
iFuice – Information Fusion
utilizing Instance Correspondences and Peer Mappings
Erhard Rahm, Andreas Thor, David Aumueller, Hong-Hai Do, Nick Golovin, Toralf Kirsten

University of Leipzig, Germany
{rahm, thor, aumueller, hong, golovin, tkirsten}@informatik.uni-leipzig.de

ABSTRACT
We present a new approach to information fusion of web data
sources. It is based on peer-to-peer mappings between sources and
utilizes correspondences between their instances. Such correspon-
dences are already available between many sources, e.g. in the
form of web links, and help combine the information about spe-
cific objects and support a high quality data fusion. Sources and
mappings relate to a domain model to support a semantically fo-
cused information fusion. The iFuice architecture incorporates a
mapping mediator offering both an interactive and a script-driven,
workflow-like access to the sources and their mappings. The
script programmer can use powerful generic operators to execute
and manipulate mappings and their results. The paper motivates
the new approach and outlines the architecture and its main com-
ponents, in particular the domain model, source and mapping
model, and the script operators and their usage.

Keywords: Data integration, Peer-to-peer system, mappings

1. INTRODUCTION
Most proposed data integration approaches rely on the notion of a
global schema to provide a unified and consistent view of the un-
derlying data sources [10]. This approach has been especially suc-
cessful for data warehouses, but is also used for virtual integration
of web data sources. Unfortunately, the manual effort to create
such a schema and to keep it up-to-date is substantial, despite re-
cent advances, e.g. in the area of semi-automatic schema matching
[14]. Likewise, the effort to integrate new sources is usually high
making it difficult to scale to many sources or to use such systems
for ad-hoc (explorative) integration. Notwithstanding the high ef-
fort associated with a global schema, it cannot guarantee good
data quality at the instance level. Integrating the real data, e.g.
during query processing over different web sources, may still re-
quire extensive data cleaning to achieve good results, e.g. to deal
with duplicate data [15].

The iFuice approach (information Fusion utilizing instance corre-
spondences and peer mappings) focuses on the instance data of
different sources and mappings between them. Many web sources
expose explicit, high quality instance-level correspondences to
other sources, e.g. in the form of web links. Such correspondences
represent one type of mapping iFuice uses to fuse information
from different sources. Sources and mappings are related to a do-
main model to support semantically meaningful information fu-
sion. The iFuice architecture incorporates a mapping mediator of-
fering both interactive and script-driven, workflow-like access to
the sources and their mappings. The script programmer can use
powerful generic operators to execute and manipulate mappings
and their results.

Bioinformatics is one area where this approach holds great prom-

ise. There are hundreds of web-accessible data sources on molecu-
lar-biological objects such as genes, proteins, metabolic pathways,
etc. which highly cross-reference each other [5]. Creating a global
schema for a sizable fraction of these sites is virtually impossible
due to the high diversity, complexity and fast evolution of the
data. The existing cross-references represent a low-level way to
obtain additional information from other sources for a specific ob-
ject, e.g. a gene. The additional information is typically of high
quality since links are mostly established and maintained by do-
main experts. However, the manual navigation is unsuitable for
evaluating large sets of objects, e.g. for gene expression analysis,
so that there is a strong need for a more powerful integration ap-
proach. Moreover, the semantics of the links is typically not made
explicit so that the user has to know exactly what kind of relation-
ship they represent. The bioinformatics area also has a strong de-
mand for experimental workflows to repetitively perform a series
of analysis steps interrelating and aggregating information from
different sources. The iFuice script facility aims at supporting
such requirements with little development effort on the user side.

Instance-level cross-references are available in many other do-
mains or can be generated with little effort, e.g. to interrelate bib-
liographic information, product descriptions and prices, etc. For
simplicity we use examples from bibliographic data sources
throughout this paper to illustrate the approach. Figure 1a shows
three sample data sources and associated mappings. A physical
data source (PDS), e.g. DBLP, may offer objects of different
types. We call the object types of one PDS the logical data
sources (LDS), e.g., Author, Publication and Conference as pro-
vided by DBLP. Object types combined across sources are repre-
sented in the abstract domain model (Figure 1b). Each mapping
between source instances has a mapping type which is also repre-
sented in the domain model. Mappings map instances of an input
object type to instances of an output object type, e.g. all mappings
of type AuthorPubs relate author instances to their associated pub-
lications.

