
Matching Large XML Schemas

Erhard Rahm, Hong-Hai Do, Sabine Maßmann
University of Leipzig, Germany
rahm@informatik.uni-leipzig.de

Abstract

Current schema matching approaches still have to im-
prove for very large and complex schemas. Such
schemas are increasingly written in the standard lan-
guage W3C XML schema, especially in E-business
applications. The high expressive power and versatil-
ity of this schema language, in particular its type sys-
tem and support for distributed schemas and name-
spaces, introduce new issues. In this paper, we study
some of the important problems in matching such
large XML schemas. We propose a fragment-oriented
match approach to decompose a large match problem
into several smaller ones and to reuse previous match
results at the level of schema fragments.

1 Introduction
Schema matching aims at identifying semantic correspon-
dences between two schemas, e.g. database schemas, on-
tologies, XML message formats, etc. The need for schema
matching in numerous applications and the inherent diffi-
culty of the task have led to the development of many
techniques and prototypes to semi-automatically solve the
match problem [10, 4, 5, 7, 3, 8, 15]. The proposed ap-
proaches typically exploit various types of schema infor-
mation (e.g. element names, data types and structural
properties), characteristics of data instances, as well as
background knowledge from dictionaries and thesauri.
The reuse of previously determined match results pro-
posed in [15] has also been a recent research focus prom-
ising a significant reduction in manual match work [5, 9].

The approaches developed so far were typically ap-
plied to various test schemas for which they could auto-
matically determine most correspondences. However, as
surveyed in [6] most test schemas were structurally rather
simple and of small size of less than 50-100 components
(elements, attributes). Unfortunately, the effectiveness of
automatic match techniques studied so far may signifi-
cantly decrease for larger input schemas [5, 7] because
larger schemas increase the likelihood of false matches.

Advanced modeling capabilities such as complex
types, aggregation and generalization, which are sup-
ported by W3C XML Schema and the object-relational
SQL extensions (SQL:1999, SQL:2003), also lead to a
significant complication for schema matching. For in-
stance, complex types or substructures (e.g., for address,
customer, etc.) may occur many times in a schema possi-
bly with a context-dependent semantics. Such shared
schema components require special treatment to avoid an

explosion of the search space and to effectively deal with
n:m match cardinalities. The support of distributed sche-
mas and namespaces in W3C XML Schema also has not
been considered in current schema match systems.

There has been a modest amount of previous work on
some of the issues raised. For instance, several studies
considered is-a hierarchies in determining the similarity
of schema elements [2, 14]. Cupid [10] and COMA [5]
can deal with shared components to some extent (see Sec-
tion 2). [12] studies a large match problem to align two
medical taxonomies with tens of thousands of concepts.
To reduce match complexity, structural similarities be-
tween elements of the two input schemas are computed by
considering only direct children and grandchildren.

In this paper we discuss problems and possible solu-
tion strategies for matching large schemas written in the
W3C XML Schema Definition language (XSD)1. XSD
was approved as a W3C recommendation in 2001 and
since then has been increasingly adopted especially in
web-based applications, e.g. for e-business. In the next
section we discuss some of the new aspects to be dealt
with when matching XSD schemas, in particular the high
modeling flexibility enabled by the XSD type system,
component reuse/sharing, and distributed schemas. We
propose a fragment-oriented match approach to decom-
pose a large match problem into several smaller match
problems on schema fragments, e.g. specific message
types, shared components or complex types. Moreover,
the idea to reuse previous match results can be general-
ized to the level of fragments. While we focus on XSD in
this paper, after a language-specific preprocessing phase
the fragment-oriented match approach is generically ap-
plicable. The approach has been integrated into the
COMA match prototype.

