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ABSTRACT
Model management is an approach to simplify the programming
of metadata-intensive applications. It offers developers powerful
operators, such as Compose, Diff, and Merge, that are applied to
models, such as database schemas or interface specifications, and
to mappings between models. Prior model management solutions
focused on a simple class of mappings that do not have executable
semantics. Yet many metadata applications require that mappings
be executable, expressed in SQL, XSLT, or other data transforma-
tion languages.

In this paper, we develop a semantics for model-management
operators that allows applying the operators to executable map-
pings. Our semantics captures previously-proposed desiderata and
is language-independent: the effect of the operators is expressed
in terms of what they do to the instances of models and mappings.
We describe an implemented prototype in which mappings are rep-
resented as dependencies between relational schemas, and discuss
algebraic optimization of model-management scripts.

1. INTRODUCTION
Many challenging problems facing information systems engineer-
ing involve the manipulation of complex metadata artifacts, or mod-
els, such as database schemas, ontologies, interface specifications,
or workflow definitions, and mappings between models, such as
SQL views, XSL transformations, or ontology articulations. The
applications that solve metadata manipulation problems are com-
plex and hard to build. One reason is due to low-level program-
ming interfaces, which provide access to the individual model ele-
ments, such as attribute definitions of database schemas. Program-
ming against such interfaces requires a lot of navigational code.
Another reason is that most approaches are language-specific and
application-specific, i.e., are developed for SQL, UML, or XML
and are not easily portable to other languages or applications.

Model management aims at providing a generic and powerful
environment to enable rapid development of metadata-intensive ap-
plications [6, 7]. In many of these applications, mappings must be
executable on instances of the models, such as databases and mes-
sages. Example applications include wrapper generation, message
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translation, data exchange, and data migration. In this paper, we
extend model management to cope with such executable mappings,
i.e., mappings that compute target instances from source instances,
or can be evaluated as constraints on instances.

In the core of the model-management approach is a set of alge-
braic operators that generalize the operations utilized across vari-
ous metadata applications. The operators are applied to models and
mappings as a whole rather than to their individual elements, and
thus simplify the programming of metadata applications. The op-
erators are designed to be generic, i.e., useful for various problems
and different kinds of metadata. The major model management
operators suggested in the literature include

• Match: create a mapping between two models.

• Compose: combine two successive mappings into one.

• Merge: merge two models into a third model using a mapping
between the two models.

• Extract: return a portion of a model that participates in a map-
ping.

• Diff: return a portion of a model that does not participate in a
mapping.

These operators can be used for solving schema evolution, data
integration, and other scenarios using short programs, or scripts [6,
8]. A script combines the operators so that the outputs produced by
one operator can be taken as inputs to another operator. The scripts
are executed by a model management system. The first prototype
of such a system, called Rondo, was presented in [27].

While the intuition behind the operators is well understood and
the operators were shown to be useful for solving practical prob-
lems, there exists no implementation of model management that is
capable of operating on executable mappings. The reason is pri-
marily due to the lack of rigorous semantics that explains what out-
puts should be produced if the input mappings are SQL views, XSL
transformations, database constraints, etc. And yet, the purpose of
many model-management scripts is to generate mappings that drive
data migration, message translation, or database wrapping. Such
mappings transform instances of models. How does a developer
know that a script generates mappings that transform instances as
expected? When designing a model-management system, how do
we know that our operator implementation is correct? The answers
require an understanding of the relationship between the models
and mappings returned by each operator and the transformations
expressed by those mappings on the states of those models. To ex-
plain that relationship, this paper develops a state-based semantics
for model management operators. Moreover, we applied the defini-
tions to two concrete languages and built a prototype that supports
mappings expressed as constraints using a subset of relational al-
gebra.
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Our first contribution is a specification of the semantics of each
model management operator on arbitrary models and mappings.
The semantics is specified by relating the instances of the opera-
tor’s input and output models. An instance of a model is a state
that conforms to the model. For example, an instance of a database
schema is a database state, and an instance of an XML schema is
an XML document. An instance of a mapping is a tuple of states,
one for each of the models involved in the mapping. For example,
an instance of a SQL view definition v is a pair (x, y) where x is
a database state and y is a state of the view schema computed by
v. For the purpose of defining the operators we do not specify the
nature of instances any further. We use the terms instance and state
interchangeably.