An important mapping type is signified by the same-mappings in-
terrelating instances of the same object type across PDS, and pro-
vides a means to fuse the information for the respective instances.
Typically, same-mappings are based on unique object ids, e.g. ac-
cession numbers in molecular-biological data sources or stable
web URIs. Figure 1a indicates three such same-mappings, of
which some already exist (e.g. DBLP links its author pages to the
ACM author entries).

All mappings of the source-mapping model are executable, e.g.
implemented by a query or web service. iFuice allows for explor-
ative data fusion by browsing along these mappings, e.g. to derive
from a DBLP author all publications from the directly or transi-
tively connected LDS. The execution of several mappings and
manipulation of their results can be specified within scripts to al-
low repeated executions for different input objects or to use the
script as an implementation of a complex mapping. For example,
we may want to have a script determining for a given conference

Copyright is held by the authors/owners.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

X its most frequently referenced papers, e.g. to determine candi-
dates for a 10-year best paper award. An iFuice representation of
such a script is shown later. Informally, it locates conference X in
DBLP, executes the PubConf mapping to get all publications of
that conference, uses the same-mapping to Google Scholar to get
the corresponding publications together with an attribute indicat-
ing the number of citations, sorting the publications on the num-
ber of citations, and returning the top-most publications. The ex-
ample shows that mappings need to be executable on a set of in-
put objects and return a set of output objects. Mapping execution
can be restricted to specific sources or to all sources of a specific
type for which a corresponding mapping implementation exists.

The main contribution of the paper is a new generic way to dy-
namic information fusion based on instance correspondences and
executable mappings between sources. Source and mapping se-
mantics are reflected in a domain model which is at a higher ab-
straction (ontological) level than a global schema and easier to
construct. Mappings are executable on sets of objects and highly
composable thereby supporting powerful aggregation of informa-
tion over several sources. We propose different types of mappings
on web data sources, including basic and aggregated mappings,
same- and association mappings, and id- and query mappings.
Furthermore, we introduce a set of declarative operators to exe-
cute the different kinds of mappings, to perform data aggregation
(fusion), and to manipulate mapping results. Lastly, we show the
usage of the operators for script programming.

In the next section, we introduce the representation of sources,
mappings and the domain model, and how to add new sources and
mappings. Section 3 introduces the iFuice operators on mappings
and mapping results including operators for data fusion. We illus-
trate the use of operators by a script for the introductory example.
Section 4 briefly outlines the architecture of the mapping media-
tor. In Section 5, we discuss related work. Finally, we conclude
with a summary and outlook.

2. SOURCES AND MAPPINGS
In this section we describe the metadata used by the mapping me-
diator to provide uniform access to the sources and their mappings
both for interactive exploration and script execution. The media-
tor’s metadata is held in a repository and specified by a metadata
model as shown in Figure 2. It consists of two main parts, a
source-mapping model and a domain model. The source-mapping
model describes both the accessible data sources and their associ-
ated mappings. The domain model specifies object types and
mapping types. The sample models of Figure 1 conform to meta-
data model of Figure 2.

In the following, we describe the modeling and use of sources,
mappings and the domain model. Finally we discuss the steps for

adding a new source and mapping to the system. The description
introduces several kinds of mappings, for which specific operators
will be defined in Section 3.

2.1 Sources
We distinguish between a physical data source (PDS) and logical data
source (LDS). A PDS can be a database, website, private user files
or any other information base. A PDS can hold instances of dif-
ferent object types. We separate a PDS into LDS’s each contain-
ing instances of exactly one object type of the domain model. The
structure of a LDS is described by a set of attributes (Fig. 2). We
only mandate the specification of an identifying key attribute per
LDS to access its instances and to ensure that each instance is
provided with a unique object id. Website instances are typically
identified by URLs. Uniqueness for database instances can be es-
tablished by concatenating instance key values with the ids of the
corresponding PDS and LDS.

Requiring only an id attribute per LDS allows us to integrate a va-
riety of heterogeneous data sources including unstructured and
semi-structured data sources, e.g. websites. Furthermore, it makes
it easy to add new data sources, and helps to insulate the mediator
information against structural changes in the sources and thus to
support a high degree of data source autonomy.

Each LDS has to provide a source-specific mapping for id-based
instance access, i.e. to return for a given id the associated instance
including all attribute values. We call these mappings getInstance
mappings. The implementation of such mappings may be very
simple (e.g. database lookup), but may also extract specific attrib-
utes from a webpage. The actual attributes returned are thus de-
termined by the mapping implementation and depend on the cur-
rent source content. The mapping mediator supports such variably
structured result sets and their dynamic fusion with data from
other sources at runtime.