2 Issues in Matching Large XSD Schemas
Current match systems not only focus on small schemas
but also on structurally simple schemas w.r.t. the number
of nesting levels, data types, constraints, and support of
shared schema components. The traditional database no-
tion of a schema is typically assumed where all instances
can be described by a single monolithic schema. How-
ever, many web and XML-based applications require a
powerful and flexible schema support that goes beyond
the capabilities of XML DTD and traditional database
schema languages. These requirements have thus been

1 www.w3.org/XML/Schema

SIGMOD Record, Vol. 33, No. 4, December 2004 26

incorporated into the W3C XML schema definition
(XSD) language. As a result, matching schemas taking
advantage of the advanced capabilities of XSD becomes
much more challenging than matching DTDs or simple
relational (e.g. SQL-92) schemas. To illustrate some of
the new challenges we focus on three key features of
XSD:

1. Type system
2. Shared schema components (reuse of schema

components)
3. Distributed schemas / namespace support.
The relevance of these issues can be illustrated by ex-

amining large real-life XSD schemas. Table 1 shows
some statistics for several standardized E-Business cata-
log and message schemas, namely BMECat, OpenTrans,
and two sub-standards of XCBL, OrderManagement and
Catalog.2 These schemas are distributed across many files
and have a size of several hundreds to almost 1500
schema components.

2.1 Type System
In contrast to DTD, XSD is based on a versatile type sys-
tem distinguishing between simple and complex types.
There are 43 built-in simple types (e.g., string, integer,
float, boolean, time, date), which can be used for element
and attribute declarations. Complex types are user-defined
and can be used for element (but not attribute) declara-
tions. In contrast to simple types, complex types can (and
typically do) have elements in their content and may carry
attributes.

Existing simple and complex types can both be refer-
enced in other type definitions and be extended or re-
stricted within a new type. These two general ways to
define new types are also referred to as composition (ag-
gregation) and sub-classing (specialization), respectively.
 Figure 1a illustrates the composition approach where new
(complex) types use existing types as building blocks: the
complex type Supplier is composed of elements of exist-
ing types int and Contact. With sub-classing, on the other
hand, a new (simple or complex) type is derived from an
existing type using either the restriction or extension
mechanism. In the example of Figure 1b, type Supplier
extends type Contact and thus inherits its elements Name
and Phone. Composition and sub-classing can be recur-
sively applied so that arbitrarily nested type hierarchies
are possible.

The exploitation of type information is of key impor-
tance for effective schema matching and entails estimat-

2 BMECat: www.bmecat.org, OpenTrans: www.opentrans.org, XCBL:
www.xcbl.org

ing the degree of similarity between different types. As a
consequence, approaches to determine the similarity be-
tween simple and complex XSD types of different sche-
mas have to be provided. The similarity between built-in
simple types can be determined analogously to previous
type matchers, e.g. by providing a static compatibility
table. User-defined simple types are also relatively easy to
deal with as they can always be associated with a built-in
simple type. Integrity constraints (facets) such as max-
Length, minLength, pattern, etc., should also be exploited
for type matching.

Complex types, on the other hand, may exhibit almost
unlimited complexity. In fact, determining the similarity
between complex types and matching them can be as dif-
ficult as matching two complete schemas since a schema
may just contain a single element of a particular complex
type. This indicates that matching complex types requires
a large spectrum of techniques including structural match
approaches, which determine the similarity between the
types’ components and consider the different ways these
components are used within the type definition. In par-
ticular, the composition and sub-classing alternatives need
to be dealt with so that the similarity between alternative
type definitions such as in Figure 1 can be determined.
Furthermore, complex type matching should consider the
used XSD compositors (sequence, choice, all), cardinality
restrictions (minOccurs, maxOccurs) and other integrity
constraints of their components.
2.2 Shared Schema Components
While XML instance documents are always tree-
structured, in general XML schemas are graph-structured.
In particular, there may be shared schema components
(elements, attributes, types, groups), which are referenced
in several places. In XSD, only so-called global compo-
nents can be referenced, i.e. direct children of the
<schema> root element of an XSD file. The key advan-
tage of such a referencing is the reuse of schema compo-
nents, which avoids redundant or unnecessarily diverse
specifications. This is especially important for large
schemas.

