rele-
vant fragments for 1CODE are located on only 5 disks, thus
reducing possible parallelism by a factor of 4.8. If we
decide to allocate the other way round, 1CODE is optimally
supported while, e.g., 1MONTH queries are restricted to 25
disks (). Hence, we have to find an allocation that
reduces the probability of such a clustering as far as possi-
ble. A solution is to choose a prime number for the degree
of declustering or to use a modified allocation scheme
introducing certain gaps to avoid such a clustering.

4.7 Guidelines for data allocation
The conclusion to be drawn from this section is that frag-
mentation and allocation have a large impact on I/O and
query performance. To find a suitable fragmentation, a
number of guidelines can be formulated:
• Exclude all possible fragmentations which break at least

one of our three thresholds (i) minimal bitmap fragment
size, (ii) maximum number of fragments to administer,
(iii) maximum number of bitmaps to be materialized. Val-
ues for (ii) and (iii) depend on the main memory or disk
storage space that can be utilized in a practical environ-
ment.

• Limit the dimensionality of fragmentation based on the
dimensions typically referenced in the query profile. A
broad query mix normally favors a higher number of
declustering dimensions. On the other hand, one- or two-
dimensional fragmentations may have too few fragments
to even use all available disks, which is of course unac-
ceptable.

• Analyze the I/O load introduced by the remaining frag-
mentations using the analytical formulas of [33]. If no
query type is favored, choose a fragmentation that
achieves the minimum total amount of I/O work per-
formed by all query types. Otherwise, consider all frag-
mentations which optimize the favored queries and pro-
ceed as above for the rest of the queries on the remaining
fragmentation candidates.

5 Simulation system and setup
To test and evaluate the allocation and processing methods
described above and to verify our analytical considerations,
we designed and implemented a comprehensive simulation
system named SIMPAD (Simulation of Parallel Databases).
It is written in C++ and based on the CSIM simulation
library [20]. Through a modular design, SIMPAD supports

the evaluation of different PDBS and hardware architec-
tures, algorithms, database allocations and workloads. For
brevity, we only mention aspects relevant to the study at
hand. Major simulation parameters and their settings used
in the experiments are listed in Table 4.

For this study, we have modelled a Shared Disk PDBS
with a variable number of processing nodes and disks. Pro-
cessors and disks are explicitly modeled as servers to realis-
tically capture access conflicts and delays. CPU overhead is
accounted for in all major query processing steps and com-
munication (Table 4). The disk model calculates varying
seek times based on track positions rather than giving con-
stant or stochastically distributed response times. This
allows realistic testing of multi-user and parallel process-
ing. A simple buffer manager is used supporting LRU page
replacement and prefetching. We maintain separate buffers
for tables and indices. An idealized contention-free network
model is employed with communication delays propor-
tional to message sizes, so as not to bias simulation results
due to a specific choice of a network topology.

Our database model is based on the star schema detailed
in Section 3, with a flexible parameterization for the dimen-
sion hierarchies and cardinalities as well as the fact table
density. Bitmap join indices are provided on the fact table
for all dimension keys, with a possible choice of either stan-
dard or encoded bitmaps. The dimension tables have B*-
tree indices, but these are not relevant to our experiments.
The data allocation is determined separately for all tables
and indices, each of which can be assigned to an individu-
ally defined group of disks. The evaluated fragmentation
and allocation of the fact table and its bitmap indices follow
the description in the previous sections.

A query generator creates a series of query structures
that are passed to the processing module. In this initial
study, we restrict ourselves to single-user mode, so queries
are issued sequentially with a new query starting as soon as
the previous one has terminated. For a single simulation, all
queries are of the same type (e.g., 1STORE), but specific
parameters are chosen at random (e.g., the actual STORE
selected).
Parallel processing and load balancing
New queries are first assigned to a randomly selected coor-
dinator node that is responsible for parallelizing the query
and scheduling its execution. This coordinator creates a task
list of all subqueries to be performed, each comprising one
fact fragment and its associated bitmap fragments. Based on
the query type and fragmentation, the scheduler considers
only the relevant fact fragments and bitmaps as outlined in
Section 4. The list is sorted in the order in which the frag-
ments were allocated to disks, so that consecutive subque-
ries can be expected to access different disks. The coordina-
tor assigns subqueries from the task list to available
processors in a round-robin manner, where each node
receives a maximum of concurrent tasks (being a sys-
tem parameter). As described in 4.2, each subquery pro-
cesses the required bitmap fragments, reads the associated
fact table pages, extracts hit rows, and locally aggregates
the measures (e.g., DOLLARSALES) found there. When a
node finishes a subquery, it returns the partial aggregate to
the coordinator and is assigned another task. When all rele-

d 100=

gcd 4=

t t

280

vant data has been processed, the query is terminated and
the overall aggregate gathered by the coordinator is
returned to the user.

