
Benchmarking XML Database Systems –
First Experiences

Timo Böhme Erhard Rahm

University of Leipzig, Germany
http://dbs.uni-leipzig.de

1 Introduction
We recently developed and published a scaleable multi-user benchmark called XMach-1
(XML Data Management benchmark) for evaluating the performance of XML data
management systems [1]. To our knowledge it is the first such benchmark. It aims at
realistically evaluating the performance of individual systems as well as to allow for a
performance comparison between different systems and architectures ranging from native
XML data management systems to XML-enabled relational DBMS. Specifying and
implementing the benchmark revealed a number of problems which are partly due to the lack
of a standardized XML query language, the complexity of the XML format and the relative
immaturity of current XML database software. After a brief review of XMach-1 we will
discuss our experiences made so far.

2 XMach-1: Short Overview
The XMach-1 benchmark is based on a web application in order to model a typical use case of
a XML data management system. The system architecture consists of four parts: the XML
database, application servers, loaders and browser clients (Figure 1). Similar to TPC-W [2],
the System under Test (SUT) for which response time and throughput performance is
determined includes the database and application servers. Including both server types is
necessary since XML database processing is typically spread across the database backend and
application servers. The application servers are essential for improved throughput, scalability,
load balancing and caching. The number of database and application servers is not
predetermined but can be chosen according to the throughput goals.

Upload
Delete

LoaderXML Database Application Server

XML documents

Directory

Inter- /
Intranet

BrowserSUT

Query

Retrieve

Figure 1: Components of benchmark architecture

http://dbs.uni-leipzig.de/
http://dbs.uni-leipzig.de/

The database contains a single directory structure and a certain number of text-oriented XML
documents. The directory contains metadata about all other XML documents. It represents
structured data as it is schema-based and holds element content only. The XML documents
are generated synthetically to support almost arbitrary numbers of documents with well-
defined contents and structure. Document size and structure are variable and skewed; the
average size is about 18 KB. To support scaling to different system configurations, four
database sizes are possible with an initial document number of 10.000, 100.000, 1.000.000 or
10.000.000. Due to insert operations the number of documents increases during benchmark
execution.
Two benchmark variants are distinguished depending on whether the XML documents are
schema-less or conform to schemas or DTDs. This allows us to run the benchmark with
systems only supporting one of the two cases. If both variants are possible, we can evaluate
the performance impact of having schema support.
The workload is defined by a mix of operations from 8 query types and 3 update types. These
operations cover typical database functionality (join, aggregation, sort) as well as information
retrieval and XML-specific features (document assembly, navigation, element access). All
operations can be expressed by XML language proposals such as Quilt or XQuery [3]. The
query and update workload is generated by emulated browsers and loaders (Fig. 1). The
number of these clients is not predetermined but can be chosen according to the throughput
goals. Interaction with the application server is via a HTTP interface.
The benchmark specifies the workload composition and response time limits per operation
type. The main performance metric is query throughput measured in Xqps (XML queries per
second) or – in the schema-less case – in Xqpssl.

3 Experiences
We first discuss observations w.r.t. the specification of XMach-1. We then present first
experiences from its implementation and adoption. Due to legal considerations we do not
outline specific performance results.

3.1 Benchmark specification
We had two (somewhat conflicting) goals in mind when we defined the benchmark. Given the
broad applicability of XML data management systems we did not want to limit ourselves to a
specific usage form of XML data but strove for a domain-specific but rather comprehensive
benchmark measuring the ability of a system to handle different types of XML data and a
variety of operations. Second the benchmark architecture and specified operations should
allow the implementation and execution on most XML data management systems ranging
from native XML databases to relational DBMS augmented with XML functionality. We also
tried to keep the benchmark as simple as possible to limit the effort for its implementation.
We now discuss the implications of the two main goals.

3.1.1 Comprehensive Benchmark
Specifying a comprehensive benchmark means that we have to capture the main usage forms
of XML with respect to both data structures and operations. In particular, text and non-text
data has to be included, differing in content type, preservation of element order and element-
content ratio. We therefore modelled a document repository containing XML text documents
with different DTDs and a directory document holding metadata of the text documents.
Moreover, we came up with a spectrum of query and update operations.
This design of the benchmark found positive reactions but also some criticisms which we will
cite and comment:

- Some people would have preferred a more specific benchmark tailored to e-business
(B2B) applications. While this is certainly an important application type for XML
data we felt that the associated data management requirements would not be
demanding enough to warrant a new benchmark in addition to (an XML-enabled
version of) TPC-W. This is because B2B data is mostly uniformly structured and
dominated by small data values. Our aim was to also evaluate the systems’ ability to
handle the more advanced features of XML compared to relational data structures
including flexible support of schemas and variable structures.

