The VLDB Journal (2005) 14(4): 357-372
DOI 10.1007/s00778-005-0160-x

REGULAR PAPER

Andreas Thor - Nick Golovin - Erhard Rahm

Adaptive website recommendations with AWESOME

Received: 30 November 2004/ Accepted: 12 April 2005/ Published online: 20 October 2005

© Springer-Verlag 2005

Abstract Recommendations are crucial for the success of
large websites. While there are many ways to determine rec-
ommendations, the relative quality of these recommenders
depends on many factors and is largely unknown. We present
the architecture and implementation of AWESOME (Adap-
tive website recommendations), a data warehouse-based rec-
ommendation system. It allows the coordinated use of a
large number of recommenders to automatically generate
website recommendations. Recommendations are dynami-
cally selected by efficient rule-based approaches utilizing
continuously measured user feedback on presented recom-
mendations. AWESOME supports a completely automatic
generation and optimization of selection rules to minimize
website administration overhead and quickly adapt to chang-
ing situations. We propose a classification of recommenders
and use AWESOME to comparatively evaluate the rela-
tive quality of several recommenders for a sample website.
Furthermore, we propose and evaluate several rule-based
schemes for dynamically selecting the most promising rec-
ommendations. In particular, we investigate two-step selec-
tion approaches that first determine the most promising rec-
ommenders and then apply their recommendations for the
current situation. We also evaluate one-step schemes that try
to directly determine the most promising recommendations.

Keywords Adaptive web recommendations - Web data
warehouse - Classification of recommendation algorithms -
Web usage mining

1 Introduction

To guide web users, presented website pages frequently con-
tain web recommendations, i.e. links to related or poten-
tially useful information. Especially for large websites rec-
ommendations are crucial for the usefulness and success of

A. Thor () - N. Golovin - E. Rahm
University of Leipzig, Leipzig, Germany
E-mail: {thor, golovin, rahm}@informatik.uni-leipzig.de

the website. For instance, e-commerce sites offering thou-
sands of products cannot solely rely on standard navigation
and search features but need to apply recommendations to
help users quickly find “interesting” products or services.
Given many users and products, manual generation of rec-
ommendations becomes much too laborious and ineffective.
Hence, a key question is how recommendations should be
generated automatically to optimally serve the users of a
website.

There are many ways to automatically generate rec-
ommendations taking into account different types of infor-
mation (e.g. product characteristics, user characteristics, or
buying history) and applying different statistical or data min-
ing approaches [1, 2]. Sample approaches include recom-
mendations of top-selling products (overall or per product
category), new products, similar products, products bought
together by customers, products viewed together in the same
web session, or products bought by similar customers. Ob-
viously, the relative utility of these recommendation ap-
proaches (recommenders for short) depends on the website,
its users and other factors; hence, there cannot be a single
best approach. Website developers thus have to decide about
which approaches they should support and where and when
these approaches should be applied. Surprisingly, little in-
formation is available in the open literature on the relative
quality of different recommenders. Hence, one focus of our
work is an approach for comparative quantitative evaluations
of different recommenders.

Advanced websites, such as Amazon [3], support many
recommenders but apparently are unable to select the most
effective approach per user or product. They overwhelm the
user with many different types of recommendations leading
to huge web pages and reduced usability. While commer-
cial websites often consider the buying behavior for gener-
ating recommendations, the navigation behavior on the web-
site remains largely unexploited. We believe this a major
shortcoming, since the navigation behavior contains detailed
information on the users’ interests not reflected in the pur-
chase data. Moreover, the navigation behavior contains valu-
able user feedback not only on products or other content but

358

A. Thor et al.

also on the presented recommendations. The utilization of
this feedback to automatically and adaptively improve rec-
ommendation quality is a major goal of our work.

AWESOME (Adaptive website recommendations) is a
new data warehouse-based website evaluation and recom-
mendation system under development at the University of
Leipzig. It contains an extensible library of recommender
algorithms that can be comparatively evaluated for real web-
sites based on user feedback. Moreover, AWESOME can
perform an automatic closed-loop website optimization by
dynamically selecting the most promising recommendations
for a website access. Adaptiveness is important to automat-
ically react to changing user interests and changing con-
tent. In closed-loop optimization we use the system’s own
past efficiency measurements to optimize its future behav-
ior. In particular, we continuously measure user feedback
on presented recommendations and use the observed rec-
ommendation quality to select new recommendations. Thus,
AWESOME can be instrumental in creating so-called adap-
tive web sites: web sites that automatically improve their
organization and presentation by learning from user ac-
cess patterns [4]. To support high performance and scala-
bility, recommendation quality characteristics and recom-
mendations are largely pre-computed. AWESOME is fully
operational and in continuous use at a sample website; adop-
tion to further sites is in preparation.

The main contributions of this paper are as follows:

— We outline the AWESOME architecture for warehouse-
based recommender evaluation and for scalable adap-
tive website recommendations. We provide details on the
data warehouse implementation to illustrate how good
data quality is supported and how recommendation feed-
back is maintained

We present a new classification of recommenders for
websites supporting a comparison of different ap-
proaches. We show how sample approaches fit the clas-
sification and propose a new recommender for users

coming from search engines. We also provide a com-
parative quantitative evaluation of several recommenders
for a sample website. The considered recommenders
cover a large part of our classification’s design space.
We propose two-step and one-step approaches for dy-
namically determining recommendations based on dif-
ferent types of selection rules. One-step approaches
try to directly determine the most suitable recommen-
dations, while two-step approaches first determine the
most promising recommenders and then apply their rec-
ommendations for the current situation. We describe
implementation alternatives for two-step and one-step
recommendation selection including machine-learning
approaches for taking recommendation feedback into
account. Finally, we provide a comparative evaluation of
the approaches for dynamic recommender and recom-
mendation selection for a sample website.

In the next two sections, we present the AWESOME
architecture and the underlying data warehouse approach.
In Sect. 4 we outline our recommender classification and
sample recommenders. Section 5 contains the comparative
evaluation of several recommenders for a non-commercial
website. We describe the feedback-based selection of rec-
ommenders and recommendations in Sect. 6 and give a com-
parative evaluation of both selection approaches in Sect. 7.
In Sect. 8, we briefly review related work. Section 9 contains
the conclusions.

2 Architecture

Figure 1 illustrates the overall architecture of AWESOME,
which is closely integrated with the application server run-
ning the website. AWESOME is invoked for every website
access, specified by a so-called context. A context is de-
fined by a set of parameters, which describe the current state
of the interaction between the web user and the website,

Website Application Server

Logging of web access and [ESE] User input
| o= "
recommendation feedback E_ @
) . =~
Current context |aEe8 | Content,
Recommendations 1 Web users
recommendations
| EEEen T e e T AT ': e | e e A X e e T R S T S S e e e R ey o U N e S peah e o 1
i " Two-step Recom- H H
! i “m’“’ —p H :
i " Selection Precomputed i |
1 - mender(s’
E Presented :i]-“:i:::i];ie w(e) Recommendations H i
'| Recommen- | ! One-step approach P — H !
| dations i: ko) % P Frecompid i w;x];alljssaife i
| ! i Recommendations i Y i
i M H H
' e ===q j====ccog--=- " H
] .

E ! Recommendation Recommender II E I m I H
| ! Library | H
! ! User history & |Recommender!
] T, 1 H 1
i E > Web Data El{em rdation feedback : Evaluation i

Fig. 1 AWESOME architecture

Warehouse

s N :

User history

Adaptive website recommendations with AWESOME

including information from the current HTTP request such
as URL, timestamp and user-related data. For such a con-
text, AWESOME dynamically generates a list of recommen-
dations, i.e links to website content, to be displayed together
with the requested website content. Recommendations are
automatically determined by a variety of algorithms (recom-
menders) from an extensible recommender library. Recom-
menders may use usage history of the website and additional
information maintained in a web data warehouse to gener-
ate recommendations. For performance reasons, recommen-
dations are pre-computed and periodically refreshed and can
thus be quickly looked up at runtime. The recommendations
are subject to a final filter step to avoid the presentation of
unsuitable or irrelevant recommendations, e.g., recommen-
dation of the current page or the homepage.