In addition to the id attribute, further attributes can be optionally
specified in the mapping mediator for enhanced functionality, e.g.
to offer query access on the attributes or to select sources based
on the availability of specific result attributes (e.g. number of cita-
tions for publications). Query access can optionally be provided
by LDS-specific mappings, which we call QueryInstances map-
pings. The LDS attributes on which queries are supported should
explicitly be registered in the mediator metadata.

Another optional specification is correspondences between attrib-
utes of two sources. Such correspondences are useful to enhance
the fusion of instance values (see Figure 3). For instance, specify-
ing that DBLP.Author.name corresponds to ACM.Author.author
can help avoid author names appearing twice in author instances
fused from DBLP and ACM. Attribute correspondences can also
be used to map queries specified on one source to equivalent que-
ries on other sources (query transformation).

2.2 Mappings
Mappings describe directed relationships between instances of
two object types. They are used to uniformly interrelate instances
within and between physical data sources irrespective of the un-
derlying data management systems. The semantics of the mapping
relationship is expressed by a mapping type of the domain model.

We distinguish between several kinds of mappings, including ba-
sic (simple) vs. aggregated mappings, same- vs. association map-
pings and id- vs. query mappings. Basic mappings interrelate in-
stances of one input and one output LDS and return a result set
from the output LDS. All mappings shown in Fig. 1a are such ba-
sic mappings. Note that the input and output LDS may be the

Author

Publication

Conference

AuthPub
PubAuth

PubConf

Con
fP

ub

DBLP

Author

Publication

Conference

ACM

Author

Publication

GoogleScholar

Publication

C
oA

uthor

same

LDSPDS

Legend same

 a) source mapping model b) domain model

Figure 1. Fusion scenario for a bibliographic domain
(same-mappings are denoted by dashed lines)

same, e.g. for mappings of type CoAuthor or the source-specific
getInstance and queryInstances mappings. Aggregated mappings
are the result of mediator operations or scripts, and interrelate ag-
gregated objects from several LDS of the same type. An example
is a mapping to combine authors with their publications from sev-
eral LDS (e.g., DBLP, ACM and Google Scholar).

Same-mappings represent semantic equality relationships between
physical data sources at the instance level, i.e. each correspon-
dence should refer to the same real-world object. They thus inter-
relate LDS of the same object type from different PDS (e.g.
DBLP.Author and ACM.Author). These correspondences at the
instance level are much more specific than attribute correspon-
dences and can guide a high quality data fusion. Note that the
composition of same-mappings results in new same-mappings
which can thus be used to interrelate data from many sources. As-
sociation mappings are non-same-mappings and mostly represent
domain-specific relationships between LDS of the same PDS (e.g.
AuthorPubs). By composing them with same-mappings they can
relate to and fuse with data of other PDS (see section 3).

Mappings can be further categorized on whether they are id-based
or query-based with respect to their input instances (id- vs. query
mapping). The output of basic mappings is always assumed to in-
clude the id of the returned instances. A mapping may in fact only
return ids, e.g. as input for subsequent id-mappings and to limit
the amount of data to transfer to the mediator and to process there.

Id-mappings interrelate ids (and thus instances) of two LDS or
PDS and can easily be composed. The result of id-mappings can
be represented by a set of instance correspondences (id1, id2).
Query mappings are helpful to find relevant instances and their
ids in the first place. One example are source-specific QueryIn-
stance mappings. Their results include instance ids and can thus
be combined with id-mappings to obtain related query results
from different sources. The attribute values of a query result may
also be used to query another source.

The mapping specification in Figure 2 only considers basic map-
pings for simplicity. It derives the distinction between same- and
association mapping from the used mapping type of the domain
model. The attribute RequiresInputID indicates whether or not the
mapping is id-based.

The implementation of mappings can use other mappings, utilize
database queries, etc. To hide implementation differences, iFuice
mappings are uniformly encapsulated as web service operations
and use XML for data exchange. Ideally, id-mappings, including

same-mappings, can be based on existing instance correspon-
dences such as web links. Alternatively, they may be implemented
by a query mapping, e.g. to use instance values from one source
(e.g. obtained from a getInstance mapping) to search for corre-
sponding instances of a second source (input for query mapping).
For instance, the same-mapping between DBLP publications and
Google Scholar can be implemented by using the name and author
of a DBLP publication as a keyword query to Google Scholar.