Our second contribution is to study two approaches to specifying
and manipulating executable mappings, one based on Rondo [27]
and a new approach that operates on mappings represented as logic
formulas. Our motivation for using Rondo was to exploit its data
structures and algorithms, and to avoid implementing a new sys-
tem from scratch.1 Rondo’s operators are defined for morphisms,
which are sets of uninterpreted correspondences between schema
elements. Morphisms are purely syntactic structures that cannot be
executed. They are useful in metadata applications that do not re-
quire executable mappings, such as model translation (e.g., UML
to IDL and even ER to SQL in many cases), dependency tracking,
and impact analysis. However, we show that it is possible to assign
semantics to a subset of Rondo’s language, which we call path-
morphisms, and to generate executable mappings from Rondo’s
outputs under certain assumptions.

Although morphisms are attractive due to their simplicity and
natural visual representation, their expressiveness is inherently lim-
ited. To overcome this limitation, we developed a new prototype
in which mappings are represented as sets of logical dependen-
cies between relational schemas. Our prototype can handle a much
broader class of executable mappings than we are able to support
by leveraging Rondo. We describe the architecture of the prototype
and its representation of models and mappings.

Our implementation efforts indicate that computing the results
of a single operator can be very expensive. In fact, some algo-
rithms are exponential in the size of mappings. Even worse, the re-
sults of an operator may not be expressible in the supported model
and mapping languages, so the script execution fails. As our last
contribution, we show that it may be possible to rewrite a model-
management script into an equivalent but different script. In certain
cases a script that fails can be rewritten as an executable one, and
an inefficient one can be optimized.

The individual algorithms, their correctness proofs, and the alge-
braic rewriting of scripts warrant a rigorous mathematical presen-
tation that is out of the scope of this paper. We lay out the main
ideas here and present further details in [28, 26].

The paper is organized as follows. In Section 2, we present a
motivating example that illustrates the operators and scripts using a
schema/view evolution scenario. Section 3 formally defines mod-
els, mappings, and operators. Section 4 defines the semantics of
the operators and presents further examples to support the intuition
behind our definitions. In Section 5, we focus on the implementa-
tion. Section 6 deals with the algebraic rewriting of scripts. Related
work is reviewed in Section 7. Section 8 is the conclusion.

2. MOTIVATING EXAMPLE
In this section, we present a motivating example that introduces
the main model-management operators. We refer to it throughout

1The source code and sample scripts of Rondo are available at
http://www-db.stanford.edu/∼modman/rondo/
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Figure 1: Schematic representation of the solution in motivating
example

the paper to explain the features and semantics of the individual
operators and to illustrate various technical points.

Consider a typical data management setting in which the data
is accessed via user views and is stored in a single integrated
database. The database schema is designed to support all deployed
user views. Facilitating schema and view evolution in such a set-
ting is challenging, since modifications to schemas and views rip-
ple through the entire data management infrastructure and require
painstaking adjustments of schema and view definitions. In the
example that we focus on, an update to a view schema triggers a
modification of the integrated database schema. This modification
prompts the database administrator to revise the schema. As a re-
sult, the views defined on the schema, including the updated one,
need to be adjusted. We present a way of automating this process
using model-management operators and illustrate it step-by-step.

Figure 1 shows a schematic representation of the solution. The
rectangles denote schemas, while mappings are shown as edges.
Assume that s is the schema of the integrated database that con-
tains two tables: Orders for storing customer orders and Software
for keeping the information about the software products and ven-
dors (see Figure 2). Orders has a functional dependency Customer
→ Name (not shown in the figure). Let s v be a view with view
schema v that is used to query the database. The view selects all
customers that bought ACME’s products and is defined as

v.M = πC,N(σ
V=“ACME”(s.O � s.S))

Table and column names are abbreviated using their initial letters.
The above and the following mapping expressions are summarized
for convenience in Figure 3.

