
Web Semantics: Science, Services and Agents
on the World Wide Web 1 (2003) 47–74

Developing metadata-intensive applications with Rondo

Sergey Melnika,∗, Erhard Rahma, Philip A. Bernsteinb

a University of Leipzig, Leipzig, Germany
b Microsoft Research, Redmond, WA, USA

Received 22 April 2003; received in revised form 28 April 2003; accepted 31 July 2003

Abstract

The future of the Semantic Web depends on whether or not we succeed to integrate reliably thousands of online applications,
services, and databases. These systems are tied together using mediators, mappings, database views, and transformation scripts.
Model-management aims at reducing the amount of programming needed for the development of such integrated applications. We
present a first complete prototype of a generic model-management system, in which high-level operators are used to manipulate
models and mappings between models. We define the key operators and conceptual structures and describe their use and
implementation. We examine the solutions for three model-management tasks: change propagation, view reuse, and reintegration.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Generic model management

1. Introduction

The future of the Semantic Web depends on whether
or not we succeed to integrate reliably thousands of
online applications, services, and databases. These
systems are tied together using mediators, mappings,
database views, and transformation scripts of various
kinds, whose development is extremely costly. Once
up and running, the maintenance of the plumbing
used to connect heterogeneous systems becomes a
second crucial issue. Even minor changes in database
schemas or interfaces of online services break com-
ponents that rely on them. Thus, the development of

∗ Corresponding author. Present address: Stanford University
Database Group, Stanford University, Stanford, CA 94305, USA.
Tel.: +1-650-723-2560.

E-mail addresses: melnik@db.stanford.edu (S. Melnik),
rahm@informatik.uni-leipzig.de (E. Rahm),
philbe@microsoft.com (P.A. Bernstein).

applications that help bridge disparate systems lies on
the critical path that leads to the Semantic Web.

Such applications deal with the tasks that arise in
the context of database design, data integration, data
translation, model-driven website management, data
warehousing, etc. They manipulate a variety of meta-
data artifacts that are calledmodels, such as relational
and XML schemas, interface definitions, mediator
specifications, or website layouts, andmappings
between models, such as SQL views or XSLT trans-
formations. Reducing the amount of programming re-
quired for the development of such metadata-intensive
tasks is the subject of model-management research.
In fact, many of today’s metadata-intensive tasks are
still solved manually, because an automated approach
requires too much implementation effort due to the
lack of a common programming platform.

Database and software engineering researchers
have been studying the individual aspects of

1570-8268/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2003.07.003

48 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

model-management in depth for decades. However,
factoring out the common aspects of model-manage-
ment has only recently come to the fore of active
research[7]. A major goal of this recent research has
been to develop a set of algebraic operators, such as
Compose, Match and Merge, that generalize the trans-
formation operations utilized across various metadata
applications. These operators are applied to models
and mappings as a whole, rather than to their individ-
ual elements, and simplify the programming of meta-
data applications by raising the level of abstraction.
Moreover, the operators aregeneric in the sense that
they can be utilized for different kinds of models and
scenarios. Although many model-management tasks
can be automated, there remain critical places where
human decision-making is needed, e.g., to address
semantic heterogeneity. Thus, some of the operations
are inherently semiautomatic and require feedback of
a human engineer before, during, or after operator
execution.

Our goal is to investigate whether metadata manage-
ment can be done in a generic fashion, the key ques-
tion raised in[7]. Detailed walkthroughs of various
model-management problems have been examined to
address this question (e.g., in[5,9]). Our contribution
is that we succeeded in making such abstract programs
executable. In this article, we present a prototype of
a programming platform for model-management and
describe the conceptual structures and operators that
we developed (a short version of this article appeared
in [18]). Primarily, our prototype supports the devel-
opers of model-management solutions, by providing
a high-level programming environment. However, it
also addresses the needs of the engineers who deploy
these solutions by offering a graphical user interface
(GUI) to receive their feedback in semiautomatic op-
erations.

In designing and implementing our prototype, we
consciously focus on simplicity. We investigate how
far we can go with a comparatively weak representa-
tion of models and mappings that can be used to solve
an interesting class of problems. We also determine
how much code is needed for the most basic, but still
useful, model-management system. The key contribu-
tions of this article are as follows:

• We introduce conceptual structures used for repre-
senting models and mappings. We explore a simple

class of mappings between models that we call mor-
phisms and suggest a new structure called selector.
• We define the semantics of the key model-manage-

ment operators on the conceptual structures that
we introduce, and suggest several new generic
operators.
• We present new algorithms used for implementing

the operators Extract and Merge.
• We examine the solutions for three important

model-management tasks that involve manipula-
tions of relational schemas, XML schemas, and
SQL views.
• Finally, we describe the first complete prototype

implementation of model-management and demon-
strate how it can be extended to embrace new kinds
of models.

This article is organized as follows. InSection 2, we
walk through a model-management scenario to mo-
tivate the conceptual structures and operator defini-
tions that we present inSections 3 and 4. Section 5
is devoted to the implementation and the algorithms
that we developed.Section 6describes our prototype
in more detail. InSections 7 and 8, we discuss two
further model-management scenarios, view reuse and
reintegration. Related work is reviewed inSection 9.
We outline some preliminary ideas on structural ver-
sus state-based semantics of operators and scripts in
Section 10, and conclude inSection 11.

2. Motivating scenario

To motivate the operator definitions that we give in
this article, we will use a scenario that is illustrated in
Fig. 1 and exemplifies one of the patterns that can be
found in many metadata-intensive applications. Con-
sider an e-commerce company that needs to supply its
purchase order data to a business partner. The data is
stored in a relational database according to a relational
schemas1. For the purpose of data exchange, both
companies agree to use a common XML schemad1.
(The correspondences between the elements of schema
s1 andd1 are depicted as light gray lines.) Schemad1
differs from s1 in terms of structure and naming.

The relational schema undergoes periodic changes
due to the dynamic nature of the business. Assume
that s2 is a new version ofs1, in which columns
“Brand” and “Discount” have been deleted, and

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 49

OrderID
OrderDate
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Brand
Quantity
Price
Discount

Product

OID

OrderDate
Employee
Customer
PONum
SalesTaxRate

ORDERS

DID

Quantity
Price
Discount

O-DETAILS

PID

PName
Brand

PRODUCTS

OID
PID

s1 d1original
relational
schema

original
XML
schema

OrderID
OrderDate
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Quantity
Price

Product

ShipDate
FreightCh
Rebate

d2 updated
XML
schema

modified
relational
schema

OID

OrderDate
Employee
Customer
PONum
SalesTaxRate
ShipDate
FreightCh
Rebate

ORDERS

DID

Quantity
Price

O-DETAILS

PID

PName

PRODUCTS

OID
PID

s2

Fig. 1. Scenario illustrating propagation of changes from a relational to an XML schema.

columns “ShipDate”, “FreightCh” (freight charge),
and “Rebate” have been added. These changes (high-
lighted in bold inFig. 1) need to be propagated to the
XML schema, so thatd1 becomesd2.

The change propagation described above can be
done as follows. First, the changes introduced bys2
need to be detected, i.e.,s1 ands2 need to be matched.
Then, thed1 images of the elements deleted ins1
need to be removed fromd1. Finally, the XML schema
counterparts of the added and renamed columns ins1
need to be merged intod1 to obtaind2. During these
steps, intervention of a human engineer may be re-
quired, for example, to decide whether the new col-
umn “Rebate” should indeed be added to the exchange
schema or is not part of the exchanged data and should
be omitted. Still, a major portion of the work is me-
chanical and can be automated.

Notice that the procedure sketched above could be
applied in the reverse case, when the XML schema
d1 is the one that has been modified and the changes

are to be propagated back to the relational schemas1.
Another instance of the same pattern is round-tripping
the modifications from a relational schema likes1
to an existing conceptual schema of the data, which
may be expressed as an ER diagram. A key idea of
generic model-management is to solve such tasks at
a high level of abstraction using a concise generic
script.

Below we present an actual model-management
script that implements the above solution for our
change propagation scenario, and is directly exe-
cutable by our prototype. We will use the script to
introduce the major model-management operators,
which we define in the subsequent sections. To explain
the individual steps of the script, we use a schematic
representation of the solution shown inFig. 2. The
rectangles labeleds1, s2, d1, andd2 represent the four
schemas ofFig. 1. The arcs between the rectangles
denote themappings between the schemas. For ex-
ample, the correspondences between schemass1 and

50 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

c'_c

s1_d1

s2_c

d1' _d2

c'_
d2

s2_d2

c '_d1'

s1_s2

Legend:

s1 = original source model
s2 = modified source model
d1' = target model
d1 = d1 without elements deleted by way of s2
c = converted from s2
c' = elements added to s2 (after conversion)
d2 = updated target model

s1

s2

d1
d1'

c
c'

d2

c'
d1'

d1' _d1

Fig. 2. Schematic representation of a solution for change propagation scenario ofFig. 1.

d1 in Fig. 1 are shown as a single arc from rectangle
s1 to d1 in Fig. 2.

At the bottom ofFig. 2, there is a schemac, which
does not appear inFig. 1. To see why it is needed, re-
call that s1 andd1 are expressed using two different
schema languages. The new schema elements added
to s1 by way of s2 have no counterparts in schema
d1. That is, the new elements need to be converted
from the source schema language to the target lan-
guage. For example, the attribute “ShipDate” added
to relation “ORDERS” needs to be converted to a
subelement of the complex type “PurchaseOrder” in
the XML schema. This step is often referred to as
schema translation in the literature. In our solution,
we assume that such a translation tool is available
as an operator, say SQL2XSD, which takes as input
a relational schema and produces as output an XML

DID

O-DETAILS

OID
OrderDate
Employee
Customer
PONum
SalesTaxRate
ShipDate
FreightCh
Rebate

ORDERS

c

Quantity
Price

PRODUCTS

PID
Name

modified
relational schema

OID

OrderDate
Employee
Customer
PONum
SalesTaxRate
ShipDate
FreightCh
Rebate

ORDERS

DID

Quantity
Price

O-DETAILS

PID

PName

PRODUCTS

OID
PID

s2

converted
XML schema

ShipDate
FreightCh
Rebate

ORDERS c'

extracted
XML schema

support element

Fig. 3. Converted schemac and support element ORDERS inc′.

schema and a mapping between the original and con-
verted schema elements. Thus, the schemac and the
mappings2 c betweens2 and c shown inFig. 2 are
obtained as〈c, s2 c〉 = SQL2XSD(s2). Schemac is il-
lustrated inFig. 3. Note thatc is not yet the desired re-
sult d2; for example,c contains an unneeded complex
type O-DETAILS, and differs fromd2 structurally.

Now, our solution for the change propagation sce-
nario can be expressed as the following script.
operator PropagateChanges(s1, d1,

s1 d1, s2, c, s2 c):

1. s1 s2 = Match(s1, s2);
2. 〈d1′, d1′ d1〉 = Delete(d1, Traverse

(All(s1) − Domain(s1 s2), s1 d1));
3. 〈c′, c′ c〉 = Extract(c, Traverse(All

(s2) − Range(s1 s2), s2 c));

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 51

4. c′ d1′ = c′ c ∗ Invert(s2 c) ∗ Invert
(s1 s2) ∗ s1 d1 ∗ Invert(d1′ d1);

5. 〈d2, c′ d2, d1′ d2〉 = Merge(c′, d1′,
c′ d1′);

6. s2 d2 = s2 c ∗ Invert(c′ c) ∗ c′ d2 +
Invert(s1 s2) ∗ s1 d1 ∗ Invert
(d1′ d1) ∗ d1′ d2;

7. return 〈d2, s2 d2〉.