AWESOME supports two-step and one-step selection
of recommendations at runtime. The former approach first
selects the most appropriate recommender(s) for the cur-
rent context and then applies their recommendations. The
one-step approach directly determines the most promising
recommendations for the current context. Both approaches
are controlled by selection rules which may be determined
manually or automatically. The automatic approaches uti-
lize user feedback on previously presented recommenda-
tions which is recorded in the web data warehouse.

Two-step selection approaches typically use a small or
moderate number of recommender rules to determine the
most promising recommenders per context. Feedback is
associated to recommenders, which is simpler and more sta-
ble than trying to use feedback for individual recommen-
dations, e.g. specific web pages or products. Hence, this
approach supports a complete manual specification of rec-
ommender rules. Adding and deleting web pages or products
does not directly influence the aggregated feedback and can
thus easily be supported. Moreover, adapting the rules can
be performed less frequently than in one-step approaches,
since significant changes in the selection rules can only be
expected when there is a certain amount of new feedback for
most recommenders.

On the other hand, one-step approaches use so-called
recommendation rules to directly determine the most
promising recommendations per context. This approach is
more fine-grained and allows selection of good recommen-
dations irrespective of by which algorithm they were deter-
mined. One problem with the one-step approach is that in-
dividual pages/products may be frequently added and that
there is no feedback available for such new content. Con-
versely, removing content results in a loss of the associated
recommendation feedback.

Since there are typically many more possible recom-
mendations than recommenders, the number of recommen-
dation rules needs to be much larger than the number of
recommender rules. This not only may make it more dif-
ficult to achieve fast recommendation selection but also to
ensure that all potential recommendations are actually pre-
sented and thus obtain a fair chance to collect recommen-
dation feedback. On the other hand, associating feedback to

359
Table 1 Strategies for dynamic selection of recommendations
Strategy type
Two-step One-step
Rule type/granularity ~ Recommender Recommendation
No. of rules Small to moderate ~ Many
Rule adaptation Offline Offline and online

individual recommendations may enable a more responsive
approach by adapting the selection rules more frequently
than with the two-step scheme. We have thus implemented
approaches that not only re-compute recommendations pe-
riodically (offline) but also use short-term feedback on pre-
sented recommendations for an online adaptation of recom-
mendation rules.

Table 1 summarizes some of the characteristics of the
two strategy types for dynamic selection of recommenda-
tions. AWESOME implements several two-step and one-
step selection strategies including machine-learning ap-
proaches for taking recommendation feedback into account.
We will present the approaches and evaluate their effective-
ness in Sects. 6 and 7, respectively.

AWESOME is based on a comprehensive web data
warehouse integrating information on the website structure
and content (e.g., product catalog), website users and cus-
tomers, the website usage history and recommendation feed-
back. The application server continuously records the users’
web accesses and which presented recommendations have
been and which ones have NOT been followed. During an
extensive ETL (extract, transform, load) process (including
data cleaning, session and user identification) the usage data
and recommendation feedback is added to the warehouse.

The warehouse serves several purposes. Most impor-
tantly it is the common data platform for all recommenders
and keeps feedback for the dynamic recommender /recom-
mendation selection thus enabling an automatic closed-loop
website optimization. However, it can also be used for exten-
sive offline evaluations, e.g., using OLAP tools, not only for
web usage analysis but also for a comparative evaluation of
different recommenders and of different selection strategies.

This functionality of AWESOME allows us to systemat-
ically evaluate the various approaches under a large range of
conditions. It is also an important feature for website design-
ers to fine-tune the recommendation system, e.g. to deacti-
vate or improve less effective recommenders. Therefore, the
recommender library is strictly separated from the selection
process. New recommenders can be added to AWESOME
without changing other parts of the system. Furthermore,
the functionality of all recommenders is encapsulated so that
further development of recommenders is not restricted.

2.1 Prototype implementation

The current AWESOME implementation runs on differ-
ent servers. The recommendation engine is largely imple-
mented by PHP programs on a Unix-based application
server running the Apache web server. The pre-computed

360 A. Thor et al.
Table 2 Log file formats
(a) Web usage log
Page Requested page
Date, time Date and time of the request
Client IP address of the user’s computer
Referrer Referring URL
Session ID Session identifier
User ID User identifier
(b) Recommendation log
Page view ID Page view where recommendation has been presented
Recommendation Recommended content
Position Position of this recommendation inside a recommendation list
Recommender Recommender that generated the recommendation (only for two-step selection)
Strategy Name and type (one-step or two-step) of selection strategy
Table 3 Fraction of web usage log file containing three sessions
Session ID Host Time Page Referrer Session
- cw12.H1.srv.t-online.de 01:15:02 /DBS1/ch4-1.html www.google.com/search?q=sql+statements A
- pD9E1621B.dip.t-dialin.net 01:15:10 /ADS1/ch3-5.html ~ www.google.com/search?q=linked+list B
1 vc05cop7001.cpme.columbia.edu 01:15:12 /People/rahm.html research.microsoft.com/~philbe/ C
- cw12.H1.srv.t-online.de 01:15:20 /DBS1/ch4-2.html /DBS1/ch4-1.html A
1 vc05cop7001.cpme.columbia.edu 01:15:21 /index.html /People/rahm.html C
- cwO08.H1.srv.t-online.de 01:15:23 /DBS1/ch4-3.html /DBS1/ch4-2.html A
- pD9E1621B.dip.t-dialin.net 01:15:43 /ADS1/ch3-4.html /ADS1/ch3-5.html B

recommendations and selection rules are maintained in a
MySQL database. During the two-step selection process, for
a given context and a set of selected recommenders a dy-
namic SQL statement is generated to select recommenda-
tions at runtime.

The warehouse is on a dedicated machine running MS
SQL server. Most recommenders are implemented in SQL,
but Java and Perl programs are also utilized. All recom-
menders are periodically (currently, once a day) executed to
re-compute the recommendations.

3 Web data warehouse

To illustrate the value of a data warehouse approach for gen-
erating web recommendations we provide some details on
its implementation and design. We present the log formats
of the application server and explain some ETL functions
important for achieving good data quality. Furthermore, we
sketch the warehouse schema used for web accesses and rec-
ommendation feedback.

3.1 Web log files

The standard log files of web servers are not sufficient for
our purposes because to obtain sufficient recommendation
feedback we need to record all presented recommendations
and whether or not they have been followed. We thus de-
cided to use tailored application server logging to record this
information. Application server logging also enables us to
apply effective approaches for session and user identifica-
tion and early elimination of crawler accesses, thus support-
ing good data quality (see later discussion).

We use two log files: a web usage and a recommendation
log file with the formats shown in Table 2. The recommen-
dation log file records all presented recommendations and is
required for our recommender evaluation. It allows us to de-
termine positive and negative user feedback, i.e. whether or
not a presented recommendation was clicked. For each pre-
sented recommendation, we also record the relative position
of the recommendation on the page, the generating recom-
mender and the used selection strategy.

An example of the web usage log file is shown in Table 3.
User IDs are stored inside permanent cookies and are used
for user identification. If the user does not accept permanent
cookies, user recognition is not done. The session ID is gen-
erated by the application server and stored inside a tempo-
rary cookie on the user’s computer (if enabled). It is used for
data preparation inside the ETL process, which is described
in the following section.

3.2 ETL process

The ETL process periodically processes the log files of the
application server and other data sources to refresh the data
warehouse. Like in other data warehouse projects the main
ETL tasks are data cleaning and transformation to ensure
good data quality for the warehouse. The specifics of web
usage data require tailored data preparation steps which have
been investigated thoroughly in recent years; [S] gives a
good overview. We illustrate the AWESOME approaches for
two data preparation problems: crawler detection and ses-
sion reconstruction.

