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ABSTRACT 
We present a new approach to information fusion of web data 
sources. It is based on peer-to-peer mappings between sources and 
utilizes correspondences between their instances. Such correspon-
dences are already available between many sources, e.g. in the 
form of web links, and help combine the information about spe-
cific objects and support a high quality data fusion. Sources and 
mappings relate to a domain model to support a semantically fo-
cused information fusion. The iFuice architecture incorporates a 
mapping mediator offering both an interactive and a script-driven, 
workflow-like access to the sources and their mappings. The 
script programmer can use powerful generic operators to execute 
and manipulate mappings and their results. The paper motivates 
the new approach and outlines the architecture and its main com-
ponents, in particular the domain model, source and mapping 
model, and the script operators and their usage.  
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1. INTRODUCTION  
Most proposed data integration approaches rely on the notion of a 
global schema to provide a unified and consistent view of the un-
derlying data sources [10]. This approach has been especially suc-
cessful for data warehouses, but is also used for virtual integration 
of web data sources. Unfortunately, the manual effort to create 
such a schema and to keep it up-to-date is substantial, despite re-
cent advances, e.g. in the area of semi-automatic schema matching 
[14]. Likewise, the effort to integrate new sources is usually high 
making it difficult to scale to many sources or to use such systems 
for ad-hoc (explorative) integration. Notwithstanding the high ef-
fort associated with a global schema, it cannot guarantee good 
data quality at the instance level. Integrating the real data, e.g. 
during query processing over different web sources, may still re-
quire extensive data cleaning to achieve good results, e.g. to deal 
with duplicate data [15].  

The iFuice approach (information Fusion utilizing instance corre-
spondences and peer mappings) focuses on the instance data of 
different sources and mappings between them. Many web sources 
expose explicit, high quality instance-level correspondences to 
other sources, e.g. in the form of web links. Such correspondences 
represent one type of mapping iFuice uses to fuse information 
from different sources. Sources and mappings are related to a do-
main model to support semantically meaningful information fu-
sion. The iFuice architecture incorporates a mapping mediator of-
fering both interactive and script-driven, workflow-like access to 
the sources and their mappings. The script programmer can use 
powerful generic operators to execute and manipulate mappings 
and their results.  

Bioinformatics is one area where this approach holds great prom-

ise. There are hundreds of web-accessible data sources on molecu-
lar-biological objects such as genes, proteins, metabolic pathways, 
etc. which highly cross-reference each other [5]. Creating a global 
schema for a sizable fraction of these sites is virtually impossible 
due to the high diversity, complexity and fast evolution of the 
data. The existing cross-references represent a low-level way to 
obtain additional information from other sources for a specific ob-
ject, e.g. a gene. The additional information is typically of high 
quality since links are mostly established and maintained by do-
main experts. However, the manual navigation is unsuitable for 
evaluating large sets of objects, e.g. for gene expression analysis, 
so that there is a strong need for a more powerful integration ap-
proach. Moreover, the semantics of the links is typically not made 
explicit so that the user has to know exactly what kind of relation-
ship they represent. The bioinformatics area also has a strong de-
mand for experimental workflows to repetitively perform a series 
of analysis steps interrelating and aggregating information from 
different sources. The iFuice script facility aims at supporting 
such requirements with little development effort on the user side.  

Instance-level cross-references are available in many other do-
mains or can be generated with little effort, e.g. to interrelate bib-
liographic information, product descriptions and prices, etc. For 
simplicity we use examples from bibliographic data sources 
throughout this paper to illustrate the approach. Figure 1a shows 
three sample data sources and associated mappings. A physical 
data source (PDS), e.g. DBLP, may offer objects of different 
types. We call the object types of one PDS the logical data 
sources (LDS), e.g., Author, Publication and Conference as pro-
vided by DBLP. Object types combined across sources are repre-
sented in the abstract domain model (Figure 1b). Each mapping 
between source instances has a mapping type which is also repre-
sented in the domain model. Mappings map instances of an input 
object type to instances of an output object type, e.g. all mappings 
of type AuthorPubs relate author instances to their associated pub-
lications.  