The script defines a generic operator Propagate-
Changes, which takes six parameters as input (includ-
ing the converted schemac), and produces two return
values〈d2, s2 d2〉 as output. Below, we explain the
script line by line.

1. In line 1, schemass1 ands2 are “matched” to detect
the changes. The result is a mappings1 s2 shown
schematically inFig. 2. Speaking informally, the
mapping connects the equivalent elements ofs1
ands2. The new elements ofs2 (e.g., “ShipDate”)
and deleted elements ofs1 (e.g., “Brand”) have
no matching counterparts, so they remain uncon-
nected.

2. Line 2 illustrates how operators can be combined.
First, the deleted elements ofs1 are identified
using the expression All(s1) − Domain(s1 s2),
i.e., all elements ofs1 without the matched (and
thus not deleted) elements. Then, these elements
are used to “traverse” the mappings1 d1. For
example, the deleted relational attribute “Brand”
traversess1 d1 and yields the XML schema ele-
ment “Brand” of d1. Finally, thesed1 images of
the deleted elements are removed fromd1 using
the operator Delete. The result is a new schema
d1′ (a “subschema” ofd1), and a mappingd1′ d1,
which describes howd1′ relates tod1.

3. Line 3 is quite similar to line 2. The new elements
of s2, i.e., those missing from the range ofs1 s2,
traverses2 c into the converted modelc (seeFig.
3). For example, the image of relational attribute
“ShipDate” is an XML schema element “ShipDate”
obtained by conversion. A “subschema”c′ con-
taining the images of the new elements is then
extracted fromc using the operator Extract, which
also returns the mappingc′ c. In addition to the
elements obtained by traversal like “ShipDate”,c′
contains an extra element ofc, the complex type
“ORDERS” that encloses “ShipDate”. Such extra

elements are called “support” elements[5]. Sup-
port elements may have to be extracted to makec′
a well-formed XML schema.

4. At this point,d1′ is a subschema ofd1 without the
deleted elements, andc′ contains the added ele-
ments and their support elements. Schemasd1′ and
c′ need to be merged to obtain the final resultd2
(line 5). As we explain inSection 4.5, the merging
of two schemas is driven by a mapping that tells
how elements of the two schemas, specifically the
support elements ofc′, correspond to each other.
The mapping betweend1′ andc′ is shown inFig. 2
as an arc connecting the two enclosed rectangles.
This mapping can be obtained by “composing” the
existing mappings betweenc′, c, s1, s2, d1, and
d1′ asc′ c ∗ Invert(s2 c) ∗ Invert(s1 s2) ∗ s1 d1 ∗
Invert(d1′ d1). To get the composition right, map-
pingss2 c, s1 s2, andd1′ d1 need to be “inverted”,
i.e., the domains and ranges of the mappings need
to be swapped. Thus, we determine by composition
that the support element “ORDERS” inc′ corre-
sponds to the element “PurchaseOrder” ind1′.

5. The final result of change propagation, schema
d2, is computed by the Merge operator. Among
other things, the operator Merge creates a sin-
gle complex type definition from complex type
“ORDERS” from c′ and “PurchaseOrder” from
d1′. Additionally, the operator returns two map-
pings, c′ d2 and d1′ d2, which describe howd2
relates to the inputs to Merge,c′ andd1′.

6. As a last step, we computes2 d2, a new version
of the mappings1 d1 given as part of the input.
We needs2 d2 to ensure that our change propaga-
tion script can be reapplied if the source schema
evolves again. Sinced2 is obtained by merging
d1′ and c′, the mappings2 d2 is essentially a
union of two mappings, the one betweens2 and
the d1′-portion of d2, and the one between thes2
andc′-portion of d2. These two mappings can be
obtained by composition ass2 c ∗ Invert(c′ c) ∗
c′ d2 and Invert(s1 s2) ∗ s1 d1 ∗ Invert(d1′ d1) ∗
d1′ d2, respectively. Their union is denoted using
the plus sign (+). To illustrate, the first mapping
establishes the correspondences between the added
elements “ShipDate”, “FreightCh”, “Rebate” ins2
and theird2 counterparts. The second mapping in
the union tells us that “OID” ins2 corresponds to
“OrderID” in d2, etc.

52 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

Notice that the above script is not limited to prop-
agating changes from relational schemas to XML
schemas. In fact, the reverse propagation problem can
be solved using the same script by assigning the orig-
inal and modified XML schemas tos1 ands2, and the
relational schema tod1. Of course, the input parame-
tersc and s2 c need to be obtained using a different
converter, e.g., as〈c, s2 c〉 = XSD2SQL(s2).

In our implementation, every intermediate result
of a script such as the one above can be examined
and adjusted by a human engineer using a graphi-
cal tool. Specifically, the result of Match in line 1
can be post-processed to remove incorrectly suggested
matches and add missing ones. Similarly, the merging
in line 5 is in general a semiautomatic process, which
requires human feedback. Finally, by adjusting the in-
termediate results of operator compositions in lines 2
and 3 the engineer can decide which additions and
deletions should not be propagated.

In the above discussion, we introduced several op-
erators informally. To make these operators effective
and usable by developers, their semantics needs to be
specified precisely. Our goal is to make the semantics
as “generic” as possible, so the operators can serve a
broad range of model-management tasks. In the next
two sections, we describe this semantics, first by defin-
ing the structures on which they operate, and then by
describing the operators themselves.

3. Conceptual structures

Model-management applications deal with a wide
range of metadata artifacts, which include not only
schemas, such as the relational and XML schemas
in our motivating scenario, but also view definitions,
interface specifications, etc. We represent the formal
descriptions, ormodels, of these artifacts as directed
labeled graphs. This graph representation is quite flexi-
ble and can accommodate virtually any type of models.

We also introduce two additional structures, called
morphisms andselectors. Morphisms are binary rela-
tionships that establish n:m correspondences between
the elements of two models (i.e., nodes of two graphs).
For example, in our motivating scenario morphisms
are used for keeping track of the XML counterparts of
the relational schema elements. Two morphisms, one
betweens1 andd1 and another betweens2 andd2, are

shown inFig. 1 using light gray lines. The third con-
ceptual structure, selector, is a set of elements used in
models. A major benefit of using selectors is that var-
ious operations, in particular the set operations, which
would typically produce non-well-formed models if
used directly, can be applied to selectors safely.

In the following subsections, we define models,
morphisms, and selectors as abstract graph and set
structures. We also describe them in an equivalent rep-
resentation as relations. The latter will make it easier
to define the semantics of the operators, which follow
later.

3.1. Models

We represent models as directed labeled graphs.
The nodes of such graphs denotemodel elements, such
as relations and attributes in relational schemas, type
definitions in XML schemas, clauses of SQL state-
ments, etc. We assume that each element is uniquely
identified by an object identifier (OID). A directed
labeled graph is a set of edges〈s, p, o〉 wheres is the
source node,p is the edge label, ando is the target
node.1 For a given sources and labelp, the target
nodes may be sequentially ordered. Their order can
be captured by an ordinal property on edges. Thus,
conceptually a graph can be viewed as a relationM
with four attributes,M(S: OID, P: OID, O: OID ∪
Literal, N: integer), whereN is an optional attribute
used for ordering andS, P, O form a unique key. The
node identifiers and edge labels are drawn from the
set of OIDs, which can be implemented as integers,
pointers, URIs, etc. The literals include strings, inte-
gers, floats, and other data types. The type of attribute
O is defined as a union type of OIDs and literals.

Consider the example inFig. 4. It illustrates how a
relational table PRODUCTS defined in SQL DDL (top
left) is represented as a graph (bottom left) and as a
corresponding set of 4-tuples (on the right). The ovals
in the graph denote OIDs, and rectangles denote liter-
als. Nodesa1,a2,a3 represent the table PRODUCTS
and its columns PID and PName, respectively. Node
a4 represents the primary key constraint on PID. For
readability, the identifiers such asTable or Column
are spelled out as names rather than opaque IDs.

1 The notation (s, p, o) stands for (subject, predicate, object).

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 53

“PName”namea3
PrimaryKeytypea4

“PRODUCTS”namea1
2a3columna1

intSQLtypea2
“PID”namea2

Columntypea3
varcharSQLTypea3

Columntypea2

a2keyCola4

a2
Table

O

1columna1
type
P NS

a1

“PName”namea3
PrimaryKeytypea4

“PRODUCTS”namea1
2a3columna1

intSQLtypea2
“PID”namea2

Columntypea3
varcharSQLTypea3

Columntypea2

a2keyCola4

a2
Table

O

1columna1
type
P NS

a1

a1

Table

a2

a3

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2
name

name

name

SQLtype

SQLtype

CREATE TABLE PRODUCTS (
PID int PRIMARY KEY,
PName varchar

)

a4 PrimaryKey
type

keyCol

Fig. 4. Sample model shown as graph and 4-tuples.

The order of the columns identified by the
nodesa2 and a3 is determined by the values 1
and 2 of attributeN (fourth attribute of the ta-
ble with 4-tuples). In general, the node order-
ing with respect to a given{src node} and
{edge label} is determined by the SQL query:
SELECT M.O FROM M WHERE M.S={src node}
AND M.P={edge label} ORDER BY M.N. In the
example, we haveM.S=a1 AND M.P=column.

A formal specification of the rules for encoding a
model as a graph is called ameta-model. A model
is well-formed if it conforms to its meta-model. For
example,Fig. 4 illustrates a graph encoding of re-
lational schemas that uses specific edge labels, such
asSQLtype or name, and auxiliary nodes, such as
Table, varchar, or PrimaryKey. If we know
the relational meta-model, we can tell whether or
not a given graph represents a well-formed rela-
tional schema. For example, if we know that each
column must have an SQL type, then removing
the edge〈a2, SQLtype, int〉 from the graph in
Fig. 4 yields a model that is not well-formed. For
the purposes of this article, it is unimportant how
a meta-model is represented and how one checks
that a model conforms to its meta-model. The de-
tails of the graph representation of models remain
opaque to the developer of model-management ap-
plications. Of course, the representation is visible
to developers of model-management operators.
So, a developer must be aware of the represen-
tation to implement a custom, non-generic op-
erator, e.g., an operator to normalize relational
schemas.

3.2. Morphisms

Many metadata-intensive applications, such as data
integration and warehousing tools, use a graphical
metaphor like the one shown inFig. 1for representing
schema mappings. These mappings are shown to the
engineer as sets of lines connecting the elements of
two schemas. We call such mappings (schema) mor-
phisms. Thus, a morphism is a binary relation over
two (possibly overlapping) sets of OIDs, i.e., a set of
pairs〈l, r〉 drawn from OID× OID.

Clearly, a morphism is a weaker representation of
a transformation between two models than an SQL
view or the mapping languages and expressions sug-
gested in[3,5,14,19,20]. In particular, a morphism
carries no semantics about the transformation of in-
stances that conform to the models (e.g., no SQL
WHERE-clause). Still, we have found that many
mappings can be expressed in this way such as in
our change propagation scenario ofSection 2. The
morphisms have several other advantages. Given our
graph representation of models, a morphism can rep-
resent a mapping between different kinds of models,
e.g., between a relational and XML schema. A mor-
phism can always be inverted and composed. (In
contrast, an SQL view cannot be composed with an
XSLT transformation in an obvious way.) And since
morphisms can be expressed as binary relations, they
can be implemented and manipulated easily.

Consider the example inFig. 5. The top part of
the figure shows the relational schema ofFig. 4
and an XML schema. A morphism between the two
schemas is depicted graphically as four arcs that

54 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

Fig. 5. Morphism between relational and XML schema.

connect the elements of the schemas. The bottom part
of the figure shows the same morphism represented
as a relation. The node identifiersa1, a2, a3 cor-
respond to those ofFig. 4. The nodesb2, b3, b4,
b5 denote respectively the complex type “Product”
and the elements “ProductID”, “ProductName”, and
“ProductType” defined in the XML schema (its graph
representation is illustrated inFig. 6). Notice that a
node can be connected to multiple nodes; e.g.a3
(“PName”) is connected tob4 (“ProductName”)
and b5 (“ProductType”).Moreover, various kinds of
model elements, such as relations or attributes, can
participate in a morphism.