Referencing global elements is a simple form of reuse,
already supported in DTDs. All names of such elements
must be unique in a schema and referencing elements
have the same name (and type) as the referenced element.
In XSD, nested element references are not supported since
global elements must not reference other global elements.
On the other hand, XSD supports a more versatile reuse
for global (named) types. These types can be referenced
within element or attribute declarations as well as (recur-

Schema Name
spaces

Files Size All / Global
Elements

All / Global
Types

Shared
Comp

BMECat 3 10 429 403 / 170 25 / 14 30
OpenTrans 1 15 614 589 / 194 25 / 11 61
XCBL
Order 1 63 1451 1088 / 8 358 / 358 91
XCBL
Catalog 1 50 310 225 / 1 71 / 71 12

Table 1. Statistics of some E-Business XSD schemas

Contact •Name: string
•Phone: string

Supplier
•SupId: int

<extension base=“Contact”>

Contact •Name: string
•Phone: string

Supplier
•SupId: int
•Person: Contact

B) Sub-classingA) Composition

<element name=“Person” type=“Contact”/>

Figure 1. Type design patterns

27 SIGMOD Record, Vol. 33, No. 4, December 2004

sively) within other type definitions. Elements and attrib-
utes typically have different names than a referenced
named type and these names can carry additional seman-
tic information.

In addition to element reuse and type reuse, it is also
possible to avoid shared components (no reuse) and to
anonymously specify types inline (locally) when elements
and attributes are declared. This inline approach results in
tree-like schemas and may be sufficient for smaller sche-
mas with few elements. The three alternatives are illus-
trated in Figure 2. While they may be mixed within a
schema, three design philosophies each focusing on one
of the approaches have been proposed.3 The high flexibil-
ity of type reuse, which is specific to XSD, makes it a
well-suited approach for large business applications.

XCBL (Table 1) follows the type reuse approach and
only has few global elements as possible roots for in-
stance documents. BMECat and OpenTrans mainly utilize
the element reuse approach, resulting in a large number of
global elements. There are a substantial number of shared
components in all schemas.

XSD schema matching must be able to deal with al-
ternate design approaches. For instance, it must be possi-
ble to determine the similarity of the schema fragments of
 Figure 2 and their match correspondences. Match process-
ing thus requires a uniform schema representation, which
is not biased to any design style and can cope with shared
components and nested type references.

Shared components are especially important for
schema matching, but also difficult to deal with. Within a
schema, a shared component c indicates a similarity be-
tween c’s ancestors. Hence, the correspondences of c in a
second schema may match to all these ancestors (n:m
match cardinalities). On the other hand, it may be impor-
tant to clearly differentiate between the contexts where a
shared component is used, e.g. to distinguish the names or
addresses of buyers vs. suppliers.

Most previous match systems focused on schemas
with no or only few shared components. COMA [5] and
Cupid [10] can deal with shared components to some ex-
tent. COMA applies a path-based approach differentiating

3 The approaches have been named “Russian doll” (inline typing), “Sa-
lami slice” (element reuse) and “Venetian blind” (type reuse), e.g. in
[16]

all possible paths from the schema root to a shared com-
ponent c, thereby capturing all possible contexts of c. In
the example of Figure 3a, we obtain two paths for the
shared component Name. Cupid follows a materialized
approach by maintaining multiple copies of shared com-
ponents in a (voluminous) tree-like schema representa-
tion. In Figure 3b we thus have two Name nodes each
associated with a single parent (Supplier and Buyer, re-
spectively).

Unfortunately, both approaches do not scale to a
higher number of shared components. They both consider
all possible contexts of shared components often leading
to an explosion in the number of nodes or paths per
schema. For example, the XCBL Order schema contains
1,451 components including 91 shared types (Table 1),
but more than 26,000 different nodes/paths after resolving
the shared components. Matching two schemas of such a
size at the node/path level results in unacceptable execu-
tion times in the order of hours.