An important mapping type is signified by the same-mappings in-
terrelating instances of the same object type across PDS, and pro-
vides a means to fuse the information for the respective instances. 
Typically, same-mappings are based on unique object ids, e.g. ac-
cession numbers in molecular-biological data sources or stable 
web URIs. Figure 1a indicates three such same-mappings, of 
which some already exist (e.g. DBLP links its author pages to the 
ACM author entries).  

All mappings of the source-mapping model are executable, e.g. 
implemented by a query or web service. iFuice allows for explor-
ative data fusion by browsing along these mappings, e.g. to derive 
from a DBLP author all publications from the directly or transi-
tively connected LDS. The execution of several mappings and 
manipulation of their results can be specified within scripts to al-
low repeated executions for different input objects or to use the 
script as an implementation of a complex mapping. For example, 
we may want to have a script determining for a given conference 
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X its most frequently referenced papers, e.g. to determine candi-
dates for a 10-year best paper award. An iFuice representation of 
such a script is shown later. Informally, it locates conference X in 
DBLP, executes the PubConf mapping to get all publications of 
that conference, uses the same-mapping to Google Scholar to get 
the corresponding publications together with an attribute indicat-
ing the number of citations, sorting the publications on the num-
ber of citations, and returning the top-most publications. The ex-
ample shows that mappings need to be executable on a set of in-
put objects and return a set of output objects. Mapping execution 
can be restricted to specific sources or to all sources of a specific 
type for which a corresponding mapping implementation exists.  

The main contribution of the paper is a new generic way to dy-
namic information fusion based on instance correspondences and 
executable mappings between sources. Source and mapping se-
mantics are reflected in a domain model which is at a higher ab-
straction (ontological) level than a global schema and easier to 
construct. Mappings are executable on sets of objects and highly 
composable thereby supporting powerful aggregation of informa-
tion over several sources. We propose different types of mappings 
on web data sources, including basic and aggregated mappings, 
same- and association mappings, and id- and query mappings. 
Furthermore, we introduce a set of declarative operators to exe-
cute the different kinds of mappings, to perform data aggregation 
(fusion), and to manipulate mapping results. Lastly, we show the 
usage of the operators for script programming.  

In the next section, we introduce the representation of sources, 
mappings and the domain model, and how to add new sources and 
mappings. Section 3 introduces the iFuice operators on mappings 
and mapping results including operators for data fusion. We illus-
trate the use of operators by a script for the introductory example. 
Section 4 briefly outlines the architecture of the mapping media-
tor. In Section 5, we discuss related work. Finally, we conclude 
with a summary and outlook.  

2. SOURCES AND MAPPINGS 
In this section we describe the metadata used by the mapping me-
diator to provide uniform access to the sources and their mappings 
both for interactive exploration and script execution. The media-
tor’s metadata is held in a repository and specified by a metadata 
model as shown in Figure 2. It consists of two main parts, a 
source-mapping model and a domain model. The source-mapping 
model describes both the accessible data sources and their associ-
ated mappings. The domain model specifies object types and 
mapping types. The sample models of Figure 1 conform to meta-
data model of Figure 2.   

In the following, we describe the modeling and use of sources, 
mappings and the domain model. Finally we discuss the steps for 

adding a new source and mapping to the system. The description 
introduces several kinds of mappings, for which specific operators 
will be defined in Section 3. 

2.1 Sources 
We distinguish between a physical data source (PDS) and logical data 
source (LDS). A PDS can be a database, website, private user files 
or any other information base. A PDS can hold instances of dif-
ferent object types. We separate a PDS into LDS’s each contain-
ing instances of exactly one object type of the domain model. The 
structure of a LDS is described by a set of attributes (Fig. 2). We 
only mandate the specification of an identifying key attribute per 
LDS to access its instances and to ensure that each instance is 
provided with a unique object id. Website instances are typically 
identified by URLs. Uniqueness for database instances can be es-
tablished by concatenating instance key values with the ids of the 
corresponding PDS and LDS. 