Suppose that the view schema v has been edited to include the
columns DOB (“date of birth”) and IsCorporate for supporting a
new business policy for corporate customers. The relationship be-
tween v and the new view schema v′ is specified by the map-
ping v v′ produced as part of output of the schema editor:

v.M = πC,N(v′.M)

The database schema s needs to be augmented to store the new
information queryable via the new view schema. To do so, we need
to add to s the new schema elements that appear in v′ and update the
view definition. This task can be accomplished using the following
model-management script, which we explain line by line below:

1. s v′ = s v ◦ v v′

2. 〈vd, v
′ vd〉 = Diff(v′, Invert(s v′))

3. s vd = s v′ ◦ v′ vd

4. 〈sm, sm s, sm vd〉 = Merge(s, vd, s vd)
5. sm v′ = (sm s ◦ s v′) ⊕ (sm vd ◦ Invert(v′ vd))
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Figure 2: Schemas in motivating example

1. In Line 1, we determine the relationship s v′ between s and v′

by computing the composition of mappings s v and v v′:

πC,N(σ
V=“ACME”(s.O � s.S)) = πC,N(v′.M)

2. In Line 2, the operator Diff is applied to determine the new in-
formation that v′ adds to v, i.e., the portion of v′ that does not
participate in the mapping s v′. The operator Diff expects a
mapping between v′ and s. Therefore the operator Invert is ap-
plied prior to Diff to swap the left and right sides of the input
mapping. Diff produces the “difference” schema vd and a map-
ping v′ vd that relates it to v′ (see Figure 3).

3. Line 3 shows another composition that gives us the mapping
s vd between s and vd, which is needed to merge s and vd in
the next step.

4. The operator Merge takes as input the original database
schema s, the new portion of the view schema vd, and the map-
ping s vd that identifies “overlapping” information in s and
vd, which needs to be represented only once in the merged
schema sm. As a result, columns DOB and IsCorporate are
added to the table Orders in sm. The output mappings sm s
and sm vd describe how the merged schema relates to the in-
put schemas (mappings not shown in Figure 2).

5. In Line 5, we reconstruct the view definition between the
merged schema sm and the new view schema v′. As can be
seen in Figure 1, there exist two “paths” connecting sm and v′:
one via s and another one via vd. The first “path” relates the
unchanged schema elements in sm and v′, and is given by the
mapping composition sm s ◦ s v′:

πC,N(σ
V=“ACME”(sm.O � sm.S)) = πC,N(v′.M)

The second “path” relates the new elements and is given by the
composition sm vd ◦ Invert(v′ vd):

πC,D,I(σV=“ACME”(sm.O � sm.S)) = πC,D,I(v
′.M)

 s_v: πC,N(σV="ACME"(s.O⋈s.S)) = v.M

v_v′: v.M = πC,N(v′.M)

s_v′: πC,N(σV="ACME"(s.O⋈s.S)) = πC,N(v′.M)

v′_vd: πC,D,I(v′.M) = vd.M

s_vd: πC(σV="ACME"(s.O⋈s.S)) = πC(vd.M)

sm_s: πC,N,P(sm.O) = s.O
sm.S = s.S

sm_vd: πC,D,I(σV="ACME"(sm.O⋈sm.S)) = vd.M

s′_sm: s′.O=πC,P (sm.O)
s′.S = sm.S
s′.C = πC,N,I(sm.O)

sm_v′: πC,N,D,I(σV="ACME"(sm.O⋈sm.S)) = v′.M

s′_s: s′.O=πC,P (s.O)
s′.S = s.S
πC,N(s′.C) = πC,N(s.O)

s′_v′: πC,N,I(σV="ACME"(s′.O⋈s′.S⋈s′.C)) = πC,N,I(v′.M)

v′_ve: πC,N,I(v′.M) = ve.M

s′_ve: πC,N,I(σV="ACME"(s′.O⋈s′.S⋈s′.C)) = ve.M
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Figure 3: Mappings in motivating example

The operator Confluence (denoted by ⊕) is used to create a
single mapping sm v′ from the two partial mappings above.
Exploiting functional dependency C → {N,D,I}, we get:

πC,N,D,I(σV=“ACME”(sm.O � sm.S)) = v′.M

After running the above script, the database administrator in-
spects the merged schema sm and realizes that table Orders con-
tains substantial redundancy, because customer data is repeated in
each order, so she normalizes the schema: customers are moved to
a separate table Customers. The administrator also discovers that
storing personal information such as date of birth violates the com-
pany’s privacy policy; she deletes the new column DOB. The rela-
tionship between the original merged schema sm and the revised
schema s′ is specified by the mapping s′ sm.

To migrate the data from the currently deployed schema s to the
revised schema s′, the administrator computes the mapping s′ s as

6. s′ s = s′ sm ◦ sm s

The mapping s′ s is used to automatically derive a set of data
migration operations that include creating a new table Customers
and deleting customer Name from Orders.