The simulation system considers the CPU and message
overhead introduced by this scheduling. Early simulation
experiments showed that the overhead is very small com-
pared to the actual processing and the coordinator node can
is also be used for processing subqueries. We do, however,
count coordination as one task so that the coordinator node
will only process subqueries at a time.

We have devised several additional scheduling tech-
niques that will be explored in a future study.

6 Simulation results
In this section, we present first results of simulation experi-
ments we performed to verify and study our data allocation
approach from Section 4. There are three basic simulation
series: speed-up tests to verify the scalability of our
approach (6.1); experiments on the impact of parallel sub-
queries and bitmap I/O (6.2); simulations for different frag-
mentation and allocation strategies (6.3).

6.1 Speed-up experiments
The first series of simulations was designed to investigate
the scalability of the allocation approach and fragment-ori-
ented query processing. We used the star schema configura-
tion introduced above with fragmentation FMonthGroup
(11,520 fragments) on different hardware configurations as
listed in Table 5. The number of disks, d, was varied from
20 to 100; the number of processors, p, ranges from
to of the number of disks, resulting in 1 – 50 proces-
sors. For each configuration, we tested two simple query
types, 1STORE and 1MONTH, to study both disk- and CPU-
bound workloads.

We first discuss the performance for query 1STORE. This
query is not supported by the chosen fragmentation and
thus requires access to all fragments as well as to all the bit-
maps of its encoded index. Figure 3 shows the response
time and speed-up curves for this query. We use a fixed
number of subqueries per node = so that the total
number of subqueries equals the number of disks which
proved sufficient to utilize all disks. As can be seen,
response times depend solely on the number of disks used

because 1STORE is heavily disk-bound. The only exception
is the data point for 20 disks and 1 processor. That particu-
lar experiment suffers from the fact that the single node is
also its own coordinator and can only process (i.e., 19
rather than 20) subqueries at a time (cf. Section 5). The cho-
sen data allocation, processing model and scheduling strat-
egy allow for linear improvement of response times with an
increased number of disks. In fact, speed-up with respect to

 is slightly superlinear, due to reduced seek times when
there is less data on a single disk.

The 1MONTH query, on the other hand, is optimally sup-
ported by our fragmentation. It is confined to the 480 frag-
ments associated with the MONTH selected and need not
access any bitmap. This query is CPU-bound; as can be
seen in Figure 4, its response times depend on the number
of processors rather than disks. Again, we achieve optimal
speed-up, this time with respect to the number of processors

. The only exception is for the configuration with 100

Parameter settings Parameter settings Parameter settings

disk devices no. of instructions buffer manager
number () 100 initiate/plan query 50,000 page size 4 KB
speed-up experiments 1 – 100 terminate query 10,000 buffer size fact table 1000 pages
avg. seek time 10 ms initiate/plan subquery 10,000 buffer size bitmaps 5000 pages
avg. settle time +
controller delay

per access 3 ms terminate subquery 10,000 prefetch size fact table 8 pages
+ per page 1 ms read page 3,000 prefetch size bitmaps 5 pages (var.)

processing nodes process bitmap page 1,500
number () 20 extract table row 100 network
speed-up experiments 1 – 50 aggregate table row 100 connection speed 100 Mbit/s
CPU speed 50 MIPS send message 1,000 + #B message size (small) 128 B
subqueries per node var. receive message 1,000 + #B message size (large) 1 page (4 KB)

Table 4: Parameters settings used in simulations

d

p

number of disks (number of processors ()
20 1 2 4 5 10

60 3 6 12 15 30

100 5 10 20 25 50

Table 5: Hardware parameters for speed-up experiments

t 1–

1 20⁄
1 2⁄

t d p⁄

d) p

t 1–

d

Fig. 3: Response times and speed-up of the 1STORE query

20 60 100
number of disks (d)