Requiring only an id attribute per LDS allows us to integrate a va-
riety of heterogeneous data sources including unstructured and 
semi-structured data sources, e.g. websites. Furthermore, it makes 
it easy to add new data sources, and helps to insulate the mediator 
information against structural changes in the sources and thus to 
support a high degree of data source autonomy.  

Each LDS has to provide a source-specific mapping for id-based 
instance access, i.e. to return for a given id the associated instance 
including all attribute values. We call these mappings getInstance 
mappings. The implementation of such mappings may be very 
simple (e.g. database lookup), but may also extract specific attrib-
utes from a webpage. The actual attributes returned are thus de-
termined by the mapping implementation and depend on the cur-
rent source content. The mapping mediator supports such variably 
structured result sets and their dynamic fusion with data from 
other sources at runtime.  

In addition to the id attribute, further attributes can be optionally 
specified in the mapping mediator for enhanced functionality, e.g. 
to offer query access on the attributes or to select sources based 
on the availability of specific result attributes (e.g. number of cita-
tions for publications). Query access can optionally be provided 
by LDS-specific mappings, which we call QueryInstances map-
pings. The LDS attributes on which queries are supported should 
explicitly be registered in the mediator metadata. 

Another optional specification is correspondences between attrib-
utes of two sources. Such correspondences are useful to enhance 
the fusion of instance values (see Figure 3). For instance, specify-
ing that DBLP.Author.name corresponds to ACM.Author.author 
can help avoid author names appearing twice in author instances 
fused from DBLP and ACM. Attribute correspondences can also 
be used to map queries specified on one source to equivalent que-
ries on other sources (query transformation). 

2.2 Mappings 
Mappings describe directed relationships between instances of 
two object types. They are used to uniformly interrelate instances 
within and between physical data sources irrespective of the un-
derlying data management systems. The semantics of the mapping 
relationship is expressed by a mapping type of the domain model.  

We distinguish between several kinds of mappings, including ba-
sic (simple) vs. aggregated mappings, same- vs. association map-
pings and id- vs. query mappings. Basic mappings interrelate in-
stances of one input and one output LDS and return a result set 
from the output LDS. All mappings shown in Fig. 1a are such ba-
sic mappings. Note that the input and output LDS may be the 
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same, e.g. for mappings of type CoAuthor or the source-specific 
getInstance and queryInstances mappings. Aggregated mappings 
are the result of mediator operations or scripts, and interrelate ag-
gregated objects from several LDS of the same type. An example 
is a mapping to combine authors with their publications from sev-
eral LDS (e.g., DBLP, ACM and Google Scholar).  

Same-mappings represent semantic equality relationships between 
physical data sources at the instance level, i.e. each correspon-
dence should refer to the same real-world object. They thus inter-
relate LDS of the same object type from different PDS (e.g. 
DBLP.Author and ACM.Author). These correspondences at the 
instance level are much more specific than attribute correspon-
dences and can guide a high quality data fusion. Note that the 
composition of same-mappings results in new same-mappings 
which can thus be used to interrelate data from many sources. As-
sociation mappings are non-same-mappings and mostly represent 
domain-specific relationships between LDS of the same PDS (e.g. 
AuthorPubs). By composing them with same-mappings they can 
relate to and fuse with data of other PDS (see section 3). 

Mappings can be further categorized on whether they are id-based 
or query-based with respect to their input instances (id- vs. query 
mapping). The output of basic mappings is always assumed to in-
clude the id of the returned instances. A mapping may in fact only 
return ids, e.g. as input for subsequent id-mappings and to limit 
the amount of data to transfer to the mediator and to process there.  

Id-mappings interrelate ids (and thus instances) of two LDS or 
PDS and can easily be composed. The result of id-mappings can 
be represented by a set of instance correspondences (id1, id2). 
Query mappings are helpful to find relevant instances and their 
ids in the first place. One example are source-specific QueryIn-
stance mappings. Their results include instance ids and can thus 
be combined with id-mappings to obtain related query results 
from different sources. The attribute values of a query result may 
also be used to query another source.  