[4] confirms the scalability problem for large match
tasks. To improve performance it was proposed to apply a
hash-join like match approach and to cache intermediate
match results. These enhancements proved to be very
effective for an experiment on matching two versions of
the same schema with 340 and 500 elements, but with
only few shared components. It seems important to inves-
tigate the applicability of such optimizations for more
schemas and to also evaluate match quality.
2.3 Distributed Schemas
The conventional way to construct a schema is to put all
components in a single schema document, which is quite
handy for simple applications. To better deal with large
schemas, especially for web applications, XSD allows a
schema to be distributed over several schema documents
(files) and namespaces, which is used by the e-business
schemas of Table 1. Each schema document can be as-
signed to a so-called target namespace and XSD provides
different directives (include, redefine and import) to in-

<element name=“Supplier">
<complexType>

<element name=“Name“ type=“string”/>
</complexType>

</element>
<element name=“Buyer">

<complexType>
<element name=“Name“ type=“string”/>

</complexType>
</element>

<element name=“Supplier">
<complexType>

<element ref=“Name“/>
</complexType>

</element>
<element name=“Buyer">

<complexType>
<element ref=“Name“/>

</complexType>
</element>
<element name=“Name“ type=“string”/>

<element name=“Supplier“ type=“PartyType”/>
<element name=“Buyer“ type=“PartyType”/>
<complexType name="PartyType">

<element name=“Name“ type=“NameType”/>
</ complexType >
<simpleType name=" NameType">

<xsd:restriction base="string"/>
</simpleType>

A) Inlined (No reuse)

B) Element reuse

C) Type reuse
Figure 2. Component design patterns for reuse

Supplier

PO1

Buyer

Name

•PO1.Supplier.Name
•PO1.Buyer.Name

Supplier

PO1‘

Buyer

NameName

B) MaterializedA) Path-based
Figure 3. Resolving shared components

targetNamespace=“purchaseorder.xsd“
xmlns=“purchaseorder.xsd“
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

purchaseorder.xsd
<xsd:include schemaLocation=“PartyType.xsd”/>
<xsd:include schemaLocation=“NameType.xsd”/>
<xsd:element name=“Supplier“ type=“PartyType”/>
<xsd:element name=“Buyer“ type=“PartyType”/>

<complexType name="PartyType">
<element name=“Name“ type=“NameType”/>

</ complexType >

<simpleType name=" NameType">
<xsd:restriction base="string"/>

</simpleType>

PartyType.xsd

NameType.xsd

Common
namespaces

Figure 4. Distributed schema (1 target namespace)

SIGMOD Record, Vol. 33, No. 4, December 2004 28

corporate component definitions from existing documents
into a new document. In the distributed schema of Figure
4, all documents declare the same target namespace pur-
chaseorder.xsd. The main document purchaseorder.xsd,
references type PartyType defined in document Par-
tyType.xsd, which in turn references type NameType in
document NameType.xsd.

There are many options how to organize distributed
schemas and namespaces [16] and an XSD-capable match
system should be able to deal with them. A distributed
XSD schema is often a collection of several smaller
schemas or sub-schemas sharing common types and ele-
ments for reuse. For instance, each message format in an
e-business schema is a sub-schema that can - and should -
be matched separately. For example, the XCBL Order
schema consists of 8 sub-schemas representing different
message formats (Order, ChangeOrder, OrderRequest,
OrderResponse, etc.).

Schemas and sub-schemas directly describing instance
documents (e.g., e-business messages) should further be
separated from supporting reference schemas (e.g., type
libraries), which only contain named types, global ele-
ments, etc. for reference in other schema documents. Such
reference schemas are typically in separate files and may
even form separate namespaces (e.g., if they are of com-
pany-wide or global relevance). Taxonomies and other
ontologies are a variation of such reference schemas pro-
viding a controlled and categorized vocabulary, e.g. for
use within schemas.

Therefore, a matching system should be able to iden-
tify sub-schemas and reference schemas from a collection
of schema documents. While matching between reference
schemas is not directly required, it is promising to match
their components in advance in order to reuse the result
for matching the referencing (sub-)schemas. The ideal
case are (sub-)schemas sharing the same reference schema
or ontology, since schema components referring to the
same entry in the reference schema are often good match
candidates.