In an implementation, it may be convenient to an-
notate the pairs〈l, r〉 with additional properties. For
example, most implementations of the Match operator
compute similarity values between the elements of two
models. These values can be returned conveniently us-
ing a morphism in which each pair has an additional
similarity property. Hence, although we define a mor-
phism conceptually as a binary relationH(L: OID, R:
OID), it may contain additional attributes, as required

type
name

name

name

type
type

tag

b1

b4

b2

child:3

child:1
schema

tag

complexType

element
b3

b5

child:1

child:2

Productname

tag
tag

tag
ProductID

ProductName

ProductType

int

string

Fig. 6. Graph representation of XML schema inFig. 5.

Column

a3

PrimaryKey

Table

int
varchar

a4

a2

V
a1

Column

a3

PrimaryKey

Table

int
varchar

a4

a2

V
a1

Fig. 7. Example of a selector.

by the individual operators. Typically, theL elements
originate from one model, and theR elements from
another.

3.3. Selectors

A selector is a set of node identifiers, which may
originate from a single or multiple models. It can be
represented as a relation with a single attribute,S(V:
OID), whereV is a unique key.Fig. 7 shows an ex-
ample of a selector that contains all OIDs used in the
model depicted inFig. 4.

4. Operators

In our motivating scenario, we introduced high-level
operators whose inputs and outputs are models,
morphisms and selectors, such as Match, Delete,
Traverse, Extract, and Invert. Such operators raise
the level of abstraction of manipulating metadata

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 55

structures by considering whole models and mor-
phisms at a time, as opposed to node-at-a-time
primitives. In this section, we define the precise se-
mantics of these operators on the structures defined
in Section 3. Their implementation is covered in
Section 5.

We start our presentation of operator semantics in
Section 4.1with what we call primitive operators.
These are generic operators whose semantics can be
defined formally using the relational algebraic manip-
ulation of the relational representations ofSection 3.
For notational convenience, we express this manipu-
lation in SQL. After that, we introduce the other more
powerful operators: such as Extract, Delete, Match,
and Merge, whose semantics is more subtle and still
a subject of ongoing research.

As we will see, some operators, such as Subgraph
or Copy, are agnostic about the kind of models passed
as input, whereas the semantics of others depends on
the underlying meta-model. The GUI operators Ed-
itMap and EditSelector allow arbitrary transformations
of morphisms and selectors by an engineer. Thus, their
semantics cannot be constrained any further.

Table 1
Definitions of primitive operators

Definition Example

Domain(map):= SELECT DISTINCT map.L AS V FROM map

RestrictDomain(map, s):= SELECT∗ FROM map WHERE map.L IN s

Invert(map):= SELECT map.R AS L, map.L AS R FROM map

Compose(map1, map2):= SELECT DISTINCT
map1.L, map2.R FROM map1, map2 WHERE
map1.R= map2.L

TransitiveClosure(map):=WITH RECURSIVE TC(L,
R) AS (map UNION SELECT DISTINCT TC.L,
map.R FROM TC, map WHERE TC.R= map.L)
SELECT∗ FROM TC

Id(s):= SELECT s.V AS L, s.V AS R FROM s

Subgraph(m, s):= SELECT∗ FROM m WHERE m.S
IN s AND (m.O IN s OR isLiteral(m.O))

4.1. Primitive operators

Table 1lists the definitions of seven primitive op-
erators. The left column contains the operator defini-
tions expressed in SQL. Variablesm, s, andmap hold
a model, a selector, and a morphism, respectively. The
right column illustrates the application of the oper-
ators using simple examples. All primitive operators
defined in the table are standard set-theoretic opera-
tors. Notice that their definitions are expressed declar-
atively, i.e., the implementation of these operators,
or functional combinations thereof, can be optimized
using standard query optimization techniques.

The operator Domain extracts the “left” elements
from a morphism and returns a selector that holds the
result. The operator RestrictDomain restricts a mor-
phism to a smaller element domain, which is specified
by the selector passed as a second parameter of the
operator. The Invert operator swaps the left and right
elements of a morphism. The Compose (∗) operator
is defined as the natural join of two morphisms, yield-
ing another morphism. The TransitiveClosure opera-
tor on morphisms is specified using a recursive SQL

56 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

definition. The Id operator creates an identity mor-
phism over a given selector.

The operator Subgraph(m, s) extracts from model
m a subgraph induced by the nodes referenced ins.
The literals attached to the nodes ins are also ex-
tracted fromm. In the example ofTable 1, the literal
“PID” is not contained in the input selectors, but the
edge〈a2, name, “PID” 〉 is nevertheless returned as
part of the result. The extracted subgraph may not be
a well-formed model. That is, it may not be fully con-
nected and may not conform to its meta-model.The set
operators Union (+), Difference (−), and Intersection
(∩) are another three important primitive operators.
We define these on models, morphisms, and selectors
by the corresponding set operations on their represen-
tation as relations. For example,

Union(x, y):= SELECT ∗ FROM x UNION
SELECT ∗ FROM y

Note that applying the set operations to well-formed
models may produce a model that is not well-formed.

The last two primitive operators are All and Copy.
The operatorAll(m) returns a selector that contains
only those nodes ofm that denote the model elements
of the model’s meta-model, such as tables or columns
in the relational meta-model. For example, for the
model of Fig. 4 the operator All yields the selector
{a1, a2, a3, a4} and filters out all auxiliary nodes,
such asTable or PrimaryKey, that are used in the
graph encoding.

Frequently, it is important to ensure that a given
node identifier is used in exactly one model. Further-
more, unique node IDs make it possible to refer to
model elements across model boundaries. For these
reasons, we use the operator Copy to create a copy of
a modelm in which the selected node IDs are replaced
by new, uniquely created IDs. In the following defi-
nition of Copy, the function uniqueOID() generates a

 ,)=

Fig. 8. Examples of copying the model ofFig. 4 using selector{a1, a2, a3, a4}.

unique OID on each call, and the function ifNULL(x,
y, z) returnsy wheneverx is a NULL value,z other-
wise. If s = All (m), the output morphismm′ m is a
bijection between All(m′) and All(m).

Copy(m, s):=
m′ m = SELECT uniqueOID(),

s.V FROM s;
m′ = SELECT ifNULL(T1.L, m.S,

T1.L), m.P,
ifNULL(T2.L, m.O, T2.L)
FROM m, m′ m as T1, m′ m as T2
LEFT OUTER JOIN ON m.S=T1.R,

m.O=T2.R;
return 〈m′, m′ m〉;
Fig. 8 illustrates the operator Copy. The operator

takes as input the modelm of Fig. 4and selector{a1,
a2, a3, a4} = All(m). As a result of copying, a new
model has been created (on the right), in which the
nodes IDsa1, a2, a3, a4 have been replaced by the
generated unique IDsa5, a6, a7, a8, respectively.

4.2. Derived operators

The derived operators are functional combinations
of other operators. For example, consider the defini-
tions shown below.

operator Range(map)
return Domain(Invert(map));

operator RestrictRange
(map, selector)
return Invert(RestrictDomain
(Invert(map), selector));

operator Traverse(selector, map)
return Range(RestrictDomain
(map, selector));

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 57

operator Restrict(map, m1, m2)
return RestrictRange
(RestrictDomain(map, All(m1)),
All(m2));

The Range of a morphism is obtained as the domain
of an inverted morphism, by combining the primitive
operators Domain and Invert ofTable 1. Similarly, Re-
strictRange is specified in terms of the operator Re-
strictDomain by first inverting the input morphism,
then applying RestrictDomain, and finally inverting
the resulting morphism once again.

The third operator, Traverse, was used in our mo-
tivating scenario for locating thed1 images of the
elements deleted from the relational schemas1. To
“traverse” the morphism, it is first domain-restricted
by the selector, and the range of the restricted mor-
phism is returned as output.

The last operator, Restrict, confines the domain and
range of a morphism to the elements of two models
m1 andm2. Notice that the definitions of the derived
operators above are expressed declaratively, allowing
the implementations to be optimized.

4.3. Extract and Delete

Extracting and deleting portions of models are op-
erations that are heavily deployed in metadata appli-
cations. To perform these operations, we propose the
generic operators Extract and Delete. The operator Ex-
tract is applied as follows:〈m′, m′ m〉 = Extract(m,
s). The inputs are a well-formed modelm and a se-
lectors that identifies the set of nodes to be extracted.
The output modelm′ satisfies the following proper-
ties: (i) m′ contains all selected nodes, (ii)m′ is a
well-formed model, (iii)m′ is an equally or less ex-
pressive model thanm, i.e.,m can represent all infor-
mation of m′, and (iv) m′ is a “minimal” model that
satisfies (i)–(iii). Condition (ii) may require that un-
selected “support” elements be included inm′. Con-
dition (iii) can be characterized formally in terms of
dominance and information capacity as suggested in
[15,19]. The morphismm′ m is an injective function
from All(m′) to All(m), i.e., each model element ofm′
has at most one counterpart inm.

In general, a model may contain implicit informa-
tion, such as transitive relationships between model
elements. In such cases, the result of Extract may need

to make such information explicit. For example, con-
sider a class diagram with three classes A, B, C, and
two explicit subclass definitions: A is a subclass of
B, and B is a subclass of C. Due to condition (iii),
Extract(m,{A, C}) should return a class diagram in
which A is defined as a subclass of C. This example
illustrates that extraction is a rich operation, whose
semantics and implementation may be non-trivial.

Conceptually, the semantics of the operator Ex-
tract(m, s) can be realized using the following algo-
rithm:

1. Create a “closure” ofm, i.e., a modelm′ in which all
implicit information ofm is represented explicitly.

2. Assigns′ = s, wheres′ is a temporary selector.
3. For eachx in s′, extends′ with elements needed to

satisfy conditions (ii) and (iii).
4. Apply 3 until a fixpoint is reached, i.e.,s′ does not

change.
5. Extract subgrapht′ induced by s′ as t′ =

Subgraph(m′, s′).
6. Obtain a “cover” oft′, i.e., a minimal modelt that

is semantically equivalent tot′.
7. Return Copy(t, All(t)) as result of extraction. No-

tice that the operator Copy (Section 4.1) returns a
model and a mapping.

Deleting a selected portion of a model can be de-
fined as extraction of the unselected portion. Thus, we
define

operator Delete(m, s)
return Extract(m, All(m) − s);

Note that the nodes ofs that do not represent the
model elements ofm, i.e., are not members of All(m),
have no impact on the result of deletion due to applying
All (m)− s.

4.4. Match

The purpose of Match is to uncover how two models
“correspond” to each other. It takes two models as
input and returns a morphism between them. Match
is inherently heuristic. So, like the previous literature
on Match[24], we do not offer a formal definition of
what constitutes a correct output morphism. In general,
matching two schemas requires information that is not
present in the schemas and cannot be fully automated.

58 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

Hence, a human engineer needs to review and adjust
the suggestions produced by an automatic procedure,
either in a post-processing step or iteratively.

4.5. Merge

To combine two models into one, we utilize
the operator Merge, applied as〈m, m1 m, m2 m〉
= Merge(m1, m2, map). If the input modelsm1
and m2 are well-formed, Merge should produce a
well-formed modelm that (i) is at least as expressive
as each of the input models, i.e., capable of represent-
ing the information contained in both models, and
(ii) is “minimal”, i.e., deleting any element makes the
model less expressive than one of the input models.
The third parameter to Merge is a morphismmap that
describes elements ofm1 andm2 that are equivalent
and should be “merged” into a single element inm.
The output morphismsm1 m and m2 m identify the
counterparts of the elements ofm1 and m2 in the
merged modelm.