The mapping specification in Figure 2 only considers basic map-
pings for simplicity. It derives the distinction between same- and 
association mapping from the used mapping type of the domain 
model. The attribute RequiresInputID indicates whether or not the 
mapping is id-based.  

The implementation of mappings can use other mappings, utilize 
database queries, etc. To hide implementation differences, iFuice 
mappings are uniformly encapsulated as web service operations 
and use XML for data exchange. Ideally, id-mappings, including 

same-mappings, can be based on existing instance correspon-
dences such as web links. Alternatively, they may be implemented 
by a query mapping, e.g. to use instance values from one source 
(e.g. obtained from a getInstance mapping) to search for corre-
sponding instances of a second source (input for query mapping). 
For instance, the same-mapping between DBLP publications and 
Google Scholar can be implemented by using the name and author 
of a DBLP publication as a keyword query to Google Scholar. 

For improved performance, the results of id-mappings, i.e. the set 
of instance correspondences, may be stored or cached in binary 
(id/id) mapping tables [8]. Composition between such mappings 
then becomes a join operation. Materialized id-mappings can also 
be inverted, even for n:m cardinalities (e.g., an AuthorPub map-
ping can be derived from an Id-based PubAuthor mapping and 
vice versa). 

2.3 Domain model 
The domain model defines domain-specific object types and mapping 
types to semantically (ontologically) categorize data sources and 
mappings. A hierarchical (taxonomical) categorization of object 
types is possible to classify sources in more detail (e.g., confer-
ences based on discipline). We do not include attributes for object 
types to accommodate a large variety of data sources and to make 
it much easier to construct the domain model than a global 
schema. In many cases, we expect a small set of object types to be 
sufficient. New object types may be added as needed to accom-
modate new sources, i.e. the domain model can be incrementally 
extended in a bottom-up fashion. A mapping type interrelates two 
object types. A special attribute indicates whether the mapping 
type represents same-mappings (semantic equality relationship).  

2.4 Adding Sources and Mappings 
One goal of iFuice is to make it easy to add new sources and 
mappings. A new physical data source requires to register at least 
one logical data source. Registering a LDS requires to assign it to 
the corresponding object type, specification of an id attribute, and 
provision of a getInstance mapping. Furthermore, a peer mapping 
P to at least one other LDS should be provided to permit data fu-
sion with other sources. Optionally, a QueryInstances mapping 
can be provided, and additional attributes (e.g. known output at-
tributes of P or for query input) and attribute correspondences can 
be specified. For a LDS of a new object type, the domain model 
must be extended with the corresponding object type (e.g. Jour-
nal) and at least one associated mapping type (e.g. JournalPubs). 

Provision of a new mapping requires its registration at the map-
ping mediator. This involves the specification of the mapping 
characteristics and possibly the registration of a new mapping type 
in the domain model. The mapping must be executable, i.e. an 
implementation must be provided. The mapping implementation 
can hide many details of the underlying data sources and typically 
exposes only selected input and output attributes at the interface. 
As discussed, we do not require that the input and output attrib-
utes of a mapping be registered in the source-mapping-model.  

To illustrate the ease and benefit of providing data sources and 
mappings consider the following simple example: A user keeps a 
list of her favorite authors (including handpicked information like 
e-mail address or nationality, which are accessible by a getIn-
stance operation) in a local file and wants to bind it to the map-
ping mediator so that she can periodically check the information 
about the authors’ publications. This can be achieved by estab-
lishing a same-mapping between the local file and the LDS DBLP 
author, e.g. by providing a list of DBLP URLs. Thereafter the ex-
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isting mappings between DBLP, ACM and Google Scholar can be 
used to gather the information of interest.   

3. OPERATORS AND SCRIPTS 
Interactive users and script programmers should not be limited to 
the execution of one mapping at a time but are provided with 
more powerful operators including data fusion capabilities.  
Therefore, the iFuice mapping mediator supports a variety of op-
erators which can be used within script programs or to implement 
derived mappings. This idea is inspired by the script approach for 
model management, e.g. as implemented in Rondo [11]. While 
Rondo focuses on metadata manipulation, iFuice provides opera-
tors for mapping execution and manipulation of instances.  