Crawler detection deals with the identification of page
requests not originating from human users but programs

Adaptive website recommendations with AWESOME

361

200.000 [Webalizer
. Warehouse
150.000]
100.000]
50.000 4
o U

Fig. 2 Number of monthly page views (2004)

such as search engine crawlers or website copiers. Obvi-
ously, we do not want to generate recommendations for such
programs and only consider human navigation behavior. We
use a combination of several heuristics to detect crawler ac-
cesses and avoid their logging or eliminate them from the
log. First, we utilize a list of IP addresses of known crawlers
(e.g., crawll.googlebot.com as a crawler from the Google
search engine). Similarly, we provide a list of known agent
names of website copiers (e.g., HTTrack!) to identify and
eliminate their requests. In addition, on every delivered page
the application server integrates a link that is invisible to hu-
mans. Sessions containing a request to this linked page are
deleted. Finally, we analyze the navigation behavior by mea-
suring attributes like session length, average time between
two requests and number of requests with blank referrer to
distinguish between human user sessions and web crawler
sessions [6]. To illustrate the effectiveness of our crawler
detection we performed a comparison with a freely avail-
able web log file analysis tool® which currently does not
eliminate crawler accesses. Figure 2 compares the number
of all requested pages (measured by the free web server log
file analysis program Webalizer) and the number of page
views determined with this tool compared with the num-
ber of page views determined by AWESOME after elimi-
nation of crawler accesses for the same website and time pe-
riod. The comparison illustrates that about 70% of all page
views are identified as non-human requests for the consid-
ered website and that this share may actually vary signifi-
cantly. This demonstrates the need and importance of an ex-
haustive crawler detection and that not performing this kind
of data cleaning leads to irrelevant data and analysis results.

Another important data preparation task is session re-
construction to group page views from the same user dur-
ing a website visit. Knowledge about sessions is obviously
needed to analyze the navigation behavior of users as well
as to determine whether presented recommendations are ac-
cepted. In the terminology of [7], AWESOME supports both
a proactive and reactive session reconstruction. Proactive
session reconstruction is done by a session ID generated
by the application server and stored within temporary cook-
ies. If temporary cookies are enabled (which is the case for
about 85% of the users of our prototype website) they pro-
vide a safe method to session construction. The reactive ap-

U http://www.httrack.com/
2 http://www.mrunix.net/webalizer/

proaches are based on heuristics and come into play when
temporary cookies are disabled. In a first heuristic, we use
the combination of the user’s host name (actually only the
last four parts of it to deal with varying host names, e.g.,
from proxy servers) and agent name as a temporary iden-
tifier. All accesses with the same identifier and a temporal
distance within a threshold are considered to belong to the
same session. Additionally, we use the referrer information
to reconstruct sequences of page views. Given the high share
of proactive session construction and the typically high ac-
curacy of the heuristics we expect that the vast majority of
sessions can be correctly constructed.

3.3 Data warehouse design

The web data warehouse is a relational database with a
“galaxy” schema consisting of several fact tables sharing
several dimensions. Like in previous approaches on web us-
age analysis [8] we use separate fact tables for page views,
sessions, and — for commercial sites — purchases. In addi-
tion we use a recommendation fact table. The simplified
schema in Fig. 3 shows the page view and recommenda-
tion fact tables and their dimension tables which are refer-
enced by the respective ID attributes. The details of these
tables depend on the website, e.g. on how the content (e.g.,
products), users or customers are categorized. In the exam-
ple of Fig. 3 there are two content dimensions for different
hierarchical categorizations. Such hierarchies may represent
different kinds of product catalogs, e.g., organized by topic
or by media type. Other dimensions such as user, customer,
region, and date are also hierarchically organized and thus
allow evaluations and recommendation decisions at differ-
ent levels of detail.

The page view fact table represents the web usage his-
tory and contains a record for each requested page. The
duration until the next page view of the same session is
stored in the view time attribute. The recommendation fact
table represents the positive and negative user feedback on
recommendations. Each record in this table refers to one pre-
sented recommendation. The recommended content is char-
acterized by the content dimension tables, whereas the uti-
lized recommender and the applied selection strategy are
described using additional dimension tables. Three Boolean
measures are used to derive recommendation quality met-
rics (see Sect. 5). Accepted indicates whether or not the rec-
ommendation was directly accepted (clicked) by the user,
while Viewed specifies whether the recommended content
was viewed later during the respective session (i.e., the rec-
ommendation was a useful hint). Purchased is only used for
e-commerce websites to indicate whether or not the recom-
mended product was purchased during the current session.

4 Recommenders

A recommender generates for a given web page request,
specified by a context, an ordered list of recommendations.

362

A. Thor et al.

Content Type 1
Level 1
Level 2
Level 3
Content el
o Recommendation
Level 1 :
Level 2 Recommendation ID Selection Strategy
Page View Strategy ID
DateD> Coten >
Date ID —»
i Date ID
Time ID
i Time Time ID
Region ID _
e Region ID Recommender
User ID g
Cugtomer ID . User ID
Region Customer ID
View Tl =
2 Accepted
Viewed
Furchased

New_or_Returning
No. of sessions

Fig. 3 Simplified data warehouse galaxy schema

Such recommendations link to current website content, e.g.
pages describing a product or providing other information or
services.

To calculate recommendations, recommenders can make
use of the information available in the context as well as
additional input, e.g. recorded purchase and web usage data.
We distinguish between three types of context information
relevant for determining recommendations:

— Current content, i.e. the currently viewed content (page
view, product, etc.) and its related information such as
content categories.

— Current user, e.g. identified by a cookie, and associated
information, e.g. her previous purchases, previous web
usage, interest preferences, or current session.

— Additional information available from the HTTP request
(current date and time, user’s referrer, etc.)

4.1 Recommender classification

Given the many possibilities to determine recommendations,
there have been several attempts to classify recommenders
[2, 9, 10, 11]. These classifications typically started from a
given set of recommenders and tried to come up with a set
of criteria covering all considered recommenders. This led
to rather complex and specialized classifications with cri-
teria that are only relevant for a subset of recommenders.
Moreover, new recommenders can easily require additional
criteria to keep the classification complete. For example,
[10] introduces a large number of specialized criteria for
e-commerce recommenders such as input from target cus-
tomers, community inputs, degree of personalization, etc.
To avoid these problems we, propose a general top-
level classification of website recommenders focusing on

the usable input data, in particular the context information.
This classification may be refined by taking additional as-
pects into account, but already leads to a distinction of ma-
jor recommender types thus illustrating the design space.
Moreover, the classification helps to compare different rec-
ommenders and guides us in the evaluation of different
approaches.

Figure 4 illustrates our recommender classification and
indicates where sample approaches fit in. We classify rec-
ommenders based on three binary criteria, namely whether
or not they use information on the current content, the cur-
rent user, and recorded usage (or purchase) history of users.
This leads to a distinction of eight types of recommenders
(Fig. 4). We specify each recommender type by a three-
character-code describing whether (4) or not (—) each of
the three types of information is used. For instance, type
[+,4+,—] holds for recommenders that use information on
the current content and current user, but do not take into ac-
count user history.

The first classification criteria considers whether or not a
recommender uses the current content, i.e. the currently re-
quested page or product. A sample content-based approach
(type [+,—,—]) is to recommend content that is most simi-
lar to the current content, e.g. based on text-based similar-
ity metrics such as TF/IDF. Content-based recommenders
may also use generalized information on the content cate-
gory (e.g., to recommend products within the current content
category). Sample content-insensitive recommenders (type
[—,—,—]) are to recommend the most recent content, e.g.
added within the last week, or to give a fixed recommenda-
tion at each page, e.g. for a special offer.