The conceptual definition of Merge given above
does not say anything about the naming and order-
ing of model elements. For example, it does not pre-
scribe that the attribute names ofm1 take precedence
over those ofm2, or the other way around. These de-
tails are not considered to be part of the semantics of
Merge because they inherently involve end-user deci-
sion making. They are discussed inSection 5.7.

5. Implementation

In this section we discuss our implementation of the
conceptual structures and operators presented above.
We have found that the relations that were used in
Section 3 as standard mathematical representation
of graphs actually are a convenient implementation
structure too. Our graph representation is based on
the classical relational data model, in which node
identifiers are constants that can be shared across
models. We chose a relational approach instead of an
object-oriented one (e.g., the one in[5]) to simplify
the implementation and specification of the operators,
which can often be done using SQL. Our relational
graph model is based on the W3C’s Resource De-
scription Framework (RDF).

For encoding relational schemas, XML schemas,
and SQL views as graphs we use the following ap-
proach. Our meta-model for relational schemas is
based on OIM[8]. For example, the model elements
of a relational schema comprise tables, columns, and
constraints; a table contains an ordered list of columns,
each of which has a type; tables and columns carry
names; the constraints are specialized into primary
key, unique key, non-null, or referential constraints;
a referential constraint refers to two columns, one
of which is a foreign key and the other is a primary
key; etc. Our graph representation of XML schemas
builds on XML DOM. The graph representation of
SQL views that we deploy is comparable to a parse
tree produced by an SQL processor (seeFig. 16 in
Section 7). All clauses, statements, alias definitions,
functional terms, etc. are represented as separate
nodes. A view graph does not replicate the names of
attributes and relations used in schemas, but refers
directly to the respective nodes in the schema graphs.

The output of the primitive operators is de-
fined uniquely inSection 4, except for the opera-
tor All, which is implemented differently for each
meta-model. For example, for relational schemas the
implementation of All is specified as follows:

All(m, s):= SELECT m.S FROM m WHERE
m.P=type AND
m.O IN {Table, Column,PrimaryKey,
UniqueKey, NonNull,

ReferentialConstraint}

5.1. Extract and Delete

To describe our implementation of the Extract and
Delete operators we focus on the relational schemas.
Consider the schemam shown on the left ofFig. 9. The
primary key constraints on PID and DID are depicted
as horizontal bars underlining the respective attributes.
The referential constraint is shown as a line connecting
PRODUCTS.PID and O-DETAILS.PID. Assume that
in the graph representation ofm the three constraints
are denoted by the nodesc1, c2, andc3, respectively.
For brevity, we henceforth refer to the graph nodes
representing the attributes ofm simply by using their
names.

Fig. 9 illustrates six examples of extraction and
deletion. The output morphismsm1 m, . . . , m6 m are

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 59

DID: int

Quantity: int
Price: real

O-DETAILS

PID: int

PName: varchar

PRODUCTS

PID: int

m2 = Extract(m, {PRODUCTS.PID}),

PID: int

PRODUCTS

m1 = Extract(m, {PRODUCTS.PName}):

PName: varchar

PRODUCTS

m4 = Extract(m, {O-DETAILS.PID}),

O-DETAILS

PID: int

PRODUCTS

PID: int

m

m6 = Delete(m, {PRODUCTS.PID, , ,
O-DETAILS.DID, }):

Quantity: int
Price: real

O-DETAILS

PID: int

PRODUCTS

PID: int

c1

c2

c3

c3
c1 c2

m3 = Extract(m, { }):c1

m5 = Extract(m, { }):c2

Fig. 9. Examples of extraction and deletion from a relational schemam (output morphisms not shown).

omitted in the figure for compactness. The first ex-
ample demonstrates extraction of the attribute PName
yielding schemam1. Condition (ii) of Section 4.3en-
sures thatm1 is a well-formed relational schema, i.e.,
attribute PName belongs to a relation and has a type
specification. Applied to relational schemas, condi-
tion (iii) requires that the extracted schema contain
all constraints present in the original schema that af-
fect the selected elements. For example, extracting
the attribute PRODUCTS.PID fromm causes the pri-
mary key constraintc1 to be extracted as well, yield-
ing the schemam2. Droppingc2 would violate (iii),
since it would allow the attribute PID to contain du-
plicates and thus the original schemam could not rep-
resent all information ofm2. Analogously, extracting
O-DETAILS.PID from m (as schemam4) needs to
preserve the referential constraintc2, which in turn
requires the presence of PRODUCTS.PID and its pri-
mary key constraintc3. Condition (iv) prevents any
other attributes from appearing inm4.

In our prototype, the implementation of opera-
tor Extract(m, s) for relational schemas is based
on the conceptual algorithm ofSection 4.3. Steps
1 (“closure”) and 6 (“cover”) are equality assign-
ments. Step 3 of the algorithm is implemented as
follows:

• If s′ contains constraintx, add tos′ all attributes that
participate in the constraint definition.
• If s′ contains attributex, s′ is extended to include (a)

the enclosing relation ofx, (b) the type definition of
x, (c) the referential constraint or non-null constraint
for x, (d) the primary key or unique key definition
for x, but only when all attributes participating in
the key definition are contained inx.

In Fig. 9, schemasm3 andm5 illustrate the extrac-
tion of nodes that denote constraints. To illustrate case
(d), consider a relation P(Name, DOB, Addr) with a
unique key constraint on (Name, DOB). According to
the algorithm, Extract(m,{P.Name}) yields P(Name).
The unique key constraint is not included since P.DOB
is not selected.

Notice that condition (iii) of Extract makes it im-
possible to delete a constraint on a relational attribute
without deleting the attribute definition, or to delete
the primary key attribute participating in a referential
constraint without deleting its foreign key attribute.
For example, consider schemam6 in Fig. 9. Select-
ing PRODUCTS.PID and the constraintsc1 andc2
is not sufficient for deleting this attribute: the at-
tribute ODETAILS. PID, which is a foreign key on
PRODUCTS.PID, is not selected; therefore, dropping

60 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

PRODUCTS.PID would extend the set of possible
values that O-DETAILS.PID may take beyond those
contained in PRODUCTS.PID and hence violate
condition (iii). In Sections 5.3 and 5.4, we present
more flexible operators ExtractMin, DeleteHard, and
DeleteSoft, which allow such deletions by providing
fewer consistency guarantees than Extract and Delete.

Extraction from XML schemas is implemented
analogously to the above algorithm. Type references
in XML schemas are treated similarly to the refer-
ential constraints in relational schemas. Currently,
derived types are not supported.

5.2. Dependencies

As we observed above, the operators Extract and
Delete disallow semantically questionable transfor-
mations on schemas, such as dropping arbitrary
constraints, and are defined for schemas only. In gen-
eral, deletion on models, which may on may not be
schemas, needs to be done in a careful way to ensure
that the consistency of the resulting model with re-
spect to its meta-model is not violated. For example,
consider the relation ORDERS shown at the bottom
of Fig. 10. If we were to delete just the definition of
the table ORDERS, we risk getting an inconsistent
model, in which fields like OID do not belong to
any table. Or, if we delete the field ORDERS.OID,
we might get a malformed referential constraint for
O-DETAILS.OID, whose target key definition is now
missing. To deal with such consistency issues in a
more general way, we exploit the concept of existen-
tial dependencies between model elements.

Figs. 10 and 11show examples of dependencies that
hold between the elements of a relational schema, and
between the elements of an XML schema. Each of the
arcs specifies that the source element of the arc is ex-

CREATE TABLE O-DETAILS (

DID int PRIMARY KEY,

OID int REFERENCES ORDERS,

UnitPrice double,

. . .)

CREATE TABLE ORDERS (

OID int PRIMARY KEY,

. . .)

Fig. 10. Example of existential dependencies in a relational schema.

Fig. 11. Example of existential dependencies in an XML schema.

istentially dependent on the target element. For exam-
ple, in the relational schema ofFig. 10, the attribute
“UnitPrice” cannot exist without its type definition
(arc from “UnitPrice” todouble). Similarly, the pri-
mary key constraint in table O-DETAILS is malformed
if the constrained field “DID” is missing. The refer-
ential constraint between the fields O-DETAILS.OID
and ORDERS.OID spans two tables, and requires both
a foreign key and a primary key. Analogously, in the
XML schema ofFig. 11, the definition of the element
“shipTo” depends on the existence of the complex type
“Address” as well as on the enclosing sequence ele-
ment, etc.

As illustrated inFigs. 10 and 11, dependencies are
binary relations over the elements of a single model.
Thus, we represent dependencies as intra-model mor-
phisms, whose left elements are dependent on the
right ones. To obtain the dependencies for a given
model, we use the operator Dependencies, which in-
vokes a non-generic implementation to compute the
dependency morphism for the given model. For each
supported model type, one such non-generic imple-
mentation is provided (one for relational schemas,
another one for XML schemas, etc.). In our imple-
mentation, the operator Dependencies uses the arc
types defined in the meta-model to determine what
arcs are dependency arcs. For example, the arcs col-
umn andSQLtype of Fig. 4 are marked as depen-
dency arcs in our representation of the meta-model
for relational schemas; the target of an arc of type
SQLtype depends on the source, and the source of
arc of type column depends on its target.

5.3. ExtractMin

A general intuition behind extraction is that we want
to obtain a minimal model that contains the nodes in

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 61

the selector and all those nodes and edges that are nec-
essary to make the resulting subgraph a ‘complete’,
well-formed model. Obviously, such model has to con-
tain at least those nodes that are existentially required
for the nodes in the selector. This minimalist subgraph
can be obtained using the operator ExtractMin de-
fined below, which uses an auxiliary derived operator
Reachable.

operator ExtractMin(M, selector,
dependencies)
T = Subgraph(M, selector +
Reachable(selector,
dependencies));

return Copy(T, All(T));
operator Reachable(selector, map)

return Range(RestrictDomain
(TransitiveClosure(map),
selector));

The operator ExtractMin takes three parameters as
input, a source model M, a selector that identifies the
elements to be selected, and the dependency morphism
for M. The operator returns the subgraph of M induced
by the union of the nodes in the selector and all nodes
that are required to satisfy the existential dependen-
cies of the selected nodes. These required nodes are
obtained using the operator Reachable.

To illustrate how Reachable works, imagine that
it is called with parameters{a, d} as selector and
{〈a, b〉, 〈b, c〉} as the dependency morphism of
model M. We get: Reachable({a, d}, {〈a, b〉, 〈b, c〉})
= Range(RestrictDomain({〈a, b〉, 〈b, c〉, 〈a, c〉}, {a,
d})) = Range({〈a, b〉, 〈a, c〉}) = {b, c}. Thus, select-
ing {a, d} from model M yields Subgraph(M,{a, d}
+ {b, c}) = Subgraph(M,{a, b, c, d}). The resulting
subgraph contains by definition all edges between
{a, b, c, d} and their incident literals. Notice that
the operator Reachable can be executed by the opti-
mizer efficiently, without materializing the transitive
closure. This observation is important, since the de-
pendency closures of even moderately-sized models
may contain hundreds of thousands of entries.

As another example, consider selecting a single
node denoting the attribute “UnitPrice” from the
model of the relational schema ofFig. 10 using Ex-
tractMin. As shown in the figure, the type definition
of “UnitPrice” and the relation “O-DETAILS” are
required for the attribute definition, so that the op-

erator Extract returns a subgraph of the model that
represents the relational schema
CREATE TABLE O-DETAILS (UnitPrice

double)
Similarly, if a single node denoting the primary key

of table ORDERS is selected, we get
CREATE TABLE ORDERS (OID int PRIMARY

KEY)
In this case, the node identifying the table ORDERS

is pulled out due to the transitive dependency of the
primary key on the table definition via the attribute
definition.