All views defined on s need to be updated to operate on the re-
vised merged schema s′. We present the script for updating the
view v′ that triggered the modification of s. To update any other
view vi on s, simply replace sm by s and v′ by vi in the script:

7. s′ v′ = s′ sm ◦ sm v′

8. 〈ve, v
′ ve〉 = Extract(v′, Invert(s′ v′))

9. s′ ve = s′ v′ ◦ v′ ve

7. In Line 7, we obtain the mapping between the revised schema s′

and the view v′ by composing the mapping s′ sm that captures
the schema revisions with the existing view definition sm v′.
The mapping s′ v′ is computed by exploiting the PK/FK con-
straints in schemas s′, sm, and v′.

8. In Line 8, we use the operator Extract to eliminate the “dan-
gling” schema element DOB from the view schema v′ that has
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been deleted from sm. Extract returns the portion ve of the
view schema v′ that participates in the mapping s′ v′ and the
mapping v′ ve that ties it back to v′.

9. As a last step, we reconstruct the view definition by composing
s′ v′ obtained in Line 7 with the output mapping of Extract.
The composition yields the updated view definition

πC,N,I(σV=“ACME”(s
′.O � s′.S � s′.C)) = ve.M

The above script applied model-management operators to exe-
cutable mappings, thereby automating manipulation of view defini-
tions and dependencies between schemas. Similar kinds of scripts
can be used to solve other problems, such as reverse engineering
[6] or 3-way merge [25]. In the subsequent sections, we define the
semantics of the operators. The prototype that we built operates on
relational algebra expressions such as the ones shown in Figure 1,
but our definitions of operator semantics are applicable to any data
transformation language.

3. PREREQUISITES
We present the basic concepts of model management, including
models, mappings, operators, and scripts, and explain the notation
used in the paper. In the examples, we use relational schemas and
assume set semantics for the relations and queries. In our discus-
sion, we use the terms query and view synonymously. More pre-
cisely, a view is a named query, whose result schema, called view
schema, is specified explicitly.

Models. A model is a set of instances. Sometimes, a model can
be denoted by an expression in a concrete language, such as SQL
DDL, XML Schema, BPEL4WS [5], or CORBA IDL [35]. For ex-
ample, a relational schema denotes a set of database states; a work-
flow definition denotes a set of workflow instances; a programming
interface denotes a set of implementations that conform to the in-
terface. To refer to models, we use variables s, v,m,m1,m2, etc.
When x is an instance of model m, we write x ∈ m. When we
use an expression to denote a model, we put it in French quotation
marks, such as �E� for expression E.

EXAMPLE 1 Each instance of the view schema ve = �My-
Cust(Customer, Name, IsCorporate)� in Figure 2 is an entire ma-
terialized view containing a populated relation MyCust.

Mappings. A mapping is a relation on instances. In this paper,
we focus on binary mappings, i.e., those that hold between two
models. Sometimes, a mapping can be denoted using an expres-
sion in a concrete language such as relational algebra, SQL DML,
XSLT, GLAV, etc. We put such expressions in French quotation
marks.2 To refer to mappings, we use variables map1, map2,
m1 m2, m2 m3, etc.

EXAMPLE 2 The mapping

s v′ = �πC,N(σ
V=“ACME”(s.O � s.S)) = πC,N(v′.M)�

is a binary relation on instances of s and v′ of Figure 2. That is,
for all databases x ∈ s, y ∈ v′: (x, y) ∈ s v′ if and only if the
mapping constraint is satisfied for x and y.

2To be well-defined, mapping expressions need to include the defi-
nitions of the models they reference (as done in [16, 28]); we omit
them here for brevity.

A mapping can be thought of as a constraint that holds between
two models [9, 22, 23]. If m1 m2 = m1 × m2, the constraint
is empty; if m1 m2 = ∅, it is contradictory. In general, m1 m2

is an arbitrary binary relation on instances, which may be total,
partial, functional, surjective, etc. A query is a partial functional
mapping [1]. A query (and hence a mapping in general) may not
be expressible in a specific query language.

If (x, y) ∈ m1 m2 we say that instances x and y are consistent
under m1 m2, i.e., can co-exist simultaneously in the application
that deploys the mappingm1 m2. If each instance ofm1 is consis-
tent under m1 m2 with at least one instance in m2 and vice versa,
we call models m1 and m2 consistent under m1 m2 (or conflict-
free as in [9]). That is,m1 and m2 are consistent under m1 m2 iff
m1 m2 is a total surjective mapping between m1 and m2.