At the second level, we consider whether or not a recom-
mender utilizes information on the current user. User-based
approaches could thus provide special recommendations for
specific user subsets, e.g. returning users or customers, or

Adaptive website recommendations with AWESOME

363

Recommender

Current
content
Current /\
user No Yes
User /\ /\A
history No Yes No Yes
Type [-~-1 -+ 41 [+
Sample sMostrecent *Most freq.
approaches <Fixed, e.g. viewed you Filtering
special offers (purchased) <Search +Usage
*Random *Highest engine profiles
increase rate recom-
mender

Fig. 4 Top-level classification of recommenders

based on personal interest profiles. Recommenders could
also recommend content for individuals, e.g. new additions
since a user’s last visit (“New for you’). We developed a
new recommender of type [—,+,—] for users coming from
a search engine such as Google. This search engine recom-
mender (SER) utilizes that the HTTP referrer information
typically contains the search terms (keywords) of the user
[12]. SER recommends the website content (different from
the current page that was reached from the search engine)
that best matches these keywords. The SER implementation
in AWESOME utilizes a predetermined search index of the
website to quickly provide the recommendations at runtime.

With the third classification criteria, we differentiate rec-
ommenders by their use of user history information. For
commercial sites, recommenders can consider information
on previous product purchases of customers. Another exam-
ple is the evaluation of the previous navigation patterns of
website users. Simple recommenders of type [—,—,+] re-
commend the most frequently purchased/viewed content
(top-seller) or the content with the highest recent increase
of interest.

While not made explicit in the classification, recom-
menders can utilize additional information than on current
content, current user or history, e.g. the current date or time.
Furthermore, additional classification criteria could be con-
sidered, such as metrics used for ranking recommendations
(e.g. similarity metrics, relative or absolute access/purchase
frequencies, recency, monetary metrics, etc.) or the type of
analysis algorithm (simple statistics, association rules, clus-
tering, etc.).

4.2 Additional approaches

Interesting recommenders often consider more than one of
the three main types of user input. We briefly describe some
examples to further illustrate the power and flexibility of our
classification and to introduce approaches that are consid-
ered in our evaluation.

[+,—,+]: Association rule based recommenders such
as “Users who bought this item also bought...,” made
famous by Amazon [3], consider the current content (item)

o, ,New for <Collaborative +Similarity

No Yes
No Yes No Yes
[+~ [+-+ [++-] [+++]

*Association +,New for you +Association

‘Randomin rules(e.g., incurent rulesin a
current most freq. category user group
category successor)

and purchase history but are independent of the current user
(i.e. every user sees the same recommendations for an item).
Association rules can also be applied on web usage history
to recommend content which is frequently viewed together
within a session.

[—,+.+]: Information on navigation/purchase history
can be used to determine usage profiles [13] or groups
of similar users, e.g. by collaborative filtering approaches.
Recommenders can assign the current user to a user group
(either based on previous sessions or the current session) and
recommend content most popular for this group.

In our evaluation, we test a personal interests recom-
mender, which is applicable to returning users. It determines
the most frequently accessed content categories per user as
an indication of her personal interests. When the user returns
to the website, the most frequently accessed content of the
respective categories is recommended.

[+,+.+]: A recommender of this type could use both
user groups (as discussed for [—,+,+]) and association rules
to recommend the current user those items that were fre-
quently accessed (purchased) by similar users in addition to
the current content.

5 Recommender evaluation

The AWESOME prototype presented in Sect. 2 allows
us to systematically evaluate recommenders for a given
website. In Sect. 5.2, we demonstrate this for a sample
non-commercial website. Before that, we introduce several
metrics for measuring recommendation quality which are
needed for our evaluation of recommenders and selection
strategies.

5.1 Evaluation metrics

To evaluate the quality of presented recommendations,
we utilize the Accepted, Viewed, and Purchased measures
recorded in the recommendation fact table (Sect. 3.3). The
first two are always applicable, while the last one only
applies for commercial websites. We further differentiate

364

A. Thor et al.

between metrics at two levels of granularity, namely with
respect to page views and with respect to user sessions.

Acceptance rate is a straightforward, domain-
independent metric for recommendation quality. It indicates
the share of page views for which at least one presented
recommendation was accepted, i.e. clicked. The definition
thus is

AcceptanceRate = |P4|/|P|

where P is the set of all page views containing a recommen-
dation and P4 the subset of page views with an accepted
recommendation.

Analogously, we define a session-oriented quality metric

SessionAcceptanceRate = |S4l/|S|

where S is the set of all user sessions and S 4 the set of ses-
sions for which at least one of the presented recommenda-
tions was accepted.

Recommendations can also be considered of good qual-
ity if the user does not directly click them but reaches the
associated content later in the session (hence, the recom-
mendation was a correct prediction of user interests). Let Py
be the set of all page views for which any of the presented
recommendations was reached later in the user session. We
define

ViewRate = | Py |/|P|

The corresponding metric at the session level is

SessionViewRate = |Sy |/|S]|

where Sy is the set of all user sessions with at least one page
view in Py . Obviously, every accepted recommendation is
also a viewed recommendation, i.e. P4 € Py < P and
Sa4 € Sy C S, so that view rates are always larger than or
equal to the acceptance rates.

In commercial sites, product purchases are of primary in-
terest. Note that purchase metrics should be session oriented
because the number of page views needed to finally purchase
a product is of minor interest. A useful metric for recom-
mendation quality is the share of sessions S4p containing a
purchase that followed an accepted recommendation of the
product. Hence, we define the following metric:

RecommendedPurchaseRate = |Sap|/|S|

Obviously, it holds Sq4p € S4 C S.

5.2 Sample evaluation

We implemented and tested the AWESOME approach for
recommender evaluation for a sample website, namely the
website of our database group (http://dbs.uni-leipzig.de). We
use two content hierarchies and Fig. 5 shows a fragment
of one of them together with some numbers on the relative
size and access frequencies. The website contains more than

http://dbs.uni-leipzig.de
(3100 available pages/1800 page views daily)

A/Y\b

Study Research Navigation
(89%/77%) (6%/11%) (0.8%/10%)
Course Exercises... Projects Publi-... Index Menu ...
Material cations

Fig. 5 Example of content hierarchy

Eua!:zl- ’ II a

Data Ma
*¥Mach-1
Spacification
#Mach-1 Queries
XMach-1 Re..,

Metadaks
Management

Qur work on
metadata
management
focuzes on the
following areas:
Schema

Matching: finding
semantic corresp,..

Fig. 6 Recommendation screenshot

3,100 pages and receives about 1,800 human page views
per day (excluding accesses from members of our database
group and from crawlers). As indicated in Fig. 5, about 89%
of the content is educational study material, which receives
about 77% of the page views.

We changed the existing website to show two rec-
ommendations on each page so that approximately 3,600
recommendations are presented every day. For each page
view AWESOME dynamically selects one recommender
and presents its two top recommendations (see example in
Fig. 6) for the respective context as described in Sect. 2. We
implemented and included more than 100 recommenders in
our recommender library. Many of them are variations of
other approaches, e.g. considering different user categories
or utilizing history data for different periods of time. Here
we present results for the six representative recommenders
of different types listed in Table 4, which were already in-
troduced in Sect. 4. The presented results refer to the period
from December 1, 2003 until April 30, 2004.

Adaptive website recommendations with AWESOME

365

Table 4 Acceptance rate vs. user type

Recommender

User type

Type Name

New users (%)

Returning users (%)

> (%)

Most recent
Most frequent
SER

Personal interests -
Similarity 1.86
Association rules 1.61

3 1.85

[———]
[——]
[—+.—]
[—+,+]
[+.—.—1]
[+,—.+]

1.05
2.83

0.72)

(0.93)
1.09
277
1.43
1.73
1.59
1.74

The AWESOME warehouse infrastructure allows us to
aggregate and evaluate recommendation quality metrics for
a huge variety of constellations (combination of dimension
attributes), in particular for different recommenders. For our
evaluation we primarily use (page view) acceptance rates as
the most precise metric.®> The average acceptance rate for all
considered recommenders was 1.44%; the average view rate
was 15.89%. For sessions containing more than one page
view the average session acceptance rate was 9.03%, and the
session view rate was 25.24%. These rather low acceptance
rates are influenced by the fact that every single web page
contains a full navigation menu with 78 links (partly nested
in sub-menus) and that we consciously do not highlight rec-
ommendations using big fonts or the like. Note however, that
reported “click-tru” metrics are in a comparable range than
our acceptance rates [14]. Furthermore, the absolute values
are less relevant for our evaluation than the relative differ-
ences between recommenders.