5.4. DeleteHard and DeleteSoft

As noted inSection 4.3, extracting a selected por-
tion of a model can be viewed as deletion of the
unselected portion. To support a broader range of
model-management scenarios, we define additional
two variants of deletion, DeleteHard and DeleteSoft.
Both operators remove a portion of a model referenced
by a selector. The intuition behind DeleteHard is that
we want to obtain a maximal consistent submodel
without the selected nodes. It is defined as follows.

operator DeleteHard
(M, selector, dep)
toDelete = selector + Reachable
(selector, Invert(dep));

toKeep = All(M) − toDelete;
return ExtractMin(M, toKeep, dep);

Essentially, the operator DeleteHard takes All(M)
elements of M, subtracts from this set the elements to
be deleted, and applies ExtractMin to extract the un-
selected portion of the model. To take the existential
dependencies into account, DeleteHard extends the se-
lector passed as input to include all elements of M that
would become “dangling”, i.e., elements that are exis-
tentially dependent on the elements to be deleted. Such
would-be dangling elements are obtained by passing
the selector and the inverted dependency morphism to
the operator Reachable. That is, the dependencies are
traversed in the reverse direction.

Consider again the example inFig. 10. Imagine that
we DeleteHard the nodes representing the attribute
O-DETAILS.UnitPrice and the table ORDERS. The
set of elements Reachable from these selected ele-
ments over the inverted dependency morphism are the

62 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

foreign key constraint on O-DETAILS.UnitPrice and
all attributes of ORDERS (to see that, the arcs in the
figure need to be traversed in the reverse direction).
That is, the constraint and the table ORDERS with all
its attributes will be removed, and we get the schema
CREATE TABLE O-DETAILS (DID int

PRIMARY KEY, OID int)
In contrast to DeleteHard, the operator DeleteSoft

removes each selected element only if it has no un-
selected dependent elements. That is, in the above
example, the table ORDERS would not be deleted
since it is referenced by the unselected foreign key on
ODETAILS. OID. The result of applying DeleteSoft
for the same input parameters is shown below. Only
O-DETALS.UnitPrice has been removed.

CREATE TABLE O-DETAILS (
DID int PRIMARY KEY
OID int REFERENCES ORDERS)

CREATE TABLE ORDERS (OID int PRIMARY
KEY, . . .)

The operator DeleteSoft is defined below. Instead of
extending the selector to cover the would-be dangling
elements, it is restricted to make sure that no unse-
lected elements are removed. The selector that keeps
the elements that cannot be deleted (cannotBeDeleted)
is first obtained by collecting all elements which the
unselected elements depend on. Now, the input selec-
tor is adjusted to eliminate all these undeletable ele-
ments. Finally, the operator ExtractMin is applied, just
as in the operator DeleteHard.

operator DeleteSoft
(M, selector, dep)
cannotBeDeleted = Reachable
(All(M) − selector, dep);

toDelete = selector − cannotBe
Deleted;

Table 2
Comparison of variants of extraction and deletion

Operator Example

Extract Cannot extract a field without the constraints defined for the field
ExtractMin Can extract a field without the constraints defined for the field
Delete Cannot delete a constraint defined on a field without deleting the field
DeleteSoft Can delete a constraint defined on a field without deleting the field. Cannot delete fields referenced by unselected fields
DeleteHard Can delete fields even if they are referenced by unselected fields. In this case, dangling references would be deleted, too

toKeep = All(M) − toDelete;
return ExtractMin(M, toKeep, dep);

Table 2summarizes the differences between the op-
erators discussed above and illustrates them using a
single characteristic example for relational schemas:

5.5. Diff

The Diff operator computes the difference between
a model M and another model that is connected to
M using a mapping map. Intuitively, the difference
between two models is a sub-model of M that does
not participate in the mapping map. In other words,
to obtain the difference we eliminate from M all ele-
ments that do have matching counterparts in the other
model. Thus, we define the operator Diff as shown
below:

operator Diff(M, map)
return Delete(M, Range(map));

Similarly to the operators DeleteSoft and Delete-
Hard, we provide additional two versions of the Diff
operator: DiffSoft and DiffHard.

operator DiffSoft(M, map)
return DeleteSoft
(M, Range(map));

operator DiffHard(M, map)
return DeleteHard
(M, Range(map));

Notice that given the differencing operators, we
could define deletion as derived operations. For ex-
ample, the operator Delete could be defined based on
Diff as

operator Delete(M, s)
return Diff(M, Id(s));

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 63

5.6. Match

In our prototype, the Match operator takes as in-
put two models of the same kind, e.g., two relational
schemas, and returns as output a morphism. We im-
plemented Match using the Similarity Flooding (SF)
algorithm, a graph-matching algorithm presented in
[17]. The SF algorithm exploits the structure of the
graphs to be matched and performs especially well for
detecting the differences between two versions of a
schema, which is the case in our motivating scenario
and many other metadata applications.

The SF algorithm takes as input two graphsm1 and
m2, and a set of initial similarity values between the
nodes of the graphs, expressed as a weighted binary
relationseed. Each pair〈l, r〉 of seed carries a similar-
ity value between zero and one. In a fixpoint compu-
tation, the algorithm iteratively propagates the initial
similarity of nodes to the surrounding nodes, using
the intuition that neighbors of similar nodes are sim-
ilar. The output of the algorithm is another weighted
binary relation.

In Section 3.2, we defined a morphism as a bi-
nary relation. To include weights in a morphism, we
add to it a third attribute Sim that holds a similarity
value for each pair of nodes. The primitive operators
in Section 4.1ignore this extra information. We im-
plement the operator Match as

operator Match(m1, m2, seed)
multimap = SFjoin(m1, m2, seed);
multimap = Restrict(multimap,
m1, m2);

map = FilterBest(multimap);
return 〈map, multimap〉;
The operator SFjoin encapsulates the SF algo-

rithm. As explained in[17], the multimap returned
by the algorithm may contain a large fraction of
the cross-product of the nodes inm1 and m2, and
needs to be filtered. The operator FilterBest imple-
ments the filter suggested in[17], which exploits the
stable-marriage property. In addition to filtering, we
restrict the result of the SFjoin operator to the nodes
that represent the model elements ofm1 andm2 using
the operator Restrict (Section 0). The input morphism
seed is typically obtained using another auxiliary
operator NGramMatch(m1, m2), which computes
the similarities of literals inm1 and m2 based on

x

x1
x2

x3

z

z1

y

y1
y2

x

y2
z1

x3

z

z1

x

y1
y2

x

y2
z1

x3

y1

z
,

+–
+o

o+–o

o
–

–

+

o
o

–

+
+

+– –+

oo
o+
o–
+o
–o
++
+–
–+
––

priority order
for conflict
resolution
heuristic:

ODate
CName
CAddr

ORDER

Customer

CUST

Amount
OrderDate

PO

OrderDate
CAddr
Amount

ORDER

Customer

CUST

m1 m2 m

Fig. 12. Merging two sample schemas.

the number of n-grams that they have in common.
Alternatively, seed can be obtained by composition
of morphisms. If seed is omitted, NGramMatch is
invoked in SFjoin by default.

The above Match implementation returns both the
filtered morphismmap, and the unfilteredmultimap.
The morphismmap can be adjusted by the engineer us-
ing a graphical tool by invoking the operator EditMap
on the outputs of Match, e.g., asmap= EditMap(map,
multimap). The graphical tool allows the engineer to
inspect all candidate matches suggested inmultimap.

The script used above for implementing the Match
operator can be easily adapted to call other external
schema matchers, which may deploy thesauri, analyze
schema annotations, mine samples of instance data,
reuse previous match results, etc., to reduce the manual
post-processing effort.

5.7. Merge

We discuss our implementation of the Merge op-
erator using the example inFig. 12. On the top, two
sample modelsm1 and m2 get merged intom (the
output morphisms are omitted). The morphismmap is
depicted using directed arcs. The direction of each arc
establishes a preference between two model elements;
when collapsing the two elements, the target element
is kept in the outputm, whereas the source element
is discarded. For example, the attribute PO.OrderDate

64 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

is kept and ORDER.ODate is discarded. Such prefer-
ences are not part of the semantics of the Merge op-
erator (Section 4.5), but are essential for practical de-
ployment. The input morphismmap contains an extra
attribute Dir to hold the direction of the arcs (→ or
←). Before Merge is executed, a human engineer has
a chance to specify the arc direction in a graphical tool
by invoking the operator EditMap.

The bottom ofFig. 12depictsm1 andm2 as graphs.
For brevity, the arc labels, type edges, and literals
are omitted (compare toFig. 4). Nodex corresponds
to relation ORDER,x1 denotes ORDER.ODate, etc.
The morphismmap is {〈x, y,←〉, 〈x1, y2,→〉, 〈x2,
z1,→〉}.

To implement the Merge operator, we developed
an algorithm called GraphMerge, which we describe
below. Similar to[11,23], the algorithm consists of
three conceptual steps: node renaming, graph union,
and conflict resolution.

1. In the first step, the graph nodes at the blunt ends
of map are renamed to their targets at sharp ends,
in both graphsm1 and m2. The result of renam-
ing is shown on the bottom left ofFig. 12. Nodes
y, x1, andx2 of both graphs have been renamed
respectively tox, y2, andz1.

2. In the second step, we do a graph union, i.e., a set
union of two sets of edges, and obtain the graph
depicted on the bottom right of the figure. This
graph is not a well-formed formed model, because
the nodez1, which used to represent the attribute
CUST.Customer inm2, has now become an at-
tribute of two different relations,x (ORDER) and
z (CUST).

3. Such conflicts are resolved in the third and final
step of the GraphMerge algorithm. The above con-
flict is eliminated by deleting either the edge be-
tweenx andz1, or the edge betweenz andz1,
effectively making Customer an attribute of either
relation CUST or relation ORDER in the merged
schema. The choice is made by a human engineer.

Step 3 is the costliest step of the algorithm, since it
requires human feedback. To partially automate con-
flict resolution, we developed the following heuristic.
Observe that inFig. 12 it seems more “natural” to
keep the attribute Customer in relation CUST than to
move it to ORDER. To generalize this observation,
we track the origin of each edge in the merged graph,

and assign to each edge a tag, such as+− or o+,
which indicates whether each of the nodes incident at
the edge was a source node ofmap (−), a target node
(+) of map, or none of the two (o) (these are the only
three possible cases assuming that source and target
nodes ofmap are disjoint). For example, the edge〈x,
z1〉 obtained by renaming from〈x, x2〉 is tagged with
+−, sincex is a target node andx2 is a source node
of map. Analogously, the edge〈z, z1〉 is tagged with
o+, sincez does not appear inmap at all.

If we knew that o+ edges are always preferred
over+− edges, then, in a conflict〈x, z1〉 could be
eliminated without asking the engineer. We examined
a variety of merge problems in the context of rela-
tional schemas, XML schemas, and SQL views, and
established empirically a total order among all tag
variations, which helps resolve many conflicts auto-
matically in a way that matches human intuition. This
order is shown in the middle right ofFig. 12. Intu-
itively, edges between unchanged nodes (oo) are least
likely to be rejected in a conflict, and thus have the
highest priority. Similarly, edges incident at+ seem
more likely to be preferred than those incident at−.
Thus, Steps 2 and 3 are realized as follows. First, all
edges in the merged graph are sorted by decreasing
priority. Then, iteratively, each edge is taken off the
top of the sorted list and is appended to an (initially
empty) graphG. If appending the edge violates model
consistency, it is rejected. Once all edges have been
appended, the engineer examines the result and the
choices made heuristically, and makes any necessary
adjustments.