For improved performance, the results of id-mappings, i.e. the set
of instance correspondences, may be stored or cached in binary
(id/id) mapping tables [8]. Composition between such mappings
then becomes a join operation. Materialized id-mappings can also
be inverted, even for n:m cardinalities (e.g., an AuthorPub map-
ping can be derived from an Id-based PubAuthor mapping and
vice versa).

2.3 Domain model
The domain model defines domain-specific object types and mapping
types to semantically (ontologically) categorize data sources and
mappings. A hierarchical (taxonomical) categorization of object
types is possible to classify sources in more detail (e.g., confer-
ences based on discipline). We do not include attributes for object
types to accommodate a large variety of data sources and to make
it much easier to construct the domain model than a global
schema. In many cases, we expect a small set of object types to be
sufficient. New object types may be added as needed to accom-
modate new sources, i.e. the domain model can be incrementally
extended in a bottom-up fashion. A mapping type interrelates two
object types. A special attribute indicates whether the mapping
type represents same-mappings (semantic equality relationship).

2.4 Adding Sources and Mappings
One goal of iFuice is to make it easy to add new sources and
mappings. A new physical data source requires to register at least
one logical data source. Registering a LDS requires to assign it to
the corresponding object type, specification of an id attribute, and
provision of a getInstance mapping. Furthermore, a peer mapping
P to at least one other LDS should be provided to permit data fu-
sion with other sources. Optionally, a QueryInstances mapping
can be provided, and additional attributes (e.g. known output at-
tributes of P or for query input) and attribute correspondences can
be specified. For a LDS of a new object type, the domain model
must be extended with the corresponding object type (e.g. Jour-
nal) and at least one associated mapping type (e.g. JournalPubs).

Provision of a new mapping requires its registration at the map-
ping mediator. This involves the specification of the mapping
characteristics and possibly the registration of a new mapping type
in the domain model. The mapping must be executable, i.e. an
implementation must be provided. The mapping implementation
can hide many details of the underlying data sources and typically
exposes only selected input and output attributes at the interface.
As discussed, we do not require that the input and output attrib-
utes of a mapping be registered in the source-mapping-model.

To illustrate the ease and benefit of providing data sources and
mappings consider the following simple example: A user keeps a
list of her favorite authors (including handpicked information like
e-mail address or nationality, which are accessible by a getIn-
stance operation) in a local file and wants to bind it to the map-
ping mediator so that she can periodically check the information
about the authors’ publications. This can be achieved by estab-
lishing a same-mapping between the local file and the LDS DBLP
author, e.g. by providing a list of DBLP URLs. Thereafter the ex-

Domain Model

ObjectType Id
IsA ObjectType Id
Name

MappingType Id
Input ObjectType Id
Output ObjectType Id
MapingTypeName
IsSameMapping

ObjectType

MappingType

Mapping Id
MappingType Id
Input LDS Id
Output LDS Id
RequiresInputID
IDOutputOnly
Name

Mapping

LogicalSource Id
ObjectType Id
PhysDataSource Id

Logical DataSource

1

n

1 1

n

1 nn

Attribute Id
LogicalSource Id
Name
IsKeyAttribute
IsNullable

Attribute

PhysDataSource Id
Name

Physical DataSource

n

1

1

n

Correspondence Id
Attribute1 Id
Attribute2 Id

Correspondence

1 1

nn

Primary Key
Foreign Key

Legend

1 n

1 n

1 n

Source Mapping Model
Figure 2. Metadata model of mapping mediator

isting mappings between DBLP, ACM and Google Scholar can be
used to gather the information of interest.

3. OPERATORS AND SCRIPTS
Interactive users and script programmers should not be limited to
the execution of one mapping at a time but are provided with
more powerful operators including data fusion capabilities.
Therefore, the iFuice mapping mediator supports a variety of op-
erators which can be used within script programs or to implement
derived mappings. This idea is inspired by the script approach for
model management, e.g. as implemented in Rondo [11]. While
Rondo focuses on metadata manipulation, iFuice provides opera-
tors for mapping execution and manipulation of instances.