Operators. A model-management operator takes models and
mappings as input and produces models and mappings as output.
Formally, a model-management operator is an n-ary predicate on
models and mappings. The attributes of the predicate are parti-
tioned into input attributes and output attributes. (We define opera-
tors as predicates because they may produce different outputs that
are all consistent with the definition of the operators.)

To compute the outputs of an operator effectively for all inputs,
the following property is essential:

DEFINITION 1 (OPERATOR CLOSURE) Let L be a language for
specifying models and mappings, and let θ be a model-management
operator. L is closed under θ if given any inputs to θ in L the out-
puts can also be expressed in L.

Scripts. A model-management script is a conjunctive formula
built from model-management operators. The variables and con-
stants in a script refer to models and mappings. Computing the
script means finding a valid substitution, which is one that replaces
all variables by constants (i.e., concrete model and mapping defini-
tions) and makes the script a true formula. For example, substitut-
ing the variables in the script presented in Section 2 by the schemas
and mappings shown in Figures 2-3 yields a true formula.

4. OPERATORS
In this section we suggest a state-based semantics for the six major
operators proposed in the literature [6, 7, 8, 27]: Match, Compose
(◦), Merge, Extract, Diff, and Confluence (⊕), as well as five auxil-
iary operators: cross-product, Id, Invert, Domain, and Range.

Of all the operators, Match plays a special role. Given two mod-
els m1 and m2, the operator returns a mapping m1 m2 that holds
between the models, denoted as m1 m2 = Match(m1,m2). The
operator Match inherently does not have formal semantics. It gives
us what we know about the relationship between models in a par-
ticular application context. Sometimes this relationship can be dis-
covered semi-automatically [31] but ultimately Match depends on
human feedback (and hence may be partial or even inaccurate).

For the auxiliary operators and the composition operator we
adopt the standard algebraic definitions:

• m1 ×m2 =df {(x, y) | x ∈ m1 and y ∈ m2}
• Invert(map) =df {(y, x) | (x, y) ∈ map}
• Domain(map) =df {x | ∃y : (x, y) ∈ map}
• Range(map) =df Domain(Invert(map))

• Id(m) =df {(x, x) | x ∈ m}
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• map12 ◦ map23 =df {(x, z) | ∃y : (x, y) ∈ map12 ∧
(y, z) ∈ map23}

Thus, many well-known properties hold, such as

1. Domain(Id(m)) = m

2. Invert(Invert(map)) = map

3. map1 ◦ (map2 ◦map3) = (map1 ◦map2) ◦map3

4. map1 ◦map2 = Invert(Invert(map2) ◦ Invert(map1))

5. Mapping map is a surjective function onto m if and only if
Invert(map) ◦map = Id(m)

The definitions of Merge, Extract, and Diff given below capture
the necessary conditions on the operators. However, they allow the
operators to produce non-unique output models and mappings. Tra-
ditionally, in problem settings that have this property, various opti-
mality criteria have been used to drive the computation of the out-
puts, including query evaluation cost [2], size of schema instances
[21, 38], or syntactic properties, such as size of expressions used
for schemas and queries [9, 36]. In Section 6, we discuss an ad-
ditional minimality requirement that facilitates algebraic rewriting
and optimization of scripts.

4.1 Merge operator
In the motivating example of Section 2, we use the operator Merge
to incorporate the new schema elements of vd into an existing
schema s. One obvious requirement for this task is to preserve all
information in the input schemas. And yet, since column Customer
appears in both schemas, our intuition suggests that it is sufficient
to represent it only once in the merged schema.

These desiderata strongly resemble those of view integration, if
we consider s and vd to be virtual views for which an integrated
schema needs to be produced. We motivate our definition of Merge
by the view integration problem, as explained in the following sce-
nario:

EXAMPLE 3 Consider a company with two departments, each of
which manages its own database. Let m1 and m2 be the respec-
tive database schemas (see Figure 4). Suppose m1 and m2 are
not disjoint; for instance, both describe employee data. The map-
ping m1 m2 describes the mutually consistent states of m1 and
m2.