0 s

100 s

200 s

300 s

400 s

500 s

600 s

av
er

ag
e

re
sp

on
se

 ti
m

e

Query 1STORE

t = d / p

p = d / 2
p = d / 4
p = d / 5
p = d / 10
p = d / 20

20 60 100
number of disks (d)

 0

 1

 2

 3

 4

 5

 6

 7

sp
ee

du
p

Query 1STORE

t = d / p

p = d / 2
p = d / 4
p = d / 5
p = d / 10
p = d / 20

p

281

disks and 50 nodes in the upper end of the curve. Here, a
discretization problem occurs: With , which is opti-
mal for most other settings, subqueries will be executed in
“batches” of 200 (). For the 480 fragments to
be processed, this produces three batches of 200, 200, and
80, the last one being inefficient to process due to the
reduced parallelism. Amending the parameter to , we
obtain two batches of 250 and 230, which are processed
much more efficiently even though a single batch will take
longer. Using this result, we can re-establish linear speed-
up, as represented by the dotted line in the speed-up graph
of Figure 4.
The results confirm that the approaches chosen permit opti-
mal utilization of I/O and processing parallelism. It was
demonstrated that linear speed-up can be achieved with
respect to either the number of disks or the number of pro-
cessors, depending on whether the workload is disk- or
CPU-bound. In the remaining experiments, we use a fixed
hardware configuration of 100 disks and 20 processing
nodes.

6.2 Parallel subqueries and parallel bitmap I/O
In this experiment, we investigate the impact of the number
of subqueries and the effectiveness of parallel bitmap I/O
within a subquery in more detail. The latter is supported by
our “staggered” data allocation assigning the bitmap frag-
ments of a fact fragment to separate disks (Section 4.5). A
potential problem is increased disk contention, which may
harm other subqueries that have to access the same disks.
We evaluated this trade-off using the I/O-intensive 1STORE
query type that has to access 12 bitmap fragments for each
fact table fragment. Based on the 100-disk, 20-node config-

uration determined above, we tried both parallel and non-
parallel bitmap I/O for varying numbers of concurrent sub-
queries per processor, obtaining the results of Figure 5.

The figure illustrates the importance of using multiple
subqueries per node for this I/O bound query type in order
to fully utilize all disks. We are able to linearly improve
response times up to about 5 subqueries per node where the
total number of subqueries reaches the number of disks
(100). A higher number of subqueries has only little impact
on response time (also influenced by single-user mode).
This almost ideal behavior again confirms the scalability
and good load balancing achieved with our Shared Disk-
oriented scheduling strategy.

Parallel bitmap I/O delivers noticeable response time
improvements of up to 13 % despite the concurrent access
of subqueries to the same disks and although a larger part of
the response time is caused by fact table I/O. The improve-
ments are especially pronounced for a smaller number of
concurrent subqueries. For many subqueries, performance
of the two alternatives becomes similar due to increased
disk contention. However, even in this case parallel bitmap
I/O remains slightly ahead.

The conclusion we draw is that parallel bitmap I/O is a
good default setting mostly improving system performance.
For mixed CPU- and I/O-bound workloads, we expect addi-
tional improvements for parallel bitmap I/O due to reduced
disk traffic compared to purely I/O-bound cases such as for
1STORE. Further improvements are likely by utilizing paral-
lel I/O on fact fragments which are larger than the bitmap
fragments.

6.3 Implication of the fragmentation strategy for
query processing

In this experiment, we quantify our results of Sections 4.4
and 4.5, where we outlined the impact of the fragmentation
strategy on query processing. We observed that fine-grained
fragmentations allow many query types to be confined to
few fragments, thereby increasing I/O efficiency. On the
other hand, I/O problems can be introduced if bitmap frag-
ment sizes fall below the size of a prefetch granule. For our
experiment on these effects we choose two query types
1STORE and 1CODE1QUARTER on three two-dimensional
fragmentations FMonthGroup, FMonthClass and FMonthCode.
based on the time and product dimensions. The fragmenta-
tions only differ in the selected hierarchy level of the prod-
uct dimension. Table 6 shows the resulting number of frag-

t 4=

t p⋅ 4 50⋅=

t 5=

Fig. 4: Response times and speed-up of the 1MONTH query

0 10 20 30 40 50
number of processors (p)