We designed operators of different complexity to allow users to 
focus access on specific data sources and mapping paths. Com-
pared to transparent access on many sources, this not only helps 
improve performance but is also important for user acceptance 
and data quality. This is because users often have specific prefer-
ences for some data sources, and the cleanliness of merged data 
tends to decrease with more sources. Therefore we designed two 
sets of operators, one for processing basic mappings returning ob-
jects from one source (getInstances, traverse, map, queryInstances, query-
Traverse queryMatch) and one for aggregated mappings and aggre-
gated objects (aggregateSame, aggregateQueryTraverse aggregateMap, 
fuseAttributes). In both cases we have a set of operators to process 
the respective results, similar  to query languages (union, intersect, 
project, sort, join, …). All operators are set-oriented, i.e. they work on 
sets of simple or aggregated input objects and determine a set of 
result objects or a mapping.   

The next two subsections introduce these two sets of operators. In 
3.4  we present a script program using the operators.  

3.1 Operators for basic mappings  
Basic mappings relate instances of one input LDS with instances 
of one output LDS, i.e. we obtain a homogeneous set of result ob-
jects. An object (instance) oi consists of a unique id plus a (possi-
bly empty) list of attribute values. The id is assumed to also iden-
tify the logical data source to which the object belongs. We first 
introduce operators for id-mappings and then for query mappings.  

3.1.1 Operators for id-mappings 
Let L1, L2, … denote logical data sources, O1, O2, … sets of L1 ob-
jects, L2 objects … and m1, m2, …  id-mappings (same- or associa-
tion mappings).  

traverse (O1, m2, …, mk) → Ok  
traverse (O1, m2, …, mk) = mk (mk-1 ( … m2(O1))) 

consecutively executes m2, m3 … thereby traversing via  L2 – L3 to 
Lk. Of course, the input source of mi must correspond to the output 
source of mi-1. Note that both same- and association mappings can 
be used within a traversal path. For same-mappings the LDS 
names can be used instead of the mapping names. The output is 
required to be a set, i.e. no duplicates are allowed. Example: Let 
O1 be a list of DBLP author URLs, traverse (O1, ACM, ACMAu-
thorPub) returns their corresponding ACM publications. traverse 
(O1, DBLPAuthPub, DBLPPubConf) returns the conferences in 
which the authors in O1 have published (without returning the au-
thors and publications).  

For same-mappings we provide a variation of traverse  

traverseSame (O1, LDSk) → Ok  

It is not restricted to a single traversal path but considers all paths 
of same-mappings from the input LDS1 to LDSk  and takes the un-
ion of their LDSk results. 

The traverse and traverseSame operators only return the instances of 
the last LDS on the mapping path which can thus be the input for 
other operators on objects. Frequently one wants to see the corre-
lations between objects of the first and last source. This is 
achieved by  

map(O1, m2,…, mk) → O1 × Ok 
map(O1, m2,…, mk) = {(o1,ok)|o1∈O1, ok∈ traverse({o1},m2, …,mk)} 

In the special case k=2, map returns the instance correspondences 
of a single mapping (there may be just id-id combinations, e.g. for 
same-mappings). For more than one mapping, the semantics cor-
responds to that of a classical compose operation. Example:  
map (O1, DBLPAuthPub, DBLPPubConf) returns authors together 
with the conferences in which they published, i.e. these different 
instances are 'fused' together by the mapping result.  

The support operator  

getInstances (O1) → O1   
determines for the input instances in O1 the available attribute 
values. This operator usually is applied to objects that only hold 
an id value or a subset of attributes. Example: Given a list of 
DBLP author URLs, getInstances adds attribute values, e.g. name, 
no. of co-authors etc. In the previous operators, the implementa-
tion of the mappings, especially mk, determines which attributes 
are present in the output instances. Applying the getInstances opera-
tor on these instances helps to obtain additional attribute values if 
needed.  