In the above description of the algorithm, we fac-
tored out an important aspect, the ordering of nodes
within parent. To illustrate how we reestablish a cor-
rect order in the merged schema, considerFig. 12.
Node y denoting the relation PO is renamed tox.
Thus, when merging this node with the originalx in
m1, we move attributesy1 (Amount) andy2 (Order-
Date) to the last position in the merged schemam.
However, OrderDate “overrides” ODate, the first at-
tribute in relation ORDER, and should remain at the
first position. Hence, in schemam, the resulting order
of attributes is OrderDate, CAddr, Amount.

The GraphMerge algorithm is summarized below:
Algorithm GraphMerge(m1, m2, map)

M:= m1 ∪ m2; L:= empty list; G:= empty
graph

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 65

for each edgee in M do
rename nodes ofe usingmap; assign tag

to e; appende to L;
end for
sort edges inL by decreasing tag priority;
maxN:= SELECT max(M.N) FROM M;
while L not emptydo
take edgee = 〈s, p, o, n〉 off top of L;
if tag(e) one of{“−o”, “−+”, “−−”} then

n:= n + maxN;
if o is literal then continue loop end if

end if
if existse′ = 〈s, p, o, n′〉 in G then

replacee′ in G by 〈s, p, o, min{n, n′}〉;
else if not conflictsWith(〈s, p, o, n〉, G) then

append〈s, p, o, n〉 to G; end if
end if
end while

return G

The numbermaxN is obtained as the highest ex-
isting value of the ordinal property N inm1 and m2
(compareSection 3.1). It is used to move the nodes
hanging off renamed nodes to the last positions. To
test for renamed nodes, we check whether the corre-
sponding edge tag starts with−, i.e., is one of−o,
−+, or −−. The literals belonging to such renamed
nodes are removed, to ensure that, e.g., the relation
corresponding to node x in the merged graph ofFig. 12
will be named “ORDER” and not “PO”. The function
conflictsWith() checks whether appending a new edge
to G causes a conflict.

The GraphMerge algorithm can be used for various
kinds of models by implementing the function con-
flictsWith() appropriately. In our prototype, we de-
ploy the algorithm for merging relational schemas,
XML schemas, and SQL views. For example, con-
flict detection for relational schemas checks that re-
lations cannot contain relations instead of attributes,
or that attributes cannot be shared among relations,
etc.

The Merge operator is implemented as follows:

operator Merge(m1, m2, map)
G = GraphMerge(m1, m2, map);
s = SELECT L FROM map WHERE
Dir=‘‘→’’ UNION
SELECT R FROM map WHERE
Dir=‘‘←’’;

m1 G = RestrictDomain(map,
All(m1) ∩ s) + Id(All(m1) − s);

m2 G = RestrictDomain(map,
All(m2) ∩ s) + Id(All(m2) − s);
〈m, m G〉 = Copy(G, All(G));

return 〈m, m1 G ∗ Invert(m G),
m2 G ∗ Invert(m G)〉;

Recall that Merge must also return morphisms from
each of its input models to its output model. Thus,
after applying GraphMerge to obtain the merged
model G, we compute the morphismsm1 G and
m2 G. The selectors contains all source nodes of
map. For the example ofFig. 12, we obtainm1 G
as the union of domain-restrictedmap, {〈x1, y2〉,
〈x2, z1〉}, which maps each renamedm1 node to
its new name, and the identity morphism on not
renamed nodes,{〈x, x〉, 〈x3, x3〉}. Finally, G is
copied to make the node IDs of the output modelm
unique, and the morphismsm1 G andm2 G are com-
posed with Invert(m G), so they range overm instead
of G.

The GraphMerge algorithm does not “invent” new
model elements or establish new relationships be-
tween the existing elements. Therefore, the opera-
tor Merge as implemented above cannot reorganize
schemas to resolve structural conflicts. For exam-
ple, consider two XML schemas,S1 with element
FullName andS2 with elements FirstName and Last-
Name. MergingS1 and S2 should ideally create a
new complex type Name with subordinate elements
FirstName and LastName. Currently, we are work-
ing on addressing such structural conflicts by us-
ing n-way merges, in which intermediate schemas
Sj are used for describing the desired structural
transformations.

In Section 4.5, we postulated two “semantic” con-
ditions that Merge should satisfy. Our implementa-
tion does not automatically ensure that condition (i)
holds. For example, the engineer might decide to
“override” a non-null constraint on an attribute in one
schemaS1 by a primary key constraint of the other
schemaS2, in which case the output model would
be less expressive (i.e. more constrained) thanS1.
Although this flexibility is often desirable in prac-
tice, we are working on a more restrictive version
of Merge that always guarantees to satisfy (i) and
(ii).

66 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

Fig. 13. Architecture of the prototype.

6. Prototype

In this section, we describe our prototype, called
Rondo,2 in more detail. Its architecture is shown in
Fig. 13. Its central component is an interpreter that exe-
cutes scripts. The interpreter can be run from the com-
mand line, or invoked programmatically by external
applications and tools. Its main task is to orchestrate
the data flow between the operators. The operators can
be defined either by providing a native implementa-
tion, or by means of scripts. For example, a native op-
erator like ReadSQLDDL reads a text document con-
taining the definition of a relational database and cre-
ates its graph representation, whereas WriteSQLDDL
exports the graph back as text. Similarly, two native
operators ReadDb and WriteDb load and store arbi-
trary graphs in an SQL DBMS. Native operators are
defined in scripts using statements like
alias ReadSQLDDL 〈Java class name〉;
Other operators that have been implemented na-

tively include all primitive operators ofSection 4.1,
operators that launch GUIs for editing morphisms and
selectors, such as EditMap or EditSelector, schema
translation and conversion operators, and the operators
SFjoin and GraphMerge. All other operators, such as
Range, Match, or Merge, are implemented by scripts
presented in the previous sections. The specification of

2 Rondo: a musical work in which the main theme returns
a number of times. A demo of the prototype is available for
download athttp://www-db.stanford.edu/∼melnik/mm/rondo/.

the commonly used native or derived operators can be
grouped in a single script and utilized in other scripts
using include statements.

The interpreter provides a debugging facility that
allows examining the execution traces of complex
scripts, and supports flexible handling of the input
and output parameters of operators. For example, if
an operator returns more than one argument (as does
our implementation of the operator Match), some of
which are not used subsequently (as in script Propa-
gateChanges inSection 2), they can be tacitly ignored.

For minimizing the amount of GUI programming
needed for visualizing various kinds of models, we
used the following technique. We require an operator
like WriteSQLDDL to output not only the textual rep-
resentation of the model, but also a data structure that
describes how the terms in the text relate to the model
elements, or graph nodes. In this way the schema ele-
ments shown inFig. 15enclosed in boxes are associ-
ated with the graph nodes representing those elements,
and the GUI operators EditMap and EditSelector can
be used in exactly the same way for relational schemas
(Fig. 15) or SQL views (Fig. 16).

At the current stage, our prototype supports the
basic features of SQL DDL, XML Schema, RDF
Schema, and SQL views, and, in preliminary form,
UML. To introduce a new modeling language in
the prototype, two steps are required. First, the im-
port/export operators need to be provided, which
ensure lossless round-tripping from the native format
to graphs and back. Second, several callbacks need
to be implemented for supporting the operators All,
Extract, and GraphMerge.

The code breakdown of the prototype is shown in
Fig. 14. A large share of the implementation effort
was due to the graph APIs responsible for in-memory

11820

6800

1500

1370

1280 600

DB + graph APIs

Generic MM

SQL views

XML Schema

SQL DDL

Converters

Fig. 14. Code breakdown in prototype (in lines of code).

http://www-db.stanford.edu/~melnik/mm/rondo/

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 67

representation and manipulation of graphs and mor-
phisms, and the database support. The key generic
model-management functionality comprises less than
7K lines of code. It includes the interpreter (2050),
primitive operators (660), SFjoin (1760) and Graph-
Merge (700) implementations, as well as the generic
GUI operators (1400). The non-generic part is essen-
tially divided among the code needed to support SDL
DDL, XML schemas, and SQL views. The small-
est portion of code is due to converters: XSD2SQL
(260), SQL2XSD (250), View2Morphism (90), and
Morphism2View (200). The compactness of the con-
verters is mostly due to the fact that they operate on the
internal graph representation using expressive queries.
The total amount of code in the prototype is below
24K lines. The total scripting code developed so far is
measured in hundreds of lines. The scenarios shown
in the article run in a few seconds on a 600 MHz lap-
top with 256MB of memory.

Further scenarios that we implemented include a
reintegration scenario from the context of version man-
agement, iterative merge, a warehousing scenario, in
which we extract a subset of the schema that is suffi-
cient to answer a given set queries, and a view reuse
scenario. Due to space limitations, we cannot present
all of them in this article. The view reuse scenario is
in Section 7. Among other aspects, it illustrates how
views can be merged, presents the GUIs used in our
prototype, and demonstrates the use of the operators
Morphism2View and View2Morphism. The reintegra-
tion scenario is covered inSection 8.

7. View-reuse scenario

In this section, we examine another scenario, which
illustrates the use of the operators presented in this ar-
ticle for addressing a typical data warehousing task.
Consider adding a new sourceS2 to a data warehouse
D. Assume thatS2 is similar to an existing sourceS1.
The morphismS1 S2 between the two source schemas
is shown inFig. 15. Let an existing SQL viewvS1 D
describe how the instances ofS1 populateD. The view
vS1 D is depicted in the middle ofFig. 16 (the rele-
vant portion of the warehouse schema can be seen in
the CREATE VIEW clause). Our goal is to reuse the
view vS1 D for importing S2 data intoD, i.e., creat-
ing the viewvS2 D. Conventionally, this problem is

Fig. 15. Morphism between sourcesS1 and S2.

solved manually involving a tiresome and error-prone
renaming of the attribute and relation names ofvS1 D
based on the similarities betweenS1 and S2. In our
prototype, we obtainvS2 D using the following script:

1. S1 S2 = Match(S1, S2);
2. S1 D = View2Morphism(vS1 D);
3. S2 D = Invert(S1 S2) ∗ S1 D;

Fig. 16. Merging two SQL views.

68 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

4. vS2 D′ = Morphism2View(S2 D);
5. map = Match(vS2 D′, vS1 D,

Invert(S1 S2));
6. vS2 D = Merge(vS2 D′, vS1 D,

map + S1 S2);

First, we matchS1 and S2 to determine the cor-
respondences between the schemas. As can be seen
in Fig. 15, some of the elements ofS1 and S2
remain unmatched, whereas others, such as De-
partment.DeptName are matched to two elements,
Companies.name and Companies.legalEntity. In
Step 2, we extract the morphismS1 D from the
view definition vS1 D using a non-generic operator
View2Morphism. For example, the morphismS1 D,
which is omitted in the figures for brevity, associates
the attribute Personnel.Pname with two attributes,
Employee.EmpFName and Employee.EmpLName,
etc. Next, we compute the morphismS2 D by compo-
sition. In Step 4, a “template” view definitionvS2 D′
is generated fromS2 D using another non-generic
operator Morphism2View. It is shown on the left of
Fig. 16. MorphismS2 D contains no information as
to how the values of the attribute Personnel.Affiliation
are obtained from Companies.name and Compa-
nies.legalEntity. Therefore, a functional term fct1 is
generated invS2 D′ as a placeholder.