0 s

100 s

200 s

300 s

400 s

av
er

ag
e

re
sp

on
se

 t
im

e

t = 4

d = 20
d = 60
d = 100

0 10 20 30 40 50
number of processors (p)

 0

 10

 20

 30

 40

 50

sp
ee

d-
up

 fa
ct

or

t = 4

d = 20
d = 60
d = 100
d = 100 (t = 5)

Fig. 5: Response time effects of parallel bitmap I/O

1 3 5 7 9 11 13
subqueries per node (t)

0 s

100 s

200 s

300 s

400 s

500 s

av
er

ag
e

re
sp

on
se

 ti
m

e

Query 1STORE

non-parallel I/O
parallel I/O

282

ments and bitmap fragment sizes (numbers in parantheses
denote the prefetch granule size). According to Section 4.5,
1STORE belongs to I/O class IOC2-nosupp in any consid-
ered case, because the customer dimension is not repre-
sented in any of our sample fragmentations, forcing the
query to access all fragments. 1STORE is assigned to the
worst case class IOC2-nosupp because the customer
dimension is not represented in any of our sample fragmen-
tations forcing the query to access all fragments. Due to its
query selectivity of 1/1440, and since there are about 200
tuples per fact table page, only 1 in 7 pages of every frag-
ment contains a hit. Query type 1CODE1QUARTER accesses
exactly 3 fragments (one for each month of a quarter),
residing on 3 disks regardless of the fragmentation. It has to
process only 16,200 rows in total with a sensible processing
parallelism of at most 3. For FMonthClass and FMonthGroup,
bitmap access is introduced so that the query type belongs
to class IOC2 in these cases. For FMonthGroup, I/O class
IOC1 is given because the fragments contain only relevant
fact rows.

Figure 6 shows the response time behavior of the two
queries types for the three fragmentations. The x-axis refers
to the total number of subqueries over all (20) processing
nodes. For both queries, I/O dominates response times.
While 1STORE has about 80 times more hit tuples than
1CODE1QUARTER its response time is more than 300 times
worse for lower degrees of parallelism. Only for the two
better fragmentations and at least 100 subqueries can this
query type obtain a response time that is about 80 times
higher than for 1CODE1QUARTER which achieves its opti-
mum for only 3 subqueries. While this leaves many
resources unused, in multi-user mode this can be advanta-
geous for other queries.

1CODE1QUARTER benefits from the chosen fragmenta-
tions. Within a product group, the selectivity is 1/30 for a
certain product. Therefore, every fact page (each containing
200 tuples) of the 3 fragments contains hits regardless of
the granule of fragmentation varying from group to code.
For fragmentation FMonthClass fragment size halvens com-
pared to FMonthGroup resulting in a corresponding response
time improvement because every fragment page is to be
read. The best response times are achieved for FMonthCode
for which no bitmap access is necessary and fragments only
contain relevant tuples (IOC1).

1STORE exhibits the inverse behavior with respect to
the fragmentations. In particular, the fine-grained fragmen-
tation FMonthCode results in the worst performance. This is
especially because the bitmap fragment size drops to only
1/6 of a page resulting in an extreme number of bitmap
pages (more than 4 million) to be read for the 12 bitmaps.

This indicates that a fragmentation such as FMonthCode
must be avoided, which can be achieved by considering the
fragmentation threshold introduced in Section 4. A possibil-
ity to improve efficiency for finer fragmentations is to clus-

ter together multiple bitmap and fact fragments, respec-
tively, and subsequently assign such granules of clustered
fragments to consecutive pages and to one single subquery.
This can especially help to avoid unacceptable bitmap frag-
ment sizes.

7 Conclusions
In this study, we have developed a multi-dimensional hier-
archical fragmentation and allocation method for star sche-
mas in a parallel data warehouse environment. The
approach called MDHF allows all star queries referencing
at least one attribute from any fragmentation dimension to
be confined to a subset of the fact table fragments. This
clusters hit rows within fewer pages, thereby supporting
fewer I/O operations and effective prefetching. Moreover,
we can eliminate bitmap indices on the fragmentation
dimensions either completely or partially, further saving
disk space and I/O load. Our technique uses an analogous
fragmentation of fact tables and their associated bitmap
indices to enable simultaneous, fragmentwise processing
that can be parallelized effectively.