Table 4 shows the observed acceptance rates for the six
recommenders differentiating between new and returning
users. Figure 7 compares the recommenders w.r.t. the current
page type. Please note that some recommenders are not al-
ways applicable. For instance, the personal interests recom-
mender is only applicable for returning users (about 15% for
our website). Similarly, SER can only be applied for users
coming from a search engine, 95% of which turned out to be
new users of the website. We only show results for recom-
menders with a minimum support of 5% i.e. they were ap-
plied for at least 5% of all page views of the respective page
type. In Table 4 the results for the most recent recommender
are shown in parentheses because the minimal support could
not be achieved due to relatively few content additions dur-
ing the considered time period.

As expected, there are significant differences between
recommenders. As Table 4 shows, for our website the search
engine recommender (SER) achieved the best average ac-
ceptance rates (2.77%), followed by the similarity and as-
sociation rules recommenders. On the other hand, simple
approaches such as recommending the most frequently ac-
cessed or most recent content achieved only poor average re-

3 The recommendations presented during a session typically come
from different recommenders making the session-oriented quality met-
rics unsuitable for evaluating recommenders. Session acceptance rates
will be used in Sect. 7. The RecommendedPurchaseRate does not apply
for non-commercial sites.

@ Most frequent

m SER

O Personal Interests
O Sunilarity

B Association Rules

35%
3.0%
2.5% "

2.0% —
1.5%
1.0%
0.5%
0.0%

Navigation Study Others

Fig. 7 Acceptance rate vs. page type

sults. Table 4 shows that new users are more likely to accept
recommendations than returning users. An obvious explana-
tion is that returning users (e.g., students for our website)
often know where to find relevant information on the web-
site. We also observed that the first page view of a session
has a much higher acceptance rate (5.77%) than later page
views in a session (1.35%). In the latter value, the last page
view of a session is not considered, because its acceptance
rate obviously equals 0.*

Figure 7 illustrates that the relative quality of recom-
menders differs for different contexts. While the SER rec-
ommender achieved the best average results for study pages,
the association rules and personal interests recommenders
received the best user feedback on navigation pages. For
study pages and non-search engine users (when SER is
not applicable), either the similarity or association rules
promise the best recommendation quality.

Although we proposed a general top-level classification
of recommenders, we can consider additional (recommender
type specific) attributes to characterize recommenders. Such
attributes are helpful for recommender fine-tuning, i.e. man-
ual optimization of single recommenders regarding their

4 Layout aspects and other factors also influence acceptance rates.
For instance, from the two recommendations shown per page the ac-
ceptance rate of the first one was about 50% higher compared to the
second recommendation.

366

A. Thor et al.

Direct Succ- normal

Successor essor

1 day 7 days

Fig. 8 Page view acceptance rate for different types of most frequent
and association rule recommenders.

functionality. Figure 8 illustrates fine-tuning experiments for
the most frequent and association rules recommenders. For
the most frequent recommender we varied the time window
of the considered user history from 24 h to 7 days. The re-
sults obtained indicate that for our website a user history of
the last 7 days is to be preferred. For the association rule rec-
ommender we considered the influence of the relative page
view position. For a given page (direct) successor only takes
into account the (directly) following page views, whereas
normal utilizes all page views inside the same session. The
results shown in Fig. 8 indicate that the differences between
the approaches are small for our website and that it suffices
to only consider the direct successors by the association rule
recommender.

While these observations are site specific, they illustrate
that the best recommender (and the best recommendation
respectively) depends on context attributes such as the cur-
rent content or current user. A careful OLAP analysis may
help to determine manually which recommender should be
selected in which situation. However, for larger and highly
dynamic websites this is difficult and labor intensive, so that
recommender and recommendation selection should be au-
tomatically optimized.

6 Adaptive website recommendations

AWESOME supports a dynamic selection of recommen-
dations for every website access. As discussed in Sect. 2,
this selection is either a two-step or one-step process con-
trolled by recommender or recommendation rules, respec-
tively. Such rules may either be manually defined or au-
tomatically generated. We first present the structure and
use of these two types of selection rules. In Sect. 6.2, we
propose two approaches to automatically generate recom-
mender rules that utilize recommendation feedback to adapt
to changing conditions. In Sect. 6.3, we present an approach
to automatically generate and adapt recommendation rules.

6.1 Rule-based selection of recommendations

Determination of adaptive website recommendations entails
the dynamic selection of the most promising recommenda-
tions. Since AWESOME supports two ways of recommen-
dation selection, it utilizes two types of selection rules of the
following structure:

1. Recommender rule:
Context Pattern — recommender [weight]
2. Recommendation rule:
ContextPattern — recommendation [weight]

Here context pattern is a sequence of values from dif-
ferent context attributes which are represented as dimension
attributes in our warehouse. Typically, only a subset of at-
tributes is specified, implying that there is no value restric-
tion for the unspecified attributes. The examples in Fig. 9
illustrate this for recommender rules.

On the right-hand side of recommender rules, recom-
mender uniquely identifies an algorithm of the recommender
library. Conversely, recommendation rules directly point to
single recommendations of the set of pre-computed recom-
mendations. Weight is a real number specifying the relative
importance of the rule.

In AWESOME, we maintain all selection rules in a
Recommender-Rules and Recommendation-Rules table re-
spectively. In fact, for the one-step selection, the selec-
tion rules and pre-computed recommendations fall together.
Hence, the recommendation-rule table corresponds to the
set of pre-computed recommendations extended with the
weight attribute which may be dynamically adapted. To si-
multaneously allow one-step and two-step recommendation
selection, we keep the recommendation-rule table separate
from the pre-computed recommender-specific recommenda-
tions.

Selection rules allow a straightforward and efficient im-
plementation of the selection process. It entails a match step
to find all rules with a context pattern matching the current
context. The rules with the highest weights then indicate the
recommenders/recommendations to be applied. The num-
ber of recommenders/recommendations to choose is typi-
cally fixed, say k, i.e., we choose the & rules with the highest
weight. Note, that k is usually greater for recommendation
rules than for recommender rules, since each recommender
can provide multiple recommendations per context.

The SQL query of Fig. 10 illustrates how the sketched
selection process can be done for the case of recommender
rules. Since there may be several matching rules per rec-
ommender, the ranking could also be based on the average
instead of the maximal weight per recommender.

{ Referrer="search engine’ }

{ Usertype="new user’ AND ContentCategory I="Navigation’} 2
-

{ Clienttype="university’ AND Usertype="returning user’ }

Most frequent’ fo.67
SER’ [0.3]
> ‘Personal interest” [0.4]

Fig. 9 Examples of recommender rules

Adaptive website recommendations with AWESOME

367

SELECT TOP k Recommender, MAX (Weight)

FROM RecommenderRules

WHERE ((RuleContextAttribute] = CurrentContextAttributel)
OR (RuleContextAttribute ! IS NULL))
((RudeContextAttribute2 = CurrentContextAttribute2)
OR (RuleContextAttribute2 IS NULL))

AND

GROQUP BY Recommender
ORDER BY MAX{Weight) DESC

Fig. 10 Simplified SQL query for recommender selection strategy ex-
ecution

Example 1 Consider a new user who reaches the website
from a search engine. If her current page belongs to the nav-
igation category, only the first two rules in Fig. 9 match. For
k = 1, we select the recommender with the highest weight —
SER.