We designed operators of different complexity to allow users to
focus access on specific data sources and mapping paths. Com-
pared to transparent access on many sources, this not only helps
improve performance but is also important for user acceptance
and data quality. This is because users often have specific prefer-
ences for some data sources, and the cleanliness of merged data
tends to decrease with more sources. Therefore we designed two
sets of operators, one for processing basic mappings returning ob-
jects from one source (getInstances, traverse, map, queryInstances, query-
Traverse queryMatch) and one for aggregated mappings and aggre-
gated objects (aggregateSame, aggregateQueryTraverse aggregateMap,
fuseAttributes). In both cases we have a set of operators to process
the respective results, similar to query languages (union, intersect,
project, sort, join, …). All operators are set-oriented, i.e. they work on
sets of simple or aggregated input objects and determine a set of
result objects or a mapping.

The next two subsections introduce these two sets of operators. In
3.4 we present a script program using the operators.

3.1 Operators for basic mappings
Basic mappings relate instances of one input LDS with instances
of one output LDS, i.e. we obtain a homogeneous set of result ob-
jects. An object (instance) oi consists of a unique id plus a (possi-
bly empty) list of attribute values. The id is assumed to also iden-
tify the logical data source to which the object belongs. We first
introduce operators for id-mappings and then for query mappings.

3.1.1 Operators for id-mappings
Let L1, L2, … denote logical data sources, O1, O2, … sets of L1 ob-
jects, L2 objects … and m1, m2, … id-mappings (same- or associa-
tion mappings).

traverse (O1, m2, …, mk) → Ok
traverse (O1, m2, …, mk) = mk (mk-1 (… m2(O1)))

consecutively executes m2, m3 … thereby traversing via L2 – L3 to
Lk. Of course, the input source of mi must correspond to the output
source of mi-1. Note that both same- and association mappings can
be used within a traversal path. For same-mappings the LDS
names can be used instead of the mapping names. The output is
required to be a set, i.e. no duplicates are allowed. Example: Let
O1 be a list of DBLP author URLs, traverse (O1, ACM, ACMAu-
thorPub) returns their corresponding ACM publications. traverse
(O1, DBLPAuthPub, DBLPPubConf) returns the conferences in
which the authors in O1 have published (without returning the au-
thors and publications).

For same-mappings we provide a variation of traverse

traverseSame (O1, LDSk) → Ok

It is not restricted to a single traversal path but considers all paths
of same-mappings from the input LDS1 to LDSk and takes the un-
ion of their LDSk results.

The traverse and traverseSame operators only return the instances of
the last LDS on the mapping path which can thus be the input for
other operators on objects. Frequently one wants to see the corre-
lations between objects of the first and last source. This is
achieved by

map(O1, m2,…, mk) → O1 × Ok
map(O1, m2,…, mk) = {(o1,ok)|o1∈O1, ok∈ traverse({o1},m2, …,mk)}

In the special case k=2, map returns the instance correspondences
of a single mapping (there may be just id-id combinations, e.g. for
same-mappings). For more than one mapping, the semantics cor-
responds to that of a classical compose operation. Example:
map (O1, DBLPAuthPub, DBLPPubConf) returns authors together
with the conferences in which they published, i.e. these different
instances are 'fused' together by the mapping result.

The support operator

getInstances (O1) → O1
determines for the input instances in O1 the available attribute
values. This operator usually is applied to objects that only hold
an id value or a subset of attributes. Example: Given a list of
DBLP author URLs, getInstances adds attribute values, e.g. name,
no. of co-authors etc. In the previous operators, the implementa-
tion of the mappings, especially mk, determines which attributes
are present in the output instances. Applying the getInstances opera-
tor on these instances helps to obtain additional attribute values if
needed.

3.1.2 Operators for (basic) query mappings
In iFuice, queries are posed for one source and can then be propa-
gated to other sources by applying id-mappings or query match-
ing. For querying a source we use

queryInstances : (L1, {cond}) → O1

which returns all object instances (i.e. at least their ids) from L1
which fulfill the given set of attribute conditions {cond}.

To propagate a query, we use derived operators combining queryIn-
stances with traverse or traverseSame.

queryTraverse (L1, {cond}, m2, …, mk)
= traverse (queryInstances (L1, {cond}), m2, …, mk) → Ok

queryTraverseSame (L1,{cond}, Lk)
= traverseSame (queryInstances (L1,{cond}), Lk))

Example: queryTraverseSame (DBLP, {name= ‘Bernstein’}, ACM)
returns the ACM author objects of all DBLP authors with that
name.