In Step 5, the templatevS2 D′ and the existing view
vS1 D are matched, using as a seed the morphism be-
tweenS1 and S2. The resulting morphism, after mi-
nor manual corrections, is depicted inFig. 16. Finally,
in Step 6 both view definitions are merged to obtain
vS2 D, shown on the right. Notice that the function
symbol fct0 has been correctly replaced by the nested
concatenation, whereas fct1 was left as is. The un-
matched WHERE clause was borrowed fromvS1 D;
the attribute references have however been correctly
replaced by Companies.cid and Consultants.cid. To
achieve that, the morphismmap passed to Merge is
extended to includeS1 S2. The heuristic deployed in
the GraphMerge algorithm producesvS2 D fully auto-
matically, due to relative simplicity of the input views.

8. Reintegration scenario

In this section, we illustrate another scenario called
reintegration, or three-way merge. The reintegration

problem arises when a model is modified indepen-
dently by several engineers or tools. We focus on the
case when there are two such independent modifica-
tions. Assume that modelm was changed indepen-
dently intom1 by Ann and intom2 by Bob. Our goal
is to obtain the reconciled modelm3 that incorporates
the changes done by Ann and Bob, and the mappings
m m3, m1 m3 andm2 m3 that describe how the mod-
elsm, m1, andm2 relate to the reconciled versionm3.

Consider the example inFig. 17. The original
(relational) schema m is depicted on the top of the
figure. In table ORDERS in schema m, employees
are represented by an opaque identifier. To store
employees’ names, Ann creates the table EMPLOY-
EES and makes ORDERS.EID a foreign key into the
new table. Also, she deletes ORDERS.PONum and
O-DETAILS.UnitPrice and adds PRODUCTS.PDesc.
Meanwhile, Bob creates the table BRANDS and re-
places the attribute PRODUCTS.Brand by a foreign
key pointing to the new table. In addition, he ad-
des a new attribute PRODUCTS.ISIC that holds the
classification description of products. He deletes DE-
TAILS.UnitPrice, just as Ann, and in addition he also
deletes DETAILS.Discount.

One way of obtainingm3 is to simply mergem1
andm2. That is, in the script shown below, we first
matchm1 andm2 (line 1) and apply the Merge oper-
ator (line 2). To compute the mappingm m3, we need
to know how m corresponds to each ofm1 andm2. So,
we match them in lines 3–4. Now, each of the compo-
sitionsm m1 ∗ m1 m3 andm m2 ∗ m2 m3 describes
a part of the mapping fromm to m3. To obtainm m3,
we combine both compositions in line 5.

operator ReintegrateFirstCut(m, m1, m2)

1.m1 m2 = Match(m1, m2);
2. 〈m3, m1 m3, m2 m3〉 = Merge(m1,
m2, m1 m2);

3.m m1 = Match(m, m1); // or given
4.m m2 = Match(m, m2); // or given
5.m m3 = m m1 ∗ m1 m3 + m m2 ∗ m2 m3;
6.return 〈m3, m m3, m1 m3, m2 m3〉;

The above approach has two major weaknesses.
First, we have to apply the Match operator three times,
each potentially requiring expensive human interven-
tion. In practice,m m1 and m m2 could be tracked
automatically by the schema editing tool used by Ann

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 69

OID

OrderDate
EmployeeID
CustomerID
PONum
SalesTaxRate

ORDERS

DID

Quantity
UnitPrice
Discount

O-DETAILS

PID

PName
Brand

PRODUCTS

OID
PID

m

OID

OrderDate

CustomerID
SalesTaxRate
ShipDate
FreightCharge
Rebate

ORDERS

DID

Quantity
Discount

O-DETAILS

PID

PName
PDesc

PRODUCTS

OID
PID

EID

FName
LName

EMPLOYEES

EID

m1
OID

OrderDate

CustomerID
PONum
SalesTaxRate
Rebate

ORDERS

DID

Quantity

O-DETAILS

PID

PName

ISIC

PRODUCTS

OID
PID

BID

BName
BDesc

BRANDS

EmployeeID

BID

m2

OID

OrderDate

CustomerID
SalesTaxRate
ShipDate
FreightCharge
Rebate

ORDERS

DID

Quantity

O-DETAILS

OID
PID

EID

FName
LName

EMPLOYEES

EID

PID

PName

ISIC
PDesc

PRODUCTS

BID

BName
BDesc

BRANDS
BID

m3

Fig. 17. Reintegration scenario (three-way merge).

and Bob. Still, matchingm1 and m2 from scratch
can be costly. Second, the above script discards all
deletions done exclusively by either Ann or Bob.
That is, ORDERS.PONum and O-DETAILS.Discount
would appear inm3 albeit both have been deleted.
O-DETAILS.UnitPrice would, however, be correctly
removed.

To address the first problem, we could modify
the above script by moving lines 3–4 to the top
and obtainingm1 m2 as the composition m1m2
= Invert(m m1) ∗ m m2. By doing so, however, we
duplicate the equivalent additions done by both Ann
and Bob, since the added equivalent elements have
no counterparts in m and hence their correspondences
get lost upon composition. That is, after executing
such modified script, ORDERS.Rebate would appear
in m3 twice. And yet, we could usem1 m2 computed
by composition to drive the match betweenm1 and
m2, as in m1 m2 = Match(m1, m2, Invert(m m1) ∗
m m2 + NGramMatch(m1, m2)). Moreover, whenm1

andm2 are large, it may be more effective to extract
only the new portions ofm1 andm2 and match those.

To address the second problem, which is due to
losing deletions done exclusively by Ann or Bob, we
could apply tom1 all deletions done inm2, and like-
wise apply tom2 all deletions ofm1. We incorporate
both ideas in the script below:

operator Reintegrate(m, m1, m2)

1.m m1 = Match(m, m1); // or given
2.m m2 = Match(m, m2); // or given
3. 〈m1′, m1′ m1〉 = Delete(m1,
Traverse(All(m) − Domain(m m2),
m m1));

4. 〈m2′, m2′ m2〉 = Delete(m2,
Traverse(All(m) − Domain(m m1),
m m2));

5. 〈m1x, m1x m1′〉 = Extract(m1′,
Traverse(All(m1) − Range(m m1),
Invert(m1′ m1)));

70 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

m

m1

m3

m1x

m2

m2x
m1 m2

m

m1'

m3

m1x

m2'

m2x
m1 m2

Fig. 18. Schematic representation of the reintegration scenario.

6. 〈m2x, m2x m2′〉 = Extract(m2′,
Traverse(All(m2) − Range(m m2),
Invert(m2′ m2)));

7.m1x m2x core = m1x m1′ ∗ m1′ m1 ∗
Invert(m m1) ∗
m m2 ∗ Invert(m2′ m2) ∗ Invert
(m2x m2′);

8.m1x m2x = Match(m1x, m2x,
m1x m2x core + NGramMatch
(m1x, m2x));

9.m1′ m2′ = Invert(m1x m1′) ∗
m1x m2x ∗ m2x m2′ +
m1′ m1 ∗ Invert(m m1) ∗ m m2 ∗
Invert(m2′ m2);

10.〈m3, m1′ m3, m2′ m3〉 = Merge(m1′,
m2′, m1′ m2′);

11.m1 m3 = Invert(m1′ m1) ∗ m1′ m3;
12.m2 m3 = Invert(m2′ m2) ∗ m2′ m3;
13.m m3 = m m1 ∗ m1 m3 + m m2 ∗ m2 m3;
14.return 〈m3, m m3, m1 m3, m2 m3〉;

To illustrate the script, consider the schematic rep-
resentation inFig. 18. In line 3, we obtain the model
m1′ that contains all ofm1, i.e., the model produced
by Ann, without the elements deleted by Bob by way
of m2 (DETAILS.Discount). The expression All(m) −
Domain(m m2) produces a selector that holds the el-
ements of m that do not appear inm2. The images of
these elements obtained by traversingm m1 into m1
are then deleted. Analogously,m2′ contains all ofm2
without the elements deleted by way ofm1, such as
ORDERS.PONum.

In line 5, we extract a portionm1x of m1′ that com-
prises only the elements added by Ann (e.g., PROD-
UCTS.PDesc) and their support elements (e.g., PROD-

UCTS). We achieve this by traversing the added ele-
ments All(m1)− Range(mm1) fromm1 to m1′. Line
6 does a similar job form2x. Notice that line 5 could be
realized alternatively as〈m1x, m1x m1′〉 = Diff(m1′,
m m1 ∗ Invert(m1′ m1));

In line 7, we compute the mapping m1xm2x core
betweenm1x and m2x to establish the correspon-
dences between the support elements ofm1x andm2x.
This mapping is then used to drive the Match be-
tween the added portions in line 8. Here, the engi-
neer executing the script has a chance to state that
ORDERS.Rebate added by Ann is equivalent to OR-
DERS.Rebate added by Bob. Notice that this Match is
relatively inexpensive to perform, since we only have
to reconcile the additions introduced by Ann and Bob.

In line 9, we compute the mapping betweenm1′
andm2′ to drive the Merge in line 10. To compose
m1′ m2′, we need to consider both “paths” between
the two models. One of them includes the matches
between the added elements,m1x m2x, and the other
goes over the original modelm. Similarly, the mapping
m m3 is obtained in line 13 by joining two paths, one
going throughm1 and the other throughm2, portions
of which are computed in lines 11–12. In line 14, the
results of the script execution are returned.

9. Related work

Many individual aspects of model-management
have been studied extensively in the literature, which
is too voluminous to cite here. We highlight only some
key aspects. In previous work[2,5,11–13,19,20,23],
schemas were typically represented as graphs whose
nodes denote classes of entities that participate in
various semantically rich relationships, such as is-a,
has-a, functional dependencies, etc. In our approach,
the graphs are syntactic structures, whose semantics
is opaque to many operators. Morphisms have been
used under varying names in many systems, e.g., as
schema correspondences in Clio[22]. To our knowl-
edge, selectors have been first introduced in this
article.

Past papers on model-management reified map-
pings as models[5,6,9,23]. One of the surprises of the
present work is how much leverage one can get out of
simple morphisms. However, morphisms clearly have
their limits. Section 7presents a scenario in which

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 71

SQL views are used as reified mappings to describe
instance transformations. Reified mappings add com-
plexity to scripts and operator implementations. A
general treatment of reified mappings is subject of
our ongoing work.

The operators discussed in[5] include Diff, Enu-
merate, and Apply. As explained inSection 5.5, in
Rondo we implemented the operator Diff using ex-
traction of the unmatched portion of one of the input
models. Operators Apply and Enumerate are invoked
by passing a selector to native Java code. The change
propagation script ofSection 2is an alternative realiza-
tion of the round-trip engineering scenario presented
in [5].

A substantial effort has been devoted recently to
schema matching. To minimize the amount of man-
ual post-processing, existing schema matching tools
deploy various techniques surveyed in[24], such as
machine learning[4], etc. In our prototype, we use
the structural matcher of[17], which is available for
download from the authors’ website.

Our definition of the Merge operator was influenced
by the schema join operation of[1]. Schema merg-
ing has been further addressed e.g. in[11,19,23]. The
algorithms suggested there can exploit rich relation-
ship types that are not available in the GraphMerge
algorithm that we developed, and do not take the or-
dering of model elements into account. Our heuristic
deployed in GraphMerge is only an initial step in the
challenging research issue of semiautomatic conflict
resolution. In[21], this issue has been addressed in
the context of ontology merging.

Schema translation across different modeling lan-
guages has been explored e.g. in[2,10,13]. The tech-
niques presented there could be used for implementing
a generic operator for generating one model from an-
other. Currently, we are using a less general approach,
in which each converter is implemented as a custom,
non-generic operator.

To our knowledge, the generic operators Extract and
Delete have first been investigated and implemented
in this article. Our algorithm for Extract was inspired
by the discussion of schema merging in[11].