3.1.2 Operators for (basic) query mappings 
In iFuice, queries are posed for one source and can then be propa-
gated to other sources by applying id-mappings or query match-
ing. For querying a source we use  

queryInstances : (L1, {cond} ) → O1  

which returns all object instances (i.e. at least their ids) from L1 
which fulfill the given set of attribute conditions {cond}.  

To propagate a query, we use derived operators combining queryIn-
stances with traverse or traverseSame.  

queryTraverse (L1, {cond}, m2, …, mk)  
= traverse (queryInstances (L1, {cond}), m2, …, mk) → Ok    

queryTraverseSame (L1,{cond}, Lk) 
= traverseSame (queryInstances (L1,{cond}), Lk)) 

Example: queryTraverseSame (DBLP, {name= ‘Bernstein’}, ACM) 
returns the ACM author objects of all DBLP authors with that 
name.  

Operator queryMatch transforms an input query for one source to an 
equivalent one on a second source:    

queryMatch (L1, {cond}, L2) = queryInstances (L2, attrTransf ({cond})) 

The function attrTransf utilizes specified attribute correspondences 
to map the L1 query condition into a corresponding L2 query con-
dition. Hence, queryMatch is only applicable to L2 sources for which 
a queryInstances implementation and attribute correspondences have 
been provided. This operator typically is used to build the union 
of the source-specific results which leads to aggregated objects.  

3.2 Operators for aggregated mappings 
Same-mappings identify semantically equivalent objects (syno-
nyms, duplicates) which should be combined to reduce redun-
dancy and merge (complement) the available information from 
different sources. We separate this into two steps, called aggrega-
tion and fusion. Figure 3 exemplifies this for two semantically 
equivalent publication objects. In step 1 we combine them into 
one aggregated object which is a combination of all attributes 
from the original objects. In step 2 we fuse the attributes to reduce 



redundancy without losing information. The first step is usually 
the most difficult one, but is well supported in iFuice by the same-
mappings thereby facilitating good data quality. The second step 
can use attribute correspondences or actually analyse the existing 
values for merge possibilities.  

Most iFuice operators for aggregated mappings deal with aggre-
gated objects where all attribute values are still available for fur-
ther processing. The fusion of attribute values is performed by a 
separate operator, fuseAttributes,  which is best applied before re-
turning aggregated objects to the user.  

Let {o1, o2, o3, …}) be a set of semantically equivalent objects of 
object type T from one or more logical data sources. The aggrega-
tion of these objects agg ({o1,o2,o3,…}) = (o1-o2-o3-…) is called 
an aggregated object and also refers to object type T.  

disagg (o1-o2-o3-…) = {o1,o2,o3,…} returns the components of an 
aggregated object. 

Aggregating objects of the same type  
Let AO1, AO2, … be sets of aggregated objects of type T, and L2 a 
LDS of object type T. The operator  

aggregateSame (AO1, L2) → AO2 

={agg(ao1,{traverseSame ({o1},L2) | o1∈disagg(ao1)}) | ao1∈AO1} 

aggregates all AO1 objects with semantically equivalent objects in 
L2 by evaluating the same-mappings from the input objects to the 
corresponding L2 objects. Note that the operator can also be ap-
plied to simple input objects from one input LDS. Note further 
that the same-mappings implement the duplicate detection and can 
thus support efficient and high quality data aggregation. The defi-
nition of aggregateSame can easily be generalized to more than one 
target LDS since the operator works on sets of aggregated objects, 
e.g. the output of a previous aggregateSame execution.  

Combining the results for a propagated query at different sources 
leads to aggregated objects and is supported by  

aggregateQueryTraverse (L1,{cond}, Lk) 
= aggregateSame (queryInstances (L1,{cond}), Lk). 

The standard set-oriented (relational) operators intersect, diff, union,  
restrict, project, sort etc. can be extended to deal with aggregated 
objects and duplicates. Due to space constraints we only define 
intersection.  

intersect (AO1, AO2) = {(ao1-ao2)|ao1∈AO1, ao2∈AO2, ao1≈ao2} 

Thereby, ≈ denotes that two aggregated objects are semantically 
equivalent. This is the case if they share at least one component 
object or if they are related by a same-mapping. 