Operator queryMatch transforms an input query for one source to an
equivalent one on a second source:

queryMatch (L1, {cond}, L2) = queryInstances (L2, attrTransf ({cond}))

The function attrTransf utilizes specified attribute correspondences
to map the L1 query condition into a corresponding L2 query con-
dition. Hence, queryMatch is only applicable to L2 sources for which
a queryInstances implementation and attribute correspondences have
been provided. This operator typically is used to build the union
of the source-specific results which leads to aggregated objects.

3.2 Operators for aggregated mappings
Same-mappings identify semantically equivalent objects (syno-
nyms, duplicates) which should be combined to reduce redun-
dancy and merge (complement) the available information from
different sources. We separate this into two steps, called aggrega-
tion and fusion. Figure 3 exemplifies this for two semantically
equivalent publication objects. In step 1 we combine them into
one aggregated object which is a combination of all attributes
from the original objects. In step 2 we fuse the attributes to reduce

redundancy without losing information. The first step is usually
the most difficult one, but is well supported in iFuice by the same-
mappings thereby facilitating good data quality. The second step
can use attribute correspondences or actually analyse the existing
values for merge possibilities.

Most iFuice operators for aggregated mappings deal with aggre-
gated objects where all attribute values are still available for fur-
ther processing. The fusion of attribute values is performed by a
separate operator, fuseAttributes, which is best applied before re-
turning aggregated objects to the user.

Let {o1, o2, o3, …}) be a set of semantically equivalent objects of
object type T from one or more logical data sources. The aggrega-
tion of these objects agg ({o1,o2,o3,…}) = (o1-o2-o3-…) is called
an aggregated object and also refers to object type T.

disagg (o1-o2-o3-…) = {o1,o2,o3,…} returns the components of an
aggregated object.

Aggregating objects of the same type
Let AO1, AO2, … be sets of aggregated objects of type T, and L2 a
LDS of object type T. The operator

aggregateSame (AO1, L2) → AO2

={agg(ao1,{traverseSame ({o1},L2) | o1∈disagg(ao1)}) | ao1∈AO1}

aggregates all AO1 objects with semantically equivalent objects in
L2 by evaluating the same-mappings from the input objects to the
corresponding L2 objects. Note that the operator can also be ap-
plied to simple input objects from one input LDS. Note further
that the same-mappings implement the duplicate detection and can
thus support efficient and high quality data aggregation. The defi-
nition of aggregateSame can easily be generalized to more than one
target LDS since the operator works on sets of aggregated objects,
e.g. the output of a previous aggregateSame execution.

Combining the results for a propagated query at different sources
leads to aggregated objects and is supported by

aggregateQueryTraverse (L1,{cond}, Lk)
= aggregateSame (queryInstances (L1,{cond}), Lk).

The standard set-oriented (relational) operators intersect, diff, union,
restrict, project, sort etc. can be extended to deal with aggregated
objects and duplicates. Due to space constraints we only define
intersection.

intersect (AO1, AO2) = {(ao1-ao2)|ao1∈AO1, ao2∈AO2, ao1≈ao2}

Thereby, ≈ denotes that two aggregated objects are semantically
equivalent. This is the case if they share at least one component
object or if they are related by a same-mapping.

Aggregating objects of different types
Association mappings typically interrelate objects of different
types which should not be aggregated together like equivalent ob-
jects. For these mappings, we generalize the traverse operation to
both mapping types and aggregated objects.

aggregateTraverse (AO1, mt) → AO2

={agg({ traverse({ok},m)| ok∈disagg(aok), m of mt })| aok∈AO1}

applies all association mappings of type mt for all objects in AO1
and aggregates the resulting objects. Similarly, we generalize the
map operator for association mappings and aggregated objects to
obtain binary aggregated mappings:

aggregateMap (AO1, mt) → AO1 × AO2

={(ao1, ao2) | ao1∈AO1, ao2∈aggregateTraverse ({ao1}, mt)}

Example: Given a set AO1 of aggregated objects of DBLP and
ACM authors, aggregateMap (AO1, AuthPubs) returns author-
publication pairs of aggregated objects that contain object in-
stances from DBLP or ACM or both.

For aggregated mapping results MR1 ⊆ AO1 × AO2 and MR2 ⊆
AO3 × AO4 the operators join and compose are defined as follows

join (MR1, MR2)
= {(ao1,(ao2-ao3),ao4)|(ao1,ao2)∈MR1,(ao3,ao4)∈MR2, ao2≈ao3}
compose(MR1,MR2) = ({ao1,ao4}|(ao1,ao2,ao4) ∈ join (MR1, MR2))

The given join semantics refers to an inner join, but left outer join
etc. can be specified analogously. Join and compose also need a
duplicate detection to aggregate semantically equivalent objects.