3 Fragment-based Matching
For a match task with large schemas it is likely that large
portions of one or both input schemas have no matching
counterparts. The standard approach trying to match the
complete input schemas will often lead not only to per-
formance problems (long execution times), but also poor
match quality with many false match candidates. Fur-
thermore, it is very difficult to present the match result to
a human engineer in a way that she can easily validate and
correct it.

We thus advocate fragment-based schema matching,
i.e. a divide-and-conquer strategy which decomposes a
large match problem into smaller sub-problems by match-
ing at the level of schema fragments (e.g., sub-schemas or
shared types). As illustrated in Figure 5, the strategy en-
compasses four steps: (1) a decomposition step to deter-
mine suitable fragments, (2) identification of the most

similar fragments between schemas to match, (3) match-
ing similar fragments, and (4) combining the fragment
match results (if a result for the complete schema is to be
determined).

By reducing the size of the match problem we not only
aim at better performance but also at improved match
quality compared to schema-level matching. Moreover,
the fragment approach can be used for interactive match
processing. For instance, the user may manually select a
fragment of interest for which matches from the second
schemas are determined automatically (by running steps 2
and 3). Then the fragment result may be manually con-
trolled and corrected before proceeding with another
fragment.

For each step there are many design options and im-
plementation possibilities, some of which we will discuss
in the following.
3.1 Schema Decomposition (Fragment Identification)
The main goal of this initial phase is to decompose the
input schemas into appropriate fragments. We assume that
input schemas are uniformly transformed to a directed
acyclic graph representation for manipulation by the
match system (e.g., during the import for new XSD sche-
mas). By fragment we denote a rooted sub-graph in the
schema graph. Hence, entire schemas and schema nodes
(paths) are special fragment types so that the previously
investigated schema-level and node-level matching ap-
proaches can be considered as variations of fragment
matching. Additional fragment types of interest include
sub-schemas and inner fragments of a schema. In general,
fragments should have little or no overlap to avoid re-
peated similarity computations and overlapping match
results.
• Sub-schemas: They represent parts of a schema which

can be separately instantiated, such as XML message
formats or relational table definitions. Match results
for such fragments are thus often needed, e.g. for data
transformations. Matching a sub-schema (e.g., one
message format) is obviously much simpler than
matching the complete schema (e.g., all formats) at
once. In fact, the user may only be interested in a par-
ticular message format. For XSD, sub-schema selec-
tion should be confirmed by the user since a global
element does not necessarily indicate a sub-schema (as
in the XCBL Order example).

• Inner fragments: Schemas may not have sub-schemas
or sub-schemas can still be very large so that fragment

(2) Find similar
fragments

S2

S1

(1) Schema
Decomposition (3) Match fragments

Complete
Result

Matcher 1

Matcher 2

Matcher 3
(S2,S1,sim)

s11↔s21
s12↔s22

{s11, s12, ...}

{s21, s22, ...}

Matcher 1

Matcher 2

Matcher 3
(S2,S1,sim)

s11↔s21
s12↔s22

{s11, s12, ...}

{s21, s22, ...}

Matcher 1

Matcher 2

Matcher 3
(S2,S1,sim)

s11↔s21
s12↔s22

{s11, s12, ...}

{s21, s22, ...}

Matcher 1

Matcher 2

Matcher 3
(S2,S1,sim)

s11↔s21
s12↔s22

{s11, s12, ...}

{s21, s22, ...}

(4) Result
Combination

Match

Figure 5. Fragment-based match strategy

29 SIGMOD Record, Vol. 33, No. 4, December 2004

matching should also be supported on finer-granularity
inner fragments. One fragmentation possibility are leaf
fragments, i.e. selected inner schema components
(complex types or elements) and all their descendants
down to the leaf level where only simple types are
possible. Another option is to only consider shared
sub-structures as fragments such as named types for
address, customer, etc. The match results for such
fragments may be usable many times within a schema
thereby improving performance. Moreover, a suitable
approach for dealing with shared components (Section
2.2) may be built on such a fragmentation.
Since fragments will be matched separately, the