Aggregating objects of different  types  
Association mappings typically interrelate objects of different 
types which should not be aggregated together like equivalent ob-
jects. For these mappings, we generalize the traverse operation to 
both mapping types and aggregated objects.   

aggregateTraverse (AO1, mt) → AO2  

={agg({ traverse({ok},m)| ok∈disagg(aok), m of mt  })| aok∈AO1} 

applies all association mappings of type mt for all objects in AO1 
and aggregates the resulting objects. Similarly, we generalize the 
map operator for association mappings and aggregated objects to 
obtain binary aggregated mappings: 

aggregateMap (AO1, mt) → AO1 × AO2  

={(ao1, ao2) | ao1∈AO1,  ao2∈aggregateTraverse ({ao1}, mt)} 

Example: Given a set AO1 of aggregated objects of DBLP and 
ACM authors, aggregateMap (AO1, AuthPubs) returns author-
publication pairs of aggregated objects that contain object in-
stances from DBLP or ACM or both. 

For aggregated mapping results MR1 ⊆  AO1 × AO2 and MR2 ⊆ 
AO3 × AO4 the operators join and compose are defined as follows 

join (MR1, MR2)  
= {(ao1,(ao2-ao3),ao4)|(ao1,ao2)∈MR1,(ao3,ao4)∈MR2, ao2≈ao3} 
compose(MR1,MR2) = ({ao1,ao4}|(ao1,ao2,ao4) ∈ join (MR1, MR2)) 

The given join semantics refers to an inner join, but left outer join 
etc. can be specified analogously. Join and compose also  need a 
duplicate detection to aggregate semantically equivalent objects.  

3.3 Script Example 
A script is a sequence of operator calls. Each operator call stores 
the results into a variable (denoted by a ‘$’-prefix). The following 
simple script example presents an approach to determine candi-
dates for the 10-Year Best Paper Award. 
$SIGMODPubs := queryTraverse (LDS=DBLP.Conf, {Name=”SIGMOD 1995”}, 

DBLPConfPubs) 
$CombinedConfPub:= aggregateSame ($SIGMODPubs, GoogleScholar) 
$CleanedPubs := fuseAttributes ($CombinedConfPub) 
$Result := sort ($CleanedPubs, "NoOfCitings“) 
In this example, step 1 uses a queryTraverse operation to query on 
the LDS DBLP.Conf to determine the DBLP id for the conference 
of interest and traversing to the associated publications. The used 
mapping DBLPConfPubs is assumed to determine complete in-
stances. Step 2 utilizes the same-mapping on publications between 
DBLP and Google Scholar to aggregate the DBLP values with the 
corresponding instances in Google Scholar. In step 3 we clean the 
aggregated objects by applying fuseAttributes. Finally, we sort the 
resulting set of fused publications on the attribute denoting the 
number of citations. The top items/publications in the final result 
set indicate likely candidates for the 10-Year Best Paper Award.  

Since operators can process many input objects at a time, the 
script does not only apply to a single conference but many. To de-
termine the most-cited publications of, say, a whole conference 
series, one could use a modified query in step 1 to select these 
conferences, e.g. SIGMOD or VLDB. The rest of the script can 
remain unchanged. 

4. MEDIATOR ARCHITECTURE 
Figure 4 gives an overview of the iFuice mediator architecture. Its 
main components are the repository (already described in Section 

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm

DBLP

DBLP
DBLP
DBLP

Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

GS
GS
GS
GS

Publication

Name: Generic schema matching with Cupid
URL: http://vldb.org...
Conference: VLDB 2001
Authors: Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
Name: Generic schema matching with Cupid
URL: http:// data.cs.washington.edu...
NoOfCit: 243
Authors: J Madhavan, PA Bernstein, E Rahm