The rule-based selection is highly flexible. Selection
rules allow the dynamic consideration of different parts of
the current context, and the weights can be used to indicate
different degrees of certainty. Rules can easily be added,
deleted or modified independently from other rules. More-
over, rules can be specified manually, e.g. by website editors,
or be generated automatically. Another option is a hybrid
strategy with automatically generated rules that are subse-
quently modified or extended manually, e.g. to enforce spe-
cific considerations.

6.2 Generating recommender rules

We present two approaches to automatically generate rec-
ommender rules, which have been implemented in AWE-
SOME. Both approaches use the positive and negative feed-
back on previously presented recommendations. The first
approach uses the aggregation and query functionality of the
data warehouse to determine selection rules. The second ap-
proach is more complex and uses a machine-learning algo-
rithm to learn the most promising recommender for different
context constellations.

6.2.1 Query-based top recommender

This approach takes advantage of the data warehouse query
functionality. It generates recommender rules as follows:

1. Find all relevant context patterns in the recommenda-
tion fact table, i.e. context patterns exceeding a minimal
support.

2. For every such context pattern P do
(a) find recommender R with highest acceptance rate A,
(b) add recommender rule P — R [A].

3. Delete inapplicable rules.

The first step ensures that only context constellations
with a minimal number of occurrences are considered. This
is important to avoid generalization of very rare and special
situations (overfitting problem). Note that step 1 checks all

possible context patterns, i.e. any of the content attributes
may be unspecified, which is efficiently supported by the
CUBE operator (SQL extension: GROUP BY CUBE) [15].
AWESOME is based on a commercial RDBMS providing
this operator. For every such context pattern, we run a query
to determine the recommender with the highest acceptance
rate and produce a corresponding selection rule.

Finally, we perform a rule pruning taking into account
that we only want to determine the top recommender per
context. We observe that for a rule A with a more general
context pattern and a higher weight than rule B, the latter
will never be applied (every context that matches rule B
also matches rule A, but A will be selected due to its higher
weight). Hence, we eliminate all such inapplicable rules in
step 3 to limit the total number of rules.

6.2.2 Machine-learning approach

Recommender selection can be interpreted as a classifier
selecting one recommender from a predefined set of rec-
ommenders. Hence, machine-learning (classification) algo-
rithms can be applied to generate recommender rules. Our
approach utilizes a well-known classification algorithm con-
structing a decision tree based on training instances (Weka
J48 algorithm [16]). To apply this approach, we thus have to
transform recommendation feedback into training instances.
An important requirement is that the generation of training
data must be completely automatic so that the periodic re-
calculation of recommender rules to incorporate new rec-
ommendation feedback is not delayed by the need of human
intervention.

The stored recommendation feedback indicates for each
presented recommendation, its associated context attributes,
the used recommender, and whether or not the recommen-
dation was accepted. A naive approach to generate train-
ing instances would simply select a random sample from
the recommendation fact table (Fig. 3), e.g. in the format
(context, recommender, accepted). However, classifiers us-
ing such training instances would rarely predict a success-
ful recommendation, since the vast majority of the instances
may represent negative feedback (>98% for the sample
website). Ignoring negative feedback is also no solution,
since the number of accepted recommendations is heavily
influenced by the different applicability of recommenders
and not only by their recommendation quality. Therefore,
we propose a more sophisticated approach that determines
the number of training instances according to the acceptance
rates:

1. Find all relevant feedback combinations (context, recom-
mender).
2. For every combination ¢ do the following:
(a) Determine acceptance rate for c. Scale and round it
to compute integer weight 7.
(b) Add instance (context, recommender) n. times to
training data.
3. Apply decision tree algorithm.
4. Rewrite decision tree into recommender rules.

368

A. Thor et al.

In step 1, we do not evaluate context patterns (as in
the previous approach), which may leave some context at-
tributes unspecified. We only consider fully specified con-
text attributes and select those combinations exceeding a
minimal number of recommendation presentations. For each
such relevant combination ¢ (context, recommender), we use
its acceptance rate to determine the number of training in-
stances n.. To determine n., we linearly scale the respec-
tive acceptance rate from the O to 1 range by multiplying it
with a constant f and rounding to an integer value. For ex-
ample, assume 50 page views for the combination of con-
text (“returning user,” “search engine,” “navigation,” etc.)
and recommender “most frequent.” If there are seven ac-
cepted recommendations for this combination (i.e. accep-
tance rate 0.14) and f = 100, we add n, = 14 identical
instances of the combination to the training data. This proce-
dure ensures that recommenders with a high acceptance rate
produce more training instances than less effective recom-
menders and therefore have a higher chance to be predicted.

The resulting set of training instances is the input for the
classification algorithm producing a decision tree. With the
help of cross-validation, all training instances are simulta-
neously used as test instances. The final decision tree (see
Fig. 11 for an example) can easily be rewritten into recom-
mender rules. Every path from the root to a leaf defines a
context pattern where all unspecified context attributes are
set to NULL. Each leaf specifies a recommender and the
rule weight is set to the relative fraction of correctly classi-
fied instances provided by the classification algorithm.

ERINE3

6.3 Generating and adapting the recommendation rules

AWESOME also supports a dynamic one-step selection of
recommendations, independent of the recommenders. This
process is controlled by recommendation rules, which may
be continuously adapted. We introduced the underlying ap-
proach already in [17, 18]. We integrated the one-step ap-
proach with the two-step approach in one system to allow
their comparative evaluation.

Similarity Similarity User type

Fig. 11 Fraction of decision tree constructed by the machine-learning
approach to generate recommender rules

The recommendation rules are created by the same set
of recommenders from the recommender library and are
stored in a recommendation rule table. When several rec-
ommenders make the same recommendation for the same
context, the recommendation rule is stored in the recom-
mendation rule table only once. In contrast to the recom-
mender rules, we support both an offline and online adap-
tation of recommendation rules. During the periodic offline
computation of recommendations we do not completely re-
generate all recommendation rules but only add new recom-
mendations to preserve the dynamically accumulated rec-
ommendation feedback. We also delete recommendations
for deleted content and with low weights. The online adap-
tation of the recommendation rules dynamically adjusts the
rule weights according to the recommendation feedback.
The adaptation technique is based on reinforcement learn-
ing and is described later.

We have explored two possibilities of setting the ini-
tial weights of newly generated recommendation rules. In
the first approach, we simply set all initial weights to
zero (ZeroStart). The second approach uses normalized
recommender-specific weights or relative priorities for the
respective contexts. When several recommenders generate
the same recommendation we use the maximum of their
weights. The initial weights are expected to be relevant pri-
marily for new recommendations, since the weights for pre-
sented recommendations are continuously adapted.

To adapt the shown recommendations to the users’ in-
terests, we adjust the weights of the recommendation rules
in such a way that the more useful recommendations are
shown more often than less useful ones. This is achieved by
a machine-learning approach based on reinforcement learn-
ing [19]. The adaptation process evaluates whether or not
presented recommendations have been accepted and adjusts
the weights of the participating recommendation rules ac-
cording to the obtained feedback. When some presented rec-
ommendation r is clicked, r receives positive feedback and
all other recommendations shown together with r receive
negative feedback. When no recommendation is clicked, all
presented recommendations receive negative feedback. To
prevent the weights from sliding into extreme values, the
feedback values should be chosen in such a way that an ap-
proximate equilibrium is maintained throughout the process:

Z (positive feedback) ~ — Z (negative feedback)

For this purpose, we set for a presented recommendation r

Feedback(r) = 1 if r was clicked
Feedback(r) = —p if r was not clicked

where p is the overall acceptance rate of the website, i.e. the
probability that a recommendation is clicked (default p =
0,01).

After each presentation, for every presented recommen-
dation r we adapt its weight W(r) by the following formula:

W)= (1 —-1/T) x W(r) + Feedback(r)/T.