Algebraic and model-theoretic semantics of
model-management structures and operators has been
considered in[1,19], but is still a new and largely
unexplored area. Currently we are working on a
state-based characterization of morphism semantics,

building on the approach of[16]. The next section
highlights some more of our future work.

10. Outlook: structural vs. state-based
semantics

The operators presented in this article treat models
and mappings to a large extent as syntactic structures.
The semantics of the operators is defined in terms
of structural transformations on graphs. We refer to
this semantics asstructural semantics. Structural se-
mantics is aligned closely with how developers think
of metadata manipulations. A precise specification of
structural semantics is crucial for deployment of real
applications. In fact, many applications rely on the
fact that certain tables or complex types bear specific
names or are arranged in a certain order. For example,
although the order of attributes in a relational table is,
in theory, unimportant, many APIs, such as JDBC, al-
low developers to refer to the attributes of a table by
their ordinal numbers rather than by names. Further-
more, applications may rely on the fact that data is
stored in a denormalized representation or grouped in
certain ways for performance reasons. For example,
grouping products by orders or the other way around
in a database schema may impact storage and query
efficiency, although in both cases the same informa-
tion is represented.

Focusing on structural semantics may simplify op-
erator implementation. For example, exploiting the
graph representation of metadata artifacts allows the
operators like Match or Merge to be implemented in
a generic fashion for different kinds of models, as we
illustrated inSections 5.6 and 5.7.

And yet, the effect of applying “syntactic” oper-
ators to models ultimately needs to be expressed in
terms of what the operators do to the instances of
these models, such as whole database states. We call
this other kind of semanticsstate-based semantics. For
example, conditions (i)–(iv) for the Extract operator
(Section 4.3), or (i)–(ii) for Merge (Section 4.5) re-
flect the state-based semantics of these operators to
a limited degree. State-based semantics allows us to
specify and verify that a merged schema can indeed
accommodate all information that can be represented
by its source schemas. It helps us to uncover and an-
alyze surprises that we get when an extracted schema

72 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

actually captures more information that the original
schema.

On the one hand, state-based semantics can be
viewed as a descriptive tool: we describe what the
implemented structural operators do to the instances
of models. In fact, currently we are developing pre-
cise formal definitions of the state-based semantics of
the operators implemented in Rondo. The mappings
are interpreted as binary relations between instances
of models, i.e., between whole database states. Thus,
a mapping can describe any conceivable database
transformation.

On the other hand, the state-based semantics could
play a prescriptive role: it could provide a formal
specification of how the execution of a script af-
fects the possible database states described by the
manipulated schemas. This specification should be
precise enough so that an engineer could implement
it unambiguously and tools could be built to analyze
it, for example to identify possible undesired side
effects.

For example, the state-based specification of the
schema evolution task (a special case of change prop-
agation when a view defined on a schema breaks due
to schema changes), could be formulated roughly
as follows: the updated view must expose all ex-
tra information that has been added to the updated
schema while preserving the capability of answer-
ing queries that impact only the unchanged portion
of the original schema. Ideally, such specification
would remain executable—just as the scripts in
Rondo. And in the best possible world, it would be
declarative and amenable to automated rewriting and
optimization.

While substantial competence has been gained by
tool vendors with respect to structural transformations
of metadata artifacts, expressing the state-based se-
mantics has proven to be hard. At this point, it is
not entirely clear how the precise state-based char-
acteristics of the key operators could look like. The
state-based semantics of morphisms and selectors, as
defined in this article, are work in progress. More-
over, we lack a way of telling whether a given set
of operators is “complete” according to some metric.
As a consequence, we cannot say what kind of meta-
data manipulation tasks are or are not amenable to
a model-management solution. These open questions
stress the importance of future work on state-based

semantics for the development of metadata-intensive
applications.

11. Conclusions

In this article we presented a programming platform
for model-management that implements all generic
operators suggested so far in the literature. We ex-
plored the use of morphisms and selectors and intro-
duced several novel generic operators. We discussed
the operator semantics and the algorithms that we de-
veloped for implementing them. We showed that in-
troducing a new model type like SQL DDL schemas in
our prototype requires a moderate programming effort,
but brings a large new class of model-management
tasks within reach.

The main conclusions that we draw are the follow-
ing:

1. One can solve practical problems using the
model-management operators.

2. The solutions require a relatively small amount of
code.

3. One can get quite far using a relatively weak rep-
resentation for models and mappings.

4. A precise specification of both structural and
state-based semantics of the operators is needed to
provide a satisfactory programming platform.

Our implementation experience, backed by the
in-depth investigation of the individual operations by
other researchers, suggests that the question raised in
[7] is likely to have a positive answer, i.e., generic
metadata management is in fact feasible. Even if we
cannot handle subtle and complex cases, if we can
solve a large class of non-trivial problems then we
are offering a useful programming platform. Still,
resolving the debate of[7] to the full extent can be
done only by writing scripts for a substantial number
of real applications and demonstrating that they work.

Other hard challenges remain open. Examples are
providing meaningful semantic constraints on opera-
tors and proving that certain syntactic transformations
“play by the rules”, or supporting more powerful
mapping languages, which can be deployed directly
to transform data instances. A salient non-technical
challenge is acceptance by the developer commu-
nity. As with each new programming paradigm, the

S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74 73

willingness of engineers to learn a new way of ap-
proaching old problems is critical for success of
generic model-management.

Acknowledgements

We thank Gio Wiederhold for his insightful com-
ments on the article. We are grateful to Serge Abite-
boul, Paolo Atzeni, Stefano Ceri, Alon Halevy, Martin
Kersten, Renée Miller, Rachel Pottinger, and Gerhard
Weikum for helpful discussions. This work was sup-
ported in part by a grant from the Database Group at
Microsoft Research.

References

[1] S. Alagic, P.A. Bernstein, A model theory for generic schema
management, Proc. DBPL (2001) 228–246.

[2] P. Atzeni, R. Torlone, Management of multiple models in an
extensible database design tool, EDBT (1996) 79–95.

[3] S. Bergamaschi, S. Castano, M. Vincini, Semantic integration
of semistructured and structured data sources, SIGMOD Rec.
28 (1) (1999) 54–59.

[4] J. Berlin, A. Motro, Database schema matching using machine
learning with feature selection, CAiSE (2002) 452–466.

[5] P.A. Bernstein, Applying model management to classical meta
data problems, CIDR (2003) 209–220.

[6] P.A. Bernstein, A. Halevy, R.A. Pottinger, A vision for
management of complex models, SIGMOD Rec. 29 (4) (2000)
54–63.

[7] P.A. Bernstein (moderator), L. Hass, M. Jarke, E. Rahm,
G. Wiederhold (panelists), Is generic metadata management
feasible? Panel, VLDB (2000) 660–662.

[8] P.A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders,
D. Shutt, Microsoft repository version 2 and the open
information model, Inf. Syst. 24 (2) (1999) 71–98.

[9] P.A. Bernstein, E. Rahm, Data warehousing scenarios for
model management, in: Proceedings of the International
Conference on Conceptual Modeling (ER), 2000, pp. 1–15.

[10] S. Bowers, L. Declambre, On modeling conformance for
flexible transformation over data models, in: Proceedings of
the Workshop on Transformation for the Semantic Web, July
2002.

[11] P. Buneman, S.B. Davidson, A. Kosky, Theoretical aspects
of schema merging, EDBT (1992) 152–167.

[12] K.T. Claypool, E.A. Rundensteiner, Sangam: a framework
for modeling heterogeneous database transformations, ICEIS
(2003).

[13] S. Cluet, C. Delobel, J. Siméon, K. Smaga, Your mediators
need data conversion! SIGMOD (1998) 177–188.

[14] S. Davidson, P. Buneman, A. Kosky, Semantics of database
transformations, in: B. Thalheim, L. Libkin (Eds.), Semantics
in Databases, LNCS 1358, 1998, pp. 55–91.

[15] R. Hull, Relative information capacity of simple relational
database schemata, SIAM J. Comput. 15 (3) (1986) 856–886.

[16] J. Madhavan, P.A. Bernstein, P. Domingos, A.Y. Halevy,
Representing and reasoning about mappings between domain
models, AAAI/IAAI (2002) 80–86.

[17] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding:
a versatile graph matching algorithm and its application to
schema matching, ICDE, 2002.

[18] S. Melnik, E. Rahm, P.A. Bernstein, Rondo: a programming
platform for generic model management, Proc. ACM
SIGMOD, 2003.

[19] R.J. Miller, Y.E. Ioannidis, R. Ramakrishnan, Schema
equivalence in heterogeneous systems: bridging theory and
practice, Inf. Syst. 19 (1) (1994) 3–31.

[20] P. Mitra, G. Wiederhold, M.L. Kersten, A graph-oriented
model for articulation of ontology interdependencies, EDBT
(2000) 86–100.

[21] N.F. Noy, M.A. Musen, PROMPT: algorithm and tool
for automated ontology merging and alignment, Proc.
AAAI/IAAI, 2000.

[22] L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernández, R. Fagin,
Translating web data, VLDB, 2002.

[23] R.A. Pottinger, P.A. Bernstein, Merging models based on
given correspondences, Proc. VLDB, 2003.

[24] E. Rahm, P.A. Bernstein, A survey of approaches to automatic
schema matching, VLDB J. 10 (4) (2001).

Sergey Melnik is finishing a PhD in
computer science at Leipzig University,
Germany. He serves as an invited ex-
pert in the RDF Core Working Group
at the World-Wide Web Consortium and
is a recipient of a best student paper
award (ICDE’02). He spent three years
(1999–2002) as a visiting researcher in
the Stanford Database Group where he
worked on a variety of topics includ-

ing metadata management, database optimization, information re-
trieval, and Semantic Web.

Prof. Dr. Erhard Rahm has been the
Chair for Databases at the Institute of
Computer Science at the University
of Leipzig since 1994 (http://dbs.uni-
leipzig.de). His current research areas are
metadata management, data warehous-
ing, XML databases and bio-databases.
He is responsible for industrial and other
third party funded research projects, and
is author of several books and numerous

publications. In 1988, he received his PhD in Computer Science
from the University of Kaiserslautern, and in 1993 his postdoc-
toral lecture qualification. He was a visiting researcher at both the
IBM Research Center in Hawthorne, NY, as well as Microsoft
Research in Redmond, WA.

http://dbs.uni-leipzig.de

74 S. Melnik et al. / Web Semantics: Science, Services and Agents on the World Wide Web 1 (2003) 47–74

Dr. Phil Bernstein is a researcher at
Microsoft Corporation. Over the past 25
years, he has been a product architect
at Microsoft and at Digital Equipment
Corp., a professor at Harvard Univer-
sity and Wang Institute of Graduate
Studies, and a VP Software at Sequoia
Systems. During that time, he has pub-
lished over 100 articles on the theory
and implementation of database systems,

and co-authored three books, the latest of which is “Principles
of Transaction Processing for the System Professional” (Mor-
gan Kaufmann, 1997). He holds a BS from Cornell Univer-
sity and a PhD from University of Toronto. A summary of
his current research on metadata management can be found at
http://www.research.microsoft.com/∼philbe.

http://www.research.microsoft.com/~philbe

	Developing metadata-intensive applications with Rondo
	Introduction
	Motivating scenario
	Conceptual structures
	Models
	Morphisms
	Selectors

	Operators
	Primitive operators
	Derived operators
	Extract and Delete
	Match
	Merge

	Implementation
	Extract and Delete
	Dependencies
	ExtractMin
	DeleteHard and DeleteSoft
	Diff
	Match
	Merge

	Prototype
	View-reuse scenario
	Reintegration scenario
	Related work
	Outlook: structural vs. state-based semantics
	Conclusions
	Acknowledgements
	References