schema graph can be compacted to a proxy schema graph
by replacing each inner fragment by a proxy node (e.g.,
the fragment root). For the example of Figure 6, the com-
ponents of fragments Contact in schema PO1 and Con-
tactPers in PO2 would thus be eliminated from the
schema graph. The reduced graph size allows a faster
match for the remaining components. The match results
for the inner fragments are incorporated in step 4 (result
combination).

During the decomposition phase, fragment characteris-
tics and statistics can also be determined as a prerequisite
for computing fragment similarities in step 2. Such meta-
data may include the fragment name (name of the frag-
ment root), type name of the fragment root (if available),
fragment type (sub-schema, shared, or leaf), and informa-
tion on the containing schema file (location, namespace,
version information, change date, etc.). Relevant statisti-
cal fragment information includes size (number of nodes
in fragment), local depth (maximal path length in the
fragment), global depth (distance from schema root to
fragment root), and number of parents (how often a frag-
ment is used). Moreover, all contexts of a fragment may
be determined, i.e. the paths from the schema root to the
fragment root, indicating where the fragment is used
within a schema.
3.2 Identifying Fragment-Pair Candidates
The goal of this step is to identify fragments of the two
schemas that are sufficiently similar to be worth matching
in more detail. This aims at reducing match overhead by
not trying to find correspondences for a fragment in ir-
relevant fragments from the second schema. Hence, the
similarity between two fragments should be determined
cheaper than fully matching the fragments with all their
components. For example, the comparisons can be per-
formed on fragment metadata, such as fragment names,

fragment contexts and statistical data collected in step 1.
For instance, numerical metadata can be used in distance
functions or in feature analysis techniques [8, 13] to de-
termine the structural similarity of fragments. The com-
parison between two fragments is assumed to result in a
normalized similarity value, which can be used to deter-
mine the most similar fragments.

For fragments, which have been fully matched in a
previous match task, the detailed match result can be used
to determine the fragment similarity more precisely.
There are several possibilities to aggregate similarity val-
ues between components to determine fragment similari-
ties, e.g. as supported by the combination framework of
COMA [5].
3.3 Fragment Matching
In this step, the identified pairs of similar fragments are
fully matched to obtain the correspondences between their
components. One open question is whether or not the con-
texts of a fragment should be considered for this task. We
favor the simpler context-insensitive alternative treating
fragments as independent schemas, so that fragment
matching is basically the same as matching schemas of
reduced size. This is the method of choice for matching
sub-schemas. However, it may also be sufficient for inner
fragments by resolving context dependencies in step 4.
Fragment matching can utilize the known schema match-
ing techniques, such as name matching, structural match-
ing, instance-based matching, etc. For our simple exam-
ple, we could obtain the match between the Name compo-
nents of fragments Contact and ContactPers (Figure 6a).

Particularly promising is the reuse of previous match
results, which may be more often and more effectively
applicable at the level of fragments compared to entire
schemas. As pointed out in [5], reuse can be implemented
by combining two or more match results (mappings) by
means of a MatchCompose operation (which is similar to
a join). For a match task F1-F2 we check in a repository
of previous match results whether there are already results
for F1, F2 or similar fragments. This selection can use the
approaches of step 2 for finding similar fragments. For
instance, if F1 was already matched to an older version of
F2, F2’, we can combine this existing result with the
match result for F2’-F2 to solve our task. This is a useful
approach if it is easier to newly match F2’-F2 than F1-F2,
e.g., because only few F2 components are changed com-
pared to F2’. Note that reusing previous match results has
similarities to case-based reasoning [1]; the cases are
match tasks and we try to solve a new case by searching
for similar previous cases and adapting their solutions.
3.4 Result Combination
If the task is to determine the match result for two com-
plete schemas, the match correspondences for inner frag-
ments need to be combined with the match result for the
proxy schema graphs (step 1). This assumes that the com-
pacted schemas are separately matched to cover the com-
ponents not represented in the fragments, including the