Adaptive website recommendations with AWESOME

369

Table 5 Tested selection strategies

Name Description

Top-Rec

Decision tree
Reinforcement learning
Reinforcement learning zero
Manual

Automatic strategy of Sect. 6.2.1 (query based)

Automatic strategy of Sect. 6.2.2 (machine learning)

Automatic strategy of Sect. 6.3 (reinforcement learning)

Automatic strategy of Sect. 6.3 (reinforcement learning, with initial weights set to zero)

For search engine users, the search engine recommender is applied. Otherwise the content

similarity recommender (for course material pages) or association rule recommender (for other

pages) is selected
Random

Random selection of a recommender

Table 6 Comparison of selection strategies

Strategy No. of rules Acceptance rate (%) Session acceptance rate (%)
Top-Rec ~2,000 1.35 10.27
Decision tree ~250 1.74 11.13
Reinforcement learning ~60,000 1.92 11.22
Reinforcement learning zero ~60,000 1.87 10.35
Manual 5 197 12.54
Random 137 0.96 6.98

The parameter T is an aging parameter reducing the
weight of the old value of the weight compared to the more
recent feedback.

7 Evaluation of selection strategies

To evaluate the effectiveness of the presented selection
strategies, we tested them with AWESOME on the sample
website introduced in Sect. 5.2. For comparison purposes,
we also evaluated one set of manually specified rules and
a random recommender selection giving a total of six ap-
proaches (see Table 5). For every user session AWESOME
randomly selected one of the strategies; the chosen strategy
is additionally recorded in the recommendation log file for
evaluation purposes. We applied the recommender selection
strategies from January 1 until June 30, 2004 and the recom-
mendation selection strategies from April 1 until September
30, 2004.

Table 6 shows the average number of rules per se-
lection strategy. For the automatic recommender selection
approaches the number of rules is moderate (250-2000),
whereas both recommendation selection approaches gener-
ate significantly more rules. Nevertheless, all tested selec-
tion strategies still lead to acceptable execution times (10—
110 ms).

Table 6 also shows the average (page view) acceptance
rates and session acceptance rates for the six selection strate-
gies. All automatic feedback-based strategies showed sig-
nificantly better average quality than random. The deci-
sion tree strategy and both reinforcement learning strate-
gies nearly obtain the acceptance rates of the Manual strat-
egy. Note that the very effective strategy Manual utilizes
background knowledge about the website structure and typ-
ical user groups (students, researchers) as well as evaluation
results obtained after an extensive manual OLAP analysis

(partially presented in Sect. 5.2), such as the effectiveness of
the search engine recommender.

The fact that the completely automatic machine-learning
algorithms achieves comparable effectiveness is thus a very
positive result. It indicates the feasibility of the automatic
closed-loop optimization for generating recommendations
and the high value of using feedback to significantly improve
recommendation quality without manual effort. In our ex-
periments, the one-step approaches based on reinforcement
learning slightly outperformed the two-step recommender-
based strategies. Even the simple approach starting with
weights 0 achieved surprisingly good results, indicating that
the initial weights are not crucial for the success of the adap-
tation algorithm. The effectiveness of the one-step approach
is mainly due to the online consideration of recommendation
feedback providing a high responsiveness to current user
behavior.

The comparison of the two automatic recommender se-
lection strategies shows that the machine-learning approach
performs much better than the query-based top recom-
mender scheme. The decision tree approach uses signifi-
cantly fewer rules and was able to order the context attributes
according to their relevance. The most significant attributes
appear in the upper part of the decision tree and therefore
have a big influence on the selection process. On the other
hand, Top-Rec handles all context attributes equally and uses
many more rules. So recommender selection was frequently
based on less relevant attributes, resulting in poorer accep-
tance rates.

The warehouse infrastructure of AWESOME allows us
to analyze the recommendation quality of selection strate-
gies for many conditions, similar to the evaluation of indi-
vidual recommenders (Sect. 5.2). Figure 12 shows the ses-
sion acceptance rates of three selection strategies w.r.t. user
type, referrer, and entry page type, i.e. the page type of the
first session page view. We observe that the Manual strat-
egy is more effective for search engine users by always

370

A. Thor et al.

O Manual
B Decision Tree
16 % [0 Reinf. Learn. |
| T
12 % 1
8 9%
4%
0 9% - -
X G ¥ 2 & 4 & &
F & TS g
C‘a\? oak' \\6 4\%
¥ D CD@&‘-' &

Fig. 12 Session acceptance rate w.r.t. user type, referrer, and session
entry page type.

applying the SER recommender to them. This helped to also
get slightly better results for new users and sessions start-
ing with an access to study material. On the other hand,
both automatic approaches were more effective for users us-
ing a bookmark to reach the website. These results indicate
that the automatically generated selection rules help gener-
ate good recommendations in many cases without the need
of extensive manual evaluations, e.g. using OLAP tools.

The two automatic approaches show significant differ-
ences for sessions starting with a study page and a naviga-
tion page. As indicated in Fig. 5, our prototype website con-
tains a large number of study pages, whereas the number of
navigation pages is rather small. However, navigation pages
receive almost 15 times more feedback per page than study
pages. Therefore, the recommendation-based selection ap-
proach can easily identify the best recommendations for nav-
igation pages, but not for study pages. On the other hand, the
feedback aggregation of the recommender-based approach
can better handle this lack of feedback, but loses information
to generate better recommendations for navigation pages.

The evaluation also identifies the capabilities of the one-
step and two-step approach. The usage of recommender
rules makes it possible to completely define a selection strat-
egy by manually specified rules. Due to the huge number
of rules this is not feasible for the one-step approach. Nev-
ertheless, recommendation rules can be added manually to
directly influence the recommendations for single products
or pages. This can be done to promote certain products or
to incorporate reasonable recommendations that are not de-
tected by any of the available recommenders. Finally, note
that all presented results are site specific. For example, the
frequency of content updates on the website may influence
acceptance rates to an unequal extent for the one-step and
two-step approach.

8 Related work

An overview of previous recommendation systems and the
applied techniques can be found in [1, 2, 20]. Reference [3]

describes the Amazon recommendation algorithms, which
are primarily content (item) based and also heavily use pre-
computation to achieve scalability to many users. Reference
[9] surveys and classifies so-called hybrid recommendation
systems which combine several recommenders. To improve
hybrid recommendation systems, reference [21] proposes to
manually assign weights to recommenders to influence rec-
ommendations. Reference [22] presents a hybrid recommen-
dation system switching between different recommenders
based on the current page’s position within a website. The
Yoda system [23] uses information on the current session of
a user to dynamically select recommendations from several
predefined recommendation lists. In contrast to AWESOME,
these previous hybrid recommendation systems do not eval-
uate or use recommendation feedback.

Reference [24] sketches a simple hybrid recommenda-
tion system using recommendation feedback to a limited ex-
tent. They measure which recommendations produced by
three different recommenders are clicked to determine a
weight per recommender (with a metric corresponding to
our view rate). These weights are used to combine and
rank recommendations from the individual recommenders.
In contrast to AWESOME negative recommendation
feedback and the current context are not considered for
recommender evaluation. Moreover, there is no automatic
closed-loop adaptation but the recommender weights are de-
termined by an offline evaluation.

The evaluation of recommendation systems and quanti-
tative comparison of recommenders has received little atten-
tion so far. Reference [25] monitored users that were told to
solve certain tasks on a website, e.g. to find specific infor-
mation. By splitting users in two groups (with recommen-
dations vs. without) the influence of the recommendation
system is measured. Other studies [26, 27] asked users to ex-
plicitly rate the quality of recommendations. This approach
obviously is labor intensive and cannot be applied to com-
pare many different recommenders.

Refs [26, 28] discuss several metrics for recommenda-
tion quality, in particular the use of the information retrieval
metrics precision and recall. The studies determine recom-
mendations based on an offline evaluation of web log or
purchase data; the precision metric, for instance, indicates
how many of the recommendations were reached within the
same session (thus corresponding to our view rate). In con-
trast to our evaluation, these studies are not based on really
presented recommendations and measured recommendation
feedback so that the predicted recommendation quality re-
mains unverified.