3.3 Script Example
A script is a sequence of operator calls. Each operator call stores
the results into a variable (denoted by a ‘$’-prefix). The following
simple script example presents an approach to determine candi-
dates for the 10-Year Best Paper Award.
$SIGMODPubs := queryTraverse (LDS=DBLP.Conf, {Name=”SIGMOD 1995”},

DBLPConfPubs)
$CombinedConfPub:= aggregateSame ($SIGMODPubs, GoogleScholar)
$CleanedPubs := fuseAttributes ($CombinedConfPub)
$Result := sort ($CleanedPubs, "NoOfCitings“)
In this example, step 1 uses a queryTraverse operation to query on
the LDS DBLP.Conf to determine the DBLP id for the conference
of interest and traversing to the associated publications. The used
mapping DBLPConfPubs is assumed to determine complete in-
stances. Step 2 utilizes the same-mapping on publications between
DBLP and Google Scholar to aggregate the DBLP values with the
corresponding instances in Google Scholar. In step 3 we clean the
aggregated objects by applying fuseAttributes. Finally, we sort the
resulting set of fused publications on the attribute denoting the
number of citations. The top items/publications in the final result
set indicate likely candidates for the 10-Year Best Paper Award.

Since operators can process many input objects at a time, the
script does not only apply to a single conference but many. To de-
termine the most-cited publications of, say, a whole conference
series, one could use a modified query in step 1 to select these
conferences, e.g. SIGMOD or VLDB. The rest of the script can
remain unchanged.

4. MEDIATOR ARCHITECTURE
Figure 4 gives an overview of the iFuice mediator architecture. Its
main components are the repository (already described in Section

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm

DBLP

DBLP
DBLP
DBLP

Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

GS
GS
GS
GS

Publication

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

DBLP

DBLP
DBLP
DBLP

Publication

GS
GS
GS
GS

Generic schema matching with Cupid
http://vldb.org...
http:// data.cs.washington.edu...
Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
J Madhavan, PA Bernstein, E Rahm
VLDB 2001
243

DBLP
DBLP

DBLP

Publication

GS

GS
DBLP

GS

GSName:
URL:

Authors:

Conference:
NoOfCit:

aggregation attribute fusion
Publication

Figure 3. Example for aggregation and attribute fusion

2), mediator interface (MI), the fusion control unit (FCU), and the
mapping execution service (MES). The MI provides two modes of
operation. The interactive mode supports an explorative approach
where users can execute mappings step by step. The script-based
mode defines a batch of execution steps for the mediator, return-
ing a final result set. Operations are executed within the FCU, the
central unit of the system. The mapping handler coordinates single
mapping calls according to the appropriate mapping definition of
the metadata model. It manages (temporary) mapping results for
further operations. It also performs duplicate handling for aggre-
gating objects. The mapping execution service actually executes
the called mappings and returns their results to the FCU.

As a proof of concept we have implemented a first subset of the
mediator functionality for interactive mapping execution (explor-
ative navigation). The prototype is implemented in Java and util-
izes a relational database system for the repository and mapping
results. It can execute mappings and operation sequences as in the
examples shown, including the example on the 10-year best paper
award.

5. RELATED WORK
Most previous data integration approaches for web data sources
utilize a global schema and a query mediator. In contrast to
iFuice, these approaches do not utilize peer mappings and in-
stance correspondences. Moreover, the global schema tends to be
much more complex than our domain model leading to increased
effort to add sources or to deal with changing sources.

More related to our approach is recent work on P2P databases and
biological databases. P2P prototypes such as PeerDB and Piazza
[12][17] focus on query processing across peer mappings without
a global schema. PeerDB propagates IR searches, whereas Piazza
reformulates queries based on metadata mappings. Queries refer
to the peer schema where the query was initially posed. By con-
trast, iFuice focuses on instance-level correspondences and can
apply a variety of executable peer mappings including queries.
Moreover, we support a set of powerful operators (including ag-
gregation operators) and the execution of script programs.