To simplify the management of data across the departmental
databases, the company decides to move all data to a centralized
database, which the departments access using view schemas m1

and m2. Thus, the goal is to create a schema m for the central-
ized database and views m m1 and m m2, such that m captures
all the information needed by the departments. If the autonomy of
the departments needs to be restored later on, it should be possible
to reconstruct m1, m2, and m1 m2 from m, m m1, and m m2,
i.e., the transition to the centralized database must not lose infor-
mation.

The following is the formal definition of Merge, which captures
the properties of the above scenario and our desiderata for the mo-
tivating example.

DEFINITION 2 (MERGE) Let m1 m2 be a mapping between m1

and m2. 〈m,m m1,m m2〉 = Merge(m1,m2,m1 m2) holds
only if

i. m m1 and m m2 are (possibly partial) surjective functions
onto m1 and m2, respectively

m

m1 m2

m_m1

merged schema

m_m2

mapping
m1_m2

Figure 4: Illustration of Merge (Example 3)

ii. m1 m2 = Invert(m m1) ◦m m2

iii. m = Domain(m m1) ∪ Domain(m m2)

Condition (i) states thatm m1 and m m2 are views on m. Due
to surjectivity, m1 = Range(m m1) and m2 = Range(m m2),
so m contains all the information of m1 and m2. Condition (ii)
guarantees that the input mapping m1 m2 can be reconstructed
from the views. That is, we can obtain the mutually consistent
states of m1 and m2 by the composition Invert(m m1) ◦ m m2.
Condition (iii) ensures that the information in m is used either in
view m m1 or view m m2.

EXAMPLE 4 In the motivating example, Merge is used in Line 4 of
the script:

4. 〈sm, sm s, sm vd〉 = Merge(s, vd, s vd)

The input mapping is given as

s vd = �πC(σ
V=“ACME”(s.O � s.S)) = πC(vd.M)�

The operator produces the mappings

sm s = �πC,N,P(sm.O) = s.O; sm.S = s.S�

sm vd = �πC,D,I(σV=“ACME”(sm.O � sm.S)) = vd.M�

Clearly, sm s and sm vd are total surjective views: we can re-
construct the state of s and vd uniquely given a snapshot of sm.
Moreover, each state of s and vd is covered by some state of sm,
so condition (i) holds. The views are total, hence condition (iii) is
satisfied. Consequently, we can represent all information of s and
vd using sm.

The output mappings sm s and sm vd allow us to reconstruct
the constraints between s and vd by composition as s vd =
Invert(sm s) ◦ sm vd. The mapping sm vd has a join condition,
which legitimately requires sm to have values for DOB and IsCor-
porate only for customers who purchased ACME’s products. In
contrast, a more straightforward πC,D,I(sm.O) = vd.M would in-
correctly place this requirement on all customers. Condition (ii)
prohibits such a straightforward mapping.

4.2 Extract operator
In Line 7 of the script in the motivating example, we obtain the
mapping s′ v′ that links the modified view schema v′ and the
database schema s′ adjusted by the administrator:

πC,N,I(σV=“ACME”(s′.O � s′.S � s′.C)) = πC,N,I(v
′.M)

Observe that mapping s′ v′ is not functional: it does not tell
us how to obtain DOB values in the view relation v′.M from the
database. To retain just the portion of the view that we know how
to populate from the database, we use the operator Extract. The
operator embodies the primary correctness requirement of view se-
lection in data warehousing, namely, that of preserving the query-
answering capability of the selected view. To illustrate, consider
the following scenario:
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Figure 5: Illustration of Extract (Example 5)

EXAMPLE 5 Let m be a database schema and map be a query
over m. Our goal is to select a set of view relations to ma-
terialize in a data warehouse. The query map against m must
be answerable using the warehouse schema mx (see Figure 5).
The view definition m mx tells us how to populate the ware-
house from the database. We can reformulate our original query
map to run against mx by composing the reverse transformation
Invert(m mx) and map.

The following definition describes formally the properties ofmx

and m mx in the above example.

DEFINITION 3 (EXTRACT) Let map be a mapping from m.
〈mx,m mx〉 = Extract(m,map) holds only if

i. m mx ◦ Invert(m mx) ◦map = map

ii. mx = Range(m mx)

In the definition, m mx is the database transformation from m
to the new schema mx, while Invert(m mx) ◦map is the updated
query over mx. Hence, condition (i) requires the updated query
over mx to produce the same results as the original query map
over m. Condition (ii) makes the output model mx to be the range
(i.e., view schema) of m mx.