We developed a number of guidelines for finding an
appropriate fragmentation. As outlined, we must avoid very
fine fragmentations to limit the administration overhead
and to avoid only partially filled bitmap index pages that
sharply increase I/O load. The guidelines were verified
using a detailed simulation model based on the APB-1 deci-
sion support benchmark. Together with our analytical for-
mulas calculating star query I/O costs [33], they can be used
within a tool to automatically determine suitable fragmenta-
tion candidates for a given query mix.

FMonthGroup FMonthClass FMonthCode

number of fragments 11,520 23,040 345,600

bitmap fragment size
[pages]

4.9 (5) 2.5 (3) 0.16 (1)

Table 6: Fragmentation parameters for experiment 3

Fig. 6: Response times of 1STORE, 1MONTH1QUARTER for
different fragmentations

1 2 3 4 5
degree of parallelism

0 s

1 s

2 s

3 s

4 s

av
er

ag
e

re
sp

on
se

 ti
m

e

Query 1CODE1QUARTER

product code fragmentation
product class fragmentation
product group fragmentation

av
er

ag
e

re
sp

on
se

 ti
m

e

0 40 80 120 160
degree of parallelism

0 s

500 s

1000 s

1500 s

Query 1STORE

product code fragmentation
product class fragmentation
product group fragmentation

283

Our approaches assume a Shared Disk PDBS but can be
applied to other architectures with minor modifications.
The simulation results demonstrated that the flexibility of
Shared Disk architectures permits efficient load balancing
based on a round robin allocation scheme in combination
with intra-processor parallelism. This approach exhibits
near-linear scalability with respect to the number of disks
and processors. Furthermore, it enables parallel I/O for all
bitmap fragments accessed within a given subquery.

We believe that our fragmentation and allocation
approaches are directly applicable to commercial PDBS
with comparatively little effort. In future studies, we will
elaborate on the load balancing properties of star schema
processing and examine data skew effects as well as the
consequences of multi-user mode. Furthermore, we want to
explore how our multi-dimensional hierarchical partition-
ing can be exploited for the complementary allocation deci-
sions associated with materialized views and caching of
query results.

References
[1] APB-1 OLAP Benchmark, Release II. OLAP Council,

Nov. 1998. www.olapcouncil.org/research/
bmarkly.htm

[2] C. Ballinger: Teradata Database Design 101. White
Paper, NCR Corporation, 1998.

[3] S. Brobst, B. Vecchione: DB2 UDB: Starburst Grows
Bright. Database Programming & Design, 1998.

[4] G. Copeland et al.: Data Placement in Bubba. Proc.
ACM SIGMOD Conf., Chicago, 1988.

[5] S. Chaudhuri, U. Dayal: An Overview of Data Ware-
housing and OLAP Technology. SIGMOD Record
26(1), 1997

[6] P. M. Chen et al.: RAID: High-Performance, Reliable
Secondary Storage. ACM Computing Surveys 26 (2),
1994.

[7] D. J. DeWitt, J. Gray.: Parallel Database Systems: The
Future of High Performance Database Systems. Comm.
ACM 35 (6), 85 - 98, 1992.

[8] S. Ghandeharizadeh, D. J. DeWitt: A Multiuser Perfor-
mance Analysis of Alternative Declustering Strategies.
Proc. 6th Int. Conf. on Data Engineering, 1990.

[9] S. Ghandeharizadeh, D. J. DeWitt, W. Qureshi: A Per-
formance Analysis of Alternative Multi-Attribute Declu-
stering Strategies. Proc. ACM SIGMOD Conf., 29 -
38, 1992.

[10] G. Graefe, J. Ewel, C. Galindo-Legaria: Microsoft SQL
Server 7.0 Query Processor. White Paper, Microsoft,
1998.

[11] V. Gaede, O. Günther: Multidimensional Access Meth-
ods. ACM Comp. Surv. 30 (2), 170 - 231, 1998.

[12] A. Gupta, I. S. Mumick: Maintenance of Materialized
View: Problems, Techniques, and Applications. Data
Eng. Bulletin 18 (2), June 1995.

[13] J. Gray et al.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-
Totals. In: U. Fayyad, H. Mannila, G. Piatetsky-Sha-
piro: Data Mining and Knowledge Discovery 1, 29 - 53,
1997

[14] Informix Corporation: Informix Decision Support
Indexing for the Enterprise Data Warehouse. White
Paper, 1998.