DBLP

DBLP
DBLP
DBLP

Publication

GS
GS
GS
GS

Generic schema matching with Cupid
http://vldb.org...
http:// data.cs.washington.edu...
Jayant Madhavan, Philip A. Bernstein, Erhard Rahm
J Madhavan, PA Bernstein, E Rahm
VLDB 2001
243

DBLP
DBLP

DBLP

Publication

GS

GS
DBLP

GS

GSName:
URL:

Authors:

Conference:
NoOfCit:

aggregation attribute fusion
Publication
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2), mediator interface (MI), the fusion control unit (FCU), and the 
mapping execution service (MES). The MI provides two modes of 
operation. The interactive mode supports an explorative approach 
where users can execute mappings step by step. The script-based 
mode defines a batch of execution steps for the mediator, return-
ing a final result set. Operations are executed within the FCU, the 
central unit of the system. The mapping handler coordinates single 
mapping calls according to the appropriate mapping definition of 
the metadata model. It manages (temporary) mapping results for 
further operations. It also performs duplicate handling for aggre-
gating objects. The mapping execution service actually executes 
the called mappings and returns their results to the FCU.  

As a proof of concept we have implemented a first subset of the 
mediator functionality for interactive mapping execution (explor-
ative navigation). The prototype is implemented in Java and util-
izes a relational database system for the repository and mapping 
results. It can execute mappings and operation sequences as in the 
examples shown, including the example on the 10-year best paper 
award.  

5. RELATED WORK 
Most previous data integration approaches for web data sources 
utilize a global schema and a query mediator. In contrast to 
iFuice, these approaches do not utilize peer mappings and in-
stance correspondences. Moreover, the global schema tends to be 
much more complex than our domain model leading to increased 
effort to add sources or to deal with changing sources.  

More related to our approach is recent work on P2P databases and 
biological databases. P2P prototypes such as PeerDB and Piazza 
[12][17] focus on query processing across peer mappings without 
a global schema. PeerDB propagates IR searches, whereas Piazza 
reformulates queries based on metadata mappings. Queries refer 
to the peer schema where the query was initially posed. By con-
trast, iFuice focuses on instance-level correspondences and can 
apply a variety of executable peer mappings including queries. 
Moreover, we support a set of powerful operators (including ag-
gregation operators) and the execution of script programs.   

Several integration approaches in the bioinformatics area [16], 
[9], [7] utilize cross-references at the instance level to combine 
data from different sources. Systems like SRS [4] and our Gen-
Mapper prototype [1] materialize instance correspondences in 
mapping tables for improved performance. These efforts lack a 
sufficient consideration of the semantics of the cross references 
but expect the users to know what the cross references mean. The 
iFuice domain model differentiating different mapping types, in-
cluding different same-mappings, allows a much more focused 
data fusion. To our knowledge, the proposed framework of map-
ping operators and scripts is also unknown so far in the bioinfor-
matics domain.  

SEMEX [3] is an interesting personal information management 
system which utilizes a domain model and mappings similar to 
our approach. However, it only deals with centrally stored data, 
while we integrate data from different web data. Most previous 
work on data cleaning was done in the data warehouse area with a 
focus on duplicate identification [1][15]. The use of semantic ob-
ject-ids for data integration in the TSIMMIS mediator [13] has 
similarities to the utilization of ids in our same-mappings. 

6. CONCLUSION AND OUTLOOK 
iFuice combines a set of techniques to a new approach for inte-
grating information from diverse web data sources. It does not de-
pend on a global schema and utilizes explicit instance correspon-
dences and executable peer mappings. We proposed the use of a 
domain model and a mapping mediator to control the execution of 
a variety of such mappings. Furthermore, we introduced a set of 
powerful operators for mapping execution and data aggregation. 
An initial prototype for interactive mapping execution showed the 
viability and flexibility of the approach.  

In future work, we will fully implement the outlined approach and 
investigate techniques based on caching mapping tables to im-
prove performance. We plan to adopt the iFuice implementation 
to different domains and to support integration of both web data 
sources and local / private data sources.  
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Figure 4. Architecture of the iFuice mediator 