Extract returns a portion mx of m that is “observable” through
mapping map. If map is a query, Definition 3 can be satisfied by
choosing mx = m′, m mx = map. In fact, we can always create
a data warehouse by directly using the query workload map. Fur-
thermore, for any map we can populate the warehouse by copy-
ing the entire database, i.e., a trivial implementation of Extract is
mx = m and m mx = Id(m). In general, however, it may be
possible to construct more compact solutions that still satisfy con-
ditions (i)-(ii), as illustrated below.

EXAMPLE 6 Consider again the motivating example of Section 2.
Extract is used in Line 8:

8. 〈ve, v
′ ve〉 = Extract(v′, Invert(s′ v′))

and yields the output

ve = �MyCust(Customer,Name, IsCorporate)�

v′ ve = �πC,N,I(v
′.M) = ve.M�

The view schema ve contains precisely those columns of v′ that
are referenced in the input mapping s′ v′. Their presence in ve is
required to satisfy condition (i):

v′ ve ◦ Invert(v′ ve) ◦ Invert(s′ v′) = Invert(s′ v′)

The condition is not satisfied trivially, since the composition v′ ve◦
Invert(v′ ve) does not yield an identity mapping. Instead, the com-
position produces a mapping that groups the database states of v′

by the columns Customer, Name, and IsCorporate. These are ex-
actly the columns referenced in the mapping s′ v′, so the above
equality holds.
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Figure 6: Illustration of Diff (Example 7)

4.3 Diff operator
In Section 2, the operator Diff is used to compute the “difference”
between the original view schema v and its modified version v′.
To motivate the formal definition, we draw upon the problem of
computing view complements in data warehousing. We continue
with the scenario of Example 5.

EXAMPLE 7 Updates of the materialized view relations in the
warehouse mx generate a heavy load on the database m due to
maintenance queries. To offload the database, we set up a comple-
mentary database with schema md, which stores the portion of the
data of m that is not in mx. The view m md populates md with
data from m. Together, m md and m mx describe how the data
in the warehouse relates to the data in the complementary database,
namely that mx md = Invert(m mx) ◦ m md. The original
database can be reconstructed by merging mx and md based on
mx md.

The following definition specifies formally the properties of md

and m md in the above example:

DEFINITION 4 (DIFF) Let map be a mapping from m.
〈md,m md〉 = Diff(m,map) holds only if for any mx,m mx

satisfying

〈mx,m mx〉 = Extract(m,map)

the following condition holds:

〈m,m mx,m md〉 =
Merge(mx,md, Invert(m mx) ◦m md)

Notice that Diff has a trivial solution md = m, m md = Id(m),
which we obtain by copying the whole database. However, often it
is possible to construct a result that has less redundancy:

EXAMPLE 8 In the motivating example, Diff is used in:

2. 〈vd, v
′ vd〉 = Diff(v′, Invert(s v′))

with the following inputs and outputs:

v′ = �MyCust(Customer,Name,DOB, IsCorporate)�

s v′ = �πC,N(σ
V=“ACME”(s.O � s.S)) = πC,N(v′.M)�

vd = �MyCust(Customer,DOB, IsCorporate)�

v′ vd = �πC,D,I(v
′.M) = vd.M�

The difference schema vd contains the two columns DOB and Is-
Corporate that do not appear in the mapping s v′. In addition, it
contains the primary key Customer. The key column is needed to
link the tuples of vd to those of v′. The view v′ vd complements
the mapping Invert(s v′). That is, vd and v′ vd satisfy Definition 4
for any extracted vx and v′ vx. In particular, for

vx = �MyCust(Customer,Name)�

v′ vx = �πC,N(v′.M) = vx.M�

vx vd = �πC(vx.M) = πC(vd.M)�
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it is easy to check that

vx vd = Invert(v′ vx) ◦ v′ vd

〈vx, v
′ vx〉 = Extract(v′, Invert(s v′))

〈v′, v′ vx, v
′ vd〉 = Merge(vx, vd, vx vd)

Outputs vd and v′ vd yield a correct “difference”; in contrast, drop-
ping the key column from vd produces a lossy complement.