- Another criticism was that the single directory document could become a bottleneck
when running multiple concurrent queries. In our view this would only be a problem
if the management systems treats the directory document in an unoptimized manner
with locking and data allocation at the granularity of entire documents. XML allows
the whole database to be contained in a single document making it necessary to
perform critical database management tasks at finer granularities than documents, e.g.
at the element level.

3.1.2 Executable on most systems
Currently available XML data management systems mostly support only a basic subset of
XML features. Moreover, due to the lack of a standardized interface and query language there
are large differences w.r.t. the supported query functionality. These limitations had to be
considered in order to allow the adoption of XMach-1 to existing systems:

- We restricted the XML data to hierarchical documents with elements and attributes.
Neither support for namespaces nor entities is assumed.

- According to the distinction in the XML specification of well-formed and valid
documents we expected the systems to be able to handle optionally a DTD or some
kind of XML schema. However current systems often either require a schema or
ignore it completely. So it was necessary to support both kinds of systems which we
do with the two variants of the benchmarks and different performance metrics.

- In order to not reduce the operation mix of the benchmark to very simple queries we
needed a possibility to support systems with limited functionality. We thus allow
implementing the query and update functionality at the application level, e.g. by
programs executed on the application server.

3.2 Benchmarking XML Database Systems
The reference implementation of XMach-1 was done in Java since almost all XML data
management systems provide a Java API. We developed a database loader and a generic
workload generator to reduce the effort necessary to adapt the benchmark to a new system as
much as possible. A specific module is to be provided to translate the generated operations to
the specific system calls.

3.2.1 Database population
As stated above some XML data management systems require the definition of schemas prior
to loading documents while other systems ignore schemas completely. So far we haven’t seen
a deep performance impact of using schemas. There is only small evidence that schema-
based systems may scale better. On the other hand, systems requiring a schema tend to have
problems with a large number of schemas.
XML data is often highly redundant so that XML data management systems should be able to
limit the space requirements for document storage. However in our tests the databases
occupied 3-8 times the space of the source data. Despite the space requirements of index
structures there should be room for improvement.

3.2.2 Implementing database modules
While most operations of the XMach-1 workload mix can be expressed by a single statement
of current XML language proposals we often had to implement them by programs consisting
of multiple operations for specific systems. This was due to missing functionality such as for
join or grouping. Furthermore some systems could not create new result elements or could
only return and update complete documents.

3.2.3 Performance
We observed large differences in query response times between different systems even in
single-user mode, e.g. ranging from 10 ms to several seconds on a small database. This was
influenced by the fact that some operations had to be implemented at the application level. In
multi user mode the 90th percentile response time limit which we set to 3 seconds for most
queries was often missed. This means that only very modest throughput values are achieved,
unless we change the specification to relax the response time requirements. Similar to TPC-C
it could also be more appropriate to measure the throughput in Xqpm (XML queries per
minute) instead of Xqps to more easily allow throughput values larger than 1.
An important performance factor in most systems is the definition of proper index structures.
The systems mostly do not automatically create indexes but the user is responsible not only
what to index but also how. A weak solution are systems which index all parts of the
documents. Most evaluated systems do not output execution plans to inform the user if an
index is used.

4 Conclusions
XMach-1 can be implemented for different XML data management systems. The
implementation effort depends on the supported functionality. For currently available systems
performance and scalability in a multi-user environment and with data corresponding to
different DTDs are unsatisfying. Sufficient performance can be achieved for XML-formatted
relational data or small data sets but not for large collections with millions of XML
documents.

5 References
1. T. Böhme, E. Rahm: XMach-1: A Benchmark for XML Data Management. Proc. of

9th German database conference BTW01, Springer-Verlag, March 2001, http://dbs.uni-
leipzig.de/en/projekte/XML/XmlBenchmarking.html

2. TPC-W Specification. http://www.tpc.org
3. XQuery: A Query language for XML. W3C Working Draft, Febr. 2001,

http://www.w3.org/TR/xquery/

http://dol.uni-leipzig.de/pub/2001-1/en
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://www.tpc.org/
http://www.w3.org/TR/xquery/

	Introduction
	XMach-1: Short Overview
	Experiences
	Benchmark specification
	Comprehensive Benchmark
	Executable on most systems

	Benchmarking XML Database Systems
	Database population
	Implementing database modules
	Performance

	Conclusions
	References