A) Fragment correspondence (context-independent)
Contact.Name ↔ ContactPers.Name

BillTo

PO1

ShipTo

Contact

Name

DeliverTo

PO2

InvoiceTo

ContactPers

Name

B) Context-sensitive correspondence
PO1.BillTo.Contact.Name ↔ PO2.InvoiceTo.ContactPers.Name

Figure 6. Fragment and context match

SIGMOD Record, Vol. 33, No. 4, December 2004 30

fragment contexts. For the example of Figure 6, it may
have been determined that PO1.BillTo matches
PO2.InvoiceTo (but not PO2.DeliverTo). This fragment
context match needs to be combined with the local frag-
ment correspondences so that the correspondence of
 Figure 6b can be derived.

For leaf fragments, the contexts may also be matched
by a bottom-up propagation of the similarity values for
fragment components to the ancestors in the schema
graph. This generalizes an idea used in previous structural
matchers to determine the similarity of inner nodes based
on the similarity of leaf nodes [10, 5].

4 Prototype
We have implemented advanced XSD support and frag-
ment matching in a heavily extended version of the
COMA prototype described in [5]. Figure 7 shows the
gross architecture of the prototype.

The import of an XSD schema is a complex operation
in which the schema is parsed and transformed to a uni-
form directed graph representation. Our parser supports
schemas stored in a single file or a collection of files. The
different designs, in particular, element reuse, type reuse,
and type sub-classing, are resolved using a uniform struc-
ture. We further perform the preprocessing steps dis-
cussed in the last section, such as identification of sub-
schemas, determination of structural statistics, and detec-
tion and removal of graph cycles.

Imported schemas can be saved in a central repository,
from which complete schemas or sub-schemas can be
loaded for matching. The repository also stores approved
match results and other auxiliary information, such as
synonyms, for reuse purposes. Match processing is per-
formed within a matching engine, which provides a li-
brary of individual matchers and supports various strate-
gies to combine their results. A match operation can in-
volve multiple matchers, which can be flexibly selected
from the matcher library. Existing matchers can also be
easily combined to build more powerful matchers. In both
cases, we use the combination scheme already imple-
mented in COMA to derive the best match result from the
individual results predicted by the single matchers.

We added several new matchers to the original COMA
matcher library, especially for implementing the frag-
ment-based approach discussed in the last section. Cur-
rently, sub-schemas and shared fragments are supported.
The approaches still need to be evaluated and will be de-
scribed in a future paper.

5 Conclusions
Large schemas and advanced features of the W3C XML
schema description language are still not well supported
by current schema matching prototypes, thereby limiting
the practical applicability of such systems. We studied
several XSD features used in large e-business schemas
that need to be considered for schema matching, in par-
ticular distributed schemas and namespaces, heavy use of
shared schema components, and different design styles
based on XSD’s flexible type system. We proposed a
fragment-oriented match approach to decompose large
match problems into several smaller ones. Our approach
includes sub-steps for schema decomposition, finding
similar fragments, fragment matching and result combina-
tion. There are many design options, which need further
investigation, e.g. how to best consider context dependen-
cies for fragments.

We have implemented a first version of the approach
within an extended version of COMA. To keep the system
generic, we encapsulate XSD-specific aspects in the im-
port operation and within tailored matchers. We believe
that fragment-oriented matching, various forms of reusing
previous match results, and the flexible combination of
different matchers are cornerstones of a successful and
scalable match system. Our future work will focus on
completing such a system and performing comprehensive
evaluations of different implementation alternatives.
Acknowledgements. We thank Phil Bernstein and Sergey
Melnik for helpful comments. The second author is sup-
ported by DFG grant BIZ 6/1-1.
References
1. Aamodt, A., Plaza, E.: Case-based Reasoning – Foundational Is-

sues, Methodological Variations, and System Approaches. AI
Communications 7: 1, 1994