Several integration approaches in the bioinformatics area [16],
[9], [7] utilize cross-references at the instance level to combine
data from different sources. Systems like SRS [4] and our Gen-
Mapper prototype [1] materialize instance correspondences in
mapping tables for improved performance. These efforts lack a
sufficient consideration of the semantics of the cross references
but expect the users to know what the cross references mean. The
iFuice domain model differentiating different mapping types, in-
cluding different same-mappings, allows a much more focused
data fusion. To our knowledge, the proposed framework of map-
ping operators and scripts is also unknown so far in the bioinfor-
matics domain.

SEMEX [3] is an interesting personal information management
system which utilizes a domain model and mappings similar to
our approach. However, it only deals with centrally stored data,
while we integrate data from different web data. Most previous
work on data cleaning was done in the data warehouse area with a
focus on duplicate identification [1][15]. The use of semantic ob-
ject-ids for data integration in the TSIMMIS mediator [13] has
similarities to the utilization of ids in our same-mappings.

6. CONCLUSION AND OUTLOOK
iFuice combines a set of techniques to a new approach for inte-
grating information from diverse web data sources. It does not de-
pend on a global schema and utilizes explicit instance correspon-
dences and executable peer mappings. We proposed the use of a
domain model and a mapping mediator to control the execution of
a variety of such mappings. Furthermore, we introduced a set of
powerful operators for mapping execution and data aggregation.
An initial prototype for interactive mapping execution showed the
viability and flexibility of the approach.

In future work, we will fully implement the outlined approach and
investigate techniques based on caching mapping tables to im-
prove performance. We plan to adopt the iFuice implementation
to different domains and to support integration of both web data
sources and local / private data sources.

Acknowledgements. A. Thor and N. Golovin are funded by the Ger-
man Research Foundation (DFG) within the Graduiertenkolleg “Knowl-
edge Representation”. H. Do and T. Kirsten are supported by DFG grant
BIZ 6/1-1. Phil Bernstein and Sergey Melnik gave helpful comments.

7. REFERENCES
[1] Chaudhuri, S. et al.: Robust and efficient fuzzy match for online

data cleaning. Proc. SIGMOD 2003
[2] Do, H.-H., Rahm, E.: Flexible integration of molecular-biological

annotation data: The GenMapper Approach. Proc. of EDBT 2004
[3] Dong, X., Halevy, A. Y.: A platform for personal information man-

agement and integration. CIDR 2005
[4] Etzold, T. et al.: SRS: An integration platform for databanks and

analysis tools in bioinformatics. In [9]: 109-145.
[5] Galperin, M.Y.: The molecular biology database collection - 2004

update. Nucleic Acids Research 32, Database issue, 2004.
[6] Greco, S. et al: Integrating and managing conflicting data. Proc. Of

Conf. on Perspectives of System Informatics. 2001
[7] Hernandez, T, Kambhampati, S: Integration of biological sources:

current systems and challenges ahead. SIGMOD Record 33(3), 2004
[8] Kementsietsidis, A. et al.: Mapping data in peer-to-peer sys-

tems:semantics and algorithmic issues. Proc. SIGMOD 2003
[9] Lacroix, Z., Critchlow T. (Eds.): Bioinformatics: Managing Scien-

tific Data. Morgan Kaufmann, 2003
[10] Lenzerini, M: Data integration: a theoretical perspective. Proc.

PODS 2002
[11] Melnik, S. et al.: Developing metadata-intensive applications with

Rondo. Journal on Web Semantics, 2003
[12] Ng, W. S., et al.: PeerDB: A P2P-based System for Distributed

Data Sharing. Proc. ICDE 2003
[13] Papakonstantinou, Y. et al.: Object Fusion in Mediator Systems.

Proc. VLDB 1996
[14] Rahm, E., Bernstein, P. A.: A survey of approaches to automatic

schema matching. VLDB Journal, 10(4), 2001
[15] Rahm, E., Do, H.-H.: Data cleaning: problems and curren ap-

proaches. IEEE Bull. Techn.Com. Data Engineering, 23 (4), 2000
[16] Stein, L. D.: Integrating biological databases. In Nature Review

Genetics, 4, 2003
[17] Tatarinov, I., et al.: The Piazza peer data management project.

SIGMOD Record, 32(3), 2003

Repository

mapping call mapping
resultExecution

Properties

request response

Object- and
Mapping Types

Script / Batch Interactive (step by step)

Fusion Control Unit

Mapping
Results

Mapping Handler

Duplicate Detection

Mediator Interface

Mapping Execution Service

Webservice SQL-Query Application

Figure 4. Architecture of the iFuice mediator