In [29] a methodology is presented for evaluating two
competing recommenders. It underlines the importance of
such an online evaluation and discusses different evaluation
aspects. Cosley et al. [14] developed the REFEREE frame-
work to compare different recommenders for the CiteSeer
website. Click metrics (e.g., how often a user followed a link
or downloaded a paper), which are similar to the acceptance
rates used in our study, are used to measure recommendation
quality.

Adaptive website recommendations with AWESOME

371

9 Summary

We presented AWESOME, a new data warehouse-based
website evaluation and recommendation system. It allows
the coordinated use of a large number of recommenders
to automatically generate website recommendations. Rec-
ommendations are dynamically determined by a flexible
rule-based approach selecting the most promising recom-
mender/recommendations for the respective context. AWE-
SOME supports a completely automatic generation and op-
timization of selection rules to minimize website administra-
tion overhead and quickly adapt to changing situations. This
optimization is based on a continuous measurement of user
feedback on presented recommendations. To our knowledge,
AWESOME is the first system enabling such a completely
automatic closed-loop website optimization. The use of data
warehouse technology and pre-computation of recommen-
dations support scalability, high data quality, and fast web
access times.

We presented a simple but general recommender classi-
fication. It distinguishes eight types of recommenders based
on whether or not they consider input information on the
current content, current user and users history. To evaluate
the quality of recommendations and recommenders, we pro-
posed the use of several acceptance rate metrics based on
measured recommendation feedback. We used these metrics
for a detailed comparative evaluation of different recom-
menders and different recommendation selection strategies
for a sample website.

We have described and evaluated several rule-based
strategies for dynamically selecting the most promising re-
commender or recommendations for a given context. We dif-
ferentiated between one-step and two-step approaches de-
pending on whether recommendations are directly selected
or whether the most promising recommenders are deter-
mined first. Our results so far indicate that in both cases
the use of machine learning is very effective for consider-
ing recommendation feedback. For a direct (one-step) selec-
tion of recommendations the described use of reinforcement
learning effectively allows an online adaptation of individual
recommendations regardless of the used recommenders. For
automatic recommender selection, we presented a powerful
decision tree approach. The proposed policy is able to auto-
matically determine suitable training data so that its periodic
re-execution to consider new feedback does not require hu-
man intervention.

We have begun to adopt AWESOME to additional web-
sites, in particular e-shops, to further verify and fine-tune the
presented approach. We also plan to explore domain-specific
recommendation opportunities such as selecting the best re-
commender for product bundling (cross-selling).

Acknowledgements We thank Robert Lokaiczyk for his help with the
implementation. The first two authors are funded by the German Re-
search Foundation within the Graduiertenkolleg “Knowledge Repre-
sentation”.

References

1. Jameson, A., Konstan, J., Riedl, J.: Al techniques for personal-
ized recommendation. In: Tutorial at 18th National Conference on
Artificial Intelligence (AAAI) (2002)

2. Koutri, M., Daskalaki, S., Avouris, N.: Adaptive interaction with
web sites: an overview of methods and techniques. In: Proceed-
ings of the 4th International Workshop on Computer Science and
Information Technologies (CSIT) (2002)

3. Linden, G., Smith, B., York, J.: Amazon.com Recommendations:
item-to-item collaborative filtering. IEEE Distribut. Syst. Online
4(1) (2003)

4. Perkowitz, M., Etzioni, O.: Adaptive web sites: an Al challenge.
In: Proceedings of the 15th International Joint Conference on Ar-
tificial Intelligence. Morgan Kaufmann (1997)

5. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for min-
ing world wide web browsing patterns. Knowledge Inform. Syst.
1(1) (1999)

6. Tan, P,, Kumar, V.: Modeling of web robot navigational patterns.
In: Proceedings of the ACM WebKDD Workshop (2000)

7. Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A
framework for the evaluation of session reconstruction heuristics
in web usage analysis. Special issue on mining web-based data for
e-business applications. INFORMS J. Comput. 15(2) (2003)

8. Kimball, R., Merz, R.: The Data Webhouse Toolkit — Building
Web-Enabled Data Warehouse. Wiley Computer Publishing, New
York (2000)

9. Burke, R.: Hybrid recommender systems: survey and experiments.
User Model. User-Adapt. Interact. 12(4) (2002)

10. Schafer, J.B., Konstan, J.A., Riedl, J.: Electronic commerce rec-
ommender applications. J. Data Min. Knowledge Discov. 5(1/2)
(2001)

11. Terveen, L., Hill, W.: Human—computer collaboration in recom-
mender systems. In: Carroll, J. (ed.) Human Computer Interaction
in the New Millenium. Addison-Wesley, New York (2001)

12. Kushmerick, N., McKee, J., Toolan, F.: Toward zero-input person-
alization: referrer-based page recommendation. In: Proceedings of
the International Conference on Adaptive Hypermedia and Adap-
tive Web-based Systems (2000)

13. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and
evaluation of aggregate usage profiles for web personalization.
Data Min. Knowledge Discov. 6(1) (2002)

14. Cosley, D., Lawrence, S., Pennock, D.M.: REFEREE: an open
framework for practical testing of recommender systems using
ResearchIndex. In: Proceedings of the 28th VLDB Conference
(2002)

15. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a re-
lational aggregation operator generalizing groupby, cross-tab, and
sub-total. In: Proceedings of the 12th EEE International Confer-
ence on Data Engineering (ICDE) (1995)

16. Witten, I.H., Frank, E.: Data Mining. Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kauf-
mann (2000)

17. Golovin, N., Rahm, E.: Reinforcement learning architecture for
web recommendations. In: Proceedings of the International Con-
ference on Information Technology (ITCC), Vol. 1, Las Vegas
(2004)

18. Golovin, N., Rahm, E.: Automatic optimization of web recom-
mendations using feedback and ontology graphs. In: Proceed-
ings of the International Conference on Web Engineering (ICWE),
Sydney, LNCS 3579, Springer Verlag (2005), submitted for pub-
lication

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA (1998)

20. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-T.: Web usage
mining: discovery and applications of usage patterns from web
Data. SIGKDD Explor. 1(2) (2000)

372

A. Thor et al.

21.

22.

23.

24.

25.

Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation sys-
tems: user-controlled integration of diverse recommendations. In:
Proceedings of the 11th International Conference on Information
and Knowledge Management (CIKM) (2002)

Mobasher, B., Nakagawa, M.: A hybrid web personalization
model based on site connectivity. In: Proceedings of the ACM
‘WebKDD Workshop (2003)

Shahabi, C., Chen, Y.: An adaptive recommendation system with-
out explicit acquisition of user relevance feedback. Distribut. Par-
allel Databases 14(2) (2003)

Lim, M., Kim, J.: An adaptive recommendation system with
a coordinator agent. In: Proceedings of the First Asia-Pacific
Conference on Web Intelligence: Research and Development
(2001)

Kim, K., Carroll, J.M., Rosson, M.B.: An empirical study of web
personalization assistants: supporting end-users in web informa-
tion systems. In: Proceedings of the IEEE 2002 Symposium on
Human Centric Computing Languages and Environments (2002)

26.

27.

28.

29.

30.

Geyer-Schulz, A., Hahsler, M.: Evaluation of recommender algo-
rithms for an internet information broker based on simple associ-
ation rules and on the repeat-buying theory. In: Proceedings of the
ACM WebKDD Workshop (2002)

Heer, J., Chi, E.H.: Separating the swarm: categorization methods
for user sessions on the web. In: Proceedings of the Conference on
Human Factors in Computing Systems (2002)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recom-
mendation algorithms for e-commerce. In: Proceedings of ACM
E-Commerce (2000)

Hayes, C., Massa, P., Avesani, P., Cunningham, P.: An on-line
evaluation framework for recommender systems. In: Proceed-
ings of Workshop on Personalization and Recommendation in E-
Commerce (2002)

Shahabi, C., Banaei-Kashani, F., Faruque, J.: A reliable, efficient,
and scalable system for web usage data acquisition. In: Proceed-
ings of the ACM WebKDD Workshop (2001)