2. Bergamaschi, S. et al.: Semantic Integration of Semistructured and
Structured Data Sources. ACM SIGMOD Record 28: 1, 1999

3. Berlin, J., A. Motro: Autoplex: Automated Discovery of Content for
Virtual Databases. CoopIS 2001

4. Bernstein, P.A. et al: Industrial-strength Schema Matching. ACM
SIGMOD Record, 2004 (this issue)

5. Do, H.H., E. Rahm: COMA – A System for Flexible Combination
of Match Algorithms. VLDB 2002

6. Do, H.H., S. Melnik, E. Rahm: Comparison of Schema Matching
Evaluations. GI-Workshop Web and Databases, LNCS 2593, 2003

7. Doan, A.H. et al.: Reconciling Schemas of Disparate Data Sources:
A Machine-Learning Approach. SIGMOD 2001

8. Li, W., C. Clifton: SemInt - A Tool for Identifying Attribute Corre-
spondences in Heterogeneous Databases Using Neural Network.
Data and Knowledge Engineering 33: 1, 2000

9. Madhavan, J. et al.: Corpus-based Schema Matching. Workshop on
Information Integration on the Web (IIWeb), 2003

10. Madhavan, J., P.A. Bernstein, E. Rahm: Generic Schema Matching
with Cupid. VLDB 2001

11. Melnik, S., H. Garcia-Molina, E. Rahm: Similarity Flooding – A
Versatile Graph Matching Algorithm. ICDE 2002

12. Mork, P., P.A. Bernstein: Adapting a Generic Match Algorithm to
Align Ontologies of Human Anatomy. ICDE 2004

13. Naumann, F. et al.: Attribute Classification Using Feature Analysis.
ICDE 2002

14. Palopoli, L. et al.: Uniform Techniques for Deriving Similarities of
Objects and Subschemes in Heterogeneous Databases. IEEE Trans.
Knowl. Data Eng. 15: 2, 2003

15. Rahm, E., P.A. Bernstein: A Survey of Approaches to Automatic
Schema Matching. VLDB Journal 10: 4, 2001

16. XML Schemas - Best Practices.
www.xfront.com/BestPracticesHomepage.html

Source Id
Name
Content
Structure

SOURCE
Source Id
Name
Content
Structure

SOURCE

n1

n1

11

n n n n
1 1

Object Id
Source Id
Accession
Text
Number

OBJECT
Object Id
Source Id
Accession
Text
Number

OBJECT

Source Rel Id
Source1 Id
Source2 Id
Type

SOURCE_ REL
Source Rel Id
Source1 Id
Source2 Id
Type

SOURCE_ REL
Object Rel Id
Source Rel Id
Object1 Id
Object2 Id
Evidence

OBJECT_ REL
Object Rel Id
Source Rel Id
Object1 Id
Object2 Id
Evidence

OBJECT_ REL

Repository
•Schemas
•Mappings
•Auxiliary info

<element name=“Supplier">
<complexType>

<element ref=“Name“/>
</complexType>

</element>
<element name=“Buyer">

<complexType>
<element ref=“Name“/>

</complexType>
</element>
<element name=“Name“ type=“string”/>

<element name=“Supplier">
<complexType>

<element ref=“Name“/>
</complexType>

</element>
<element name=“Buyer">

<complexType>
<element ref=“Name“/>

</complexType>
</element>
<element name=“Name“ type=“string”/>

<element name=“Supplier">
<complexType>

<element ref=“Name“/>
</complexType>

</element>
<element name=“Buyer">

<complexType>
<element ref=“Name“/>

</complexType>
</element>
<element name=“Name“ type=“string”/>

Parse
Import
Preprocess

Matching Engine
•Directed graphs
•Matcher library
•Combination
strategies

XML Schemas

Figure 7. System gross architecture

31 SIGMOD Record, Vol. 33, No. 4, December 2004