[15] Informix Corporation: INFORMIX-OnLine Dynamic
Server: Administration Guide. http://www.infor-

mix.com/answers/oldsite/answers/pubs/pdf/811xpsu/
7624.pdf (June 2000)

[16] R. H. Katz, W. Hong: The Performance of Disk Arrays
in Shared-Memory Database Machines. Distr. and Par-
allel Databases 1 (2), 167 - 198, 1993.

[17] E. K. Lee, R. Katz: An Analytic Performance Model of
Disk Arrays, Proc. ACM SIGMETRICS Conf., 1993.

[18] H. Märtens: On Disk Allocation of Intermediate Query
Results in Parallel Database Systems, Proc. EURO-
PAR Conf., Toulouse, LNCS 1685, Springer 1999.
http://dol.uni-leipzig.de/pub/1999-24

[19] M. Mehta, D. J. DeWitt: Data Placement in Shared-
Nothing Parallel Database Systems. VLDB Journal 6
(1), 1997.

[20] Mesquite Software Inc.: User’s Guide CSIM18 Simula-
tion Engine. Manual, 1996.

[21] C. Mohan, I. Narang: Recovery and Coherency-Control
Protocols for Fast Intersystem Page Transfer and Fine-
Granularity Locking in a Shared Disks Transaction
Environment. Proc. VLDB Conf., 193 – 207, 1991.

[22] P. O'Neil, G. Graefe: Multi-Table Joins Through Bit-
mapped Join Indices. ACM SIGMOD Record 24 (3),
1995.

[23] P. O'Neil: Model 204 Architecture and Performance.
Proc. 2nd HPTS Workshop, Asilomar, 1987.

[24] P. O'Neil, D. Quass: Improved Query Performance with
Variant Indexes. Proc. ACM SIGMOD Conf., 1997.

[25] Oracle Corporation: Star Queries in Oracle8. White
Paper, 1997.

[26] Oracle Corporation: Oracle 8i Administrator’s Guide.
http://www.irm.vt.edu/oracle_816_docs/server.816/
a76956/index.htm (June 2000)

[27] E. Rahm: Empirical Evaluation of Concurrency and
Coherency Control Protocols for Database Sharing Sys-
tems. ACM TODS 18 (2), 333 – 377, 1993.

[28] E. Rahm: Parallel Query Processing in Shared Disk
Database Systems. Proc. 5th HPTS Workshop, Asilo-
mar, 1993. http://www.informatik.uni-leipzig.de/ifi/
abteilungen/db/abstr/Ra93.HPTS.ps

[29] Red Brick Systems, Inc.: Star Schema Processing for
Complex Queries. White Paper, 1998.

[30] E. Rahm, H. Märtens, T. Stöhr: On Flexible Allocation
of Index and Temporary Data in Parallel Database Sys-
tems. Proc. 8th HPTS Workshop, Asilomar, 1999. http://
dol.uni-leipzig.de/pub/1999-23

[31] E. Rahm, T. Stöhr: Analysis of Parallel Scan Processing
in Parallel Shared Disk Database Systems. Proc.
EURO-PAR Conf., LNCS 966, Springer 1995. http://
dol.uni-leipzig.de/pub/1995-22

[32] P. Scheuermann, G. Weikum, P. Zabback: Data Parti-
tioning and Load Balancing in Parallel Disk Systems,
VLDB Journal 7 (1), 48 – 66, 1998.

[33] T. Stöhr: Analytical Evaluation of a Multi-Dimensional
and Hierarchical Allocation Strategy for Parallel Data
Warehouses. Technical Report, Univ. of Leipzig, Ger-
many, 2000 (to appear)

[34] J. Sun, W.I. Grosky: Dynamic Maintenance of Multidi-
mensional Range Data Partitioning for Parallel Data
Processing. Proc. First ACM Intl. Workshop on Data
Warehousing and OLAP (DOLAP), Washington D.C.,
72 – 79, 1998

[35] Sybase, Inc.: Adaptive Server IQ. White Paper, 1997.
[36] M.-C. Wu, A. P. Buchmann: Encoded Bitmap Indexing

for Data Warehouses. Proc. 14th Proc. Int. Conf. on
Data Engineering, Orlando, 1998.

[37] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom:
View Maintenance in a Warehousing Environment.
Proc. ACM SIGMOD Conf., San Jose, 1995.

284