4.4 Confluence operator
Confluence is a new operator that we developed by analyzing the
properties of several model-management scenarios, such as change
propagation [6, 27]. It “unifies” two partial or possibly inconsistent
mappings map1 and map2 between models m1 and m2. Map-
pings map1 and map2 may have been designed independently by
two engineers, or obtained as results of other model-management
operators. In effect, Confluence merges two mappings, as opposed
to merging models. It is defined as follows:

DEFINITION 5 (CONFLUENCE, ⊕)

map1 ⊕map2 =df (map1 ∩map2)
∪ {(x, y) ∈ map1 | x �∈ Domain(map2) ∧ y �∈ Range(map2)}
∪ {(x, y) ∈ map2 | x �∈ Domain(map1) ∧ y �∈ Range(map1)}
In the motivating example of Section 2, the mappings that are in-

puts to Confluence agree on the domain and range (see explanation
for Line 5). In this case, the result of confluence is a conjunction
of the constraints in the input mappings, i.e., map1 ⊕ map2 =
map1 ∩map2. We touch upon the general case in Section 5.2.

5. IMPLEMENTATION
To implement the operators for executable mappings, we are pur-
suing two complementary approaches. The first leverages the im-
plementation of [27], in which mappings are represented as conve-
nient data structures, called morphisms. Morphisms are attractive
because of their simplicity, intuitive visualization, and ease of pro-
gramming. The algorithms that operate on morphisms are highly
efficient. On the downside, morphisms have limited expressive
power. Thus, as a more general approach, we developed a new pro-
totype in which mappings are represented as calculus expressions.
In the following subsections we elaborate on the two techniques.

5.1 Implementing mappings for Rondo
One way to gain the benefits of executable mappings is to reuse an
existing implementation of model management provided by Rondo
[27]. It precisely specifies the metadata artifacts produced as output
by its operators, but it does not specify a semantics for its mapping
language, called morphisms. We developed a state-based seman-
tics for a subset of that language, called path-morphisms, which
enables us to generate executable mappings from the outputs of
Rondo scripts.3 To illustrate our approach, we present a restrictive
interpretation of morphisms, and mention some extensions.

We start with some preliminary definitions: A morphism is a set
of pairs of elements of two schemas, such as XML attributes or
relational tables. For example, the morphism denoted by the arcs
between schemas v and v′ in Figure 2 is given by

�〈v.M.C, v′.M.C〉, 〈v.M.N, v′.M.N〉�
We define path-morphisms for a subset of relational schemas that
we call tree schemas: Let graphGs of a relational schema s be a di-
rected graph whose nodes are relations and vertices are foreign-key
3In addition to schemas and morphisms, Rondo uses a third struc-
ture called selectors. We treat selectors as identity morphisms on
subsets of schema elements.

to primary-key (FK-PK) relationships. Schema s is a tree schema
if (i) Gs is a forest of trees, (ii) each relation in s has a primary
key, and (iii) each FK-PK join is lossless. Essentially, each tree in
a tree schema is a nested relation, or a snowflake schema as used
in data warehousing. Lossless FK-PK joins ensure that all tuples in
the PK-table are referenced from the FK-table.

The root key KT of tree T is the primary key of the root rela-
tion of T . Analogously, the root key Ke of a schema element e
is the root key KT of the tree T that contains e. Trees T1, T2 are
connected by morphism map if map contains an arc between an
element of T1 and an element of T2. We define path-morphisms as
follows:

DEFINITION 6 (PATH-MORPHISM) Let map be a morphism con-
necting tree schemas m1 and m2. If map connects each tree of
one schema to at most one tree of the other schema and map con-
nects the root keys of every pair of connected trees, then map is a
path-morphism.

The algorithm MorphEx shown below generates a relational al-
gebra expression Σ for a path-morphism map. The algorithm ex-
ploits the fact that there is at most one join path between every two
relations in a tree schema.

Algorithm MorphEx(map)
Σ := {};
for each pair of attributes 〈e1, e2〉 ∈ map do
K1 := root key for e1;
K2 := root key for e2;
path1 := RelationOf(e1) � · · · � RelationOf(K1);
path2 := RelationOf(e2) � · · · � RelationOf(K2);
Σ = Σ ∪ {πK1,e1(path1) = πK2,e2(path2)};

end for
return Σ

EXAMPLE 9 Consider again relational schemas v and v′ in Fig-
ure 2. Let map be the morphism between the schemas given by
the two arcs that connect the schemas. It is easy to verify that both
schemas are tree schemas andmap is a path-morphism such that Σ
is the conjunction of the following individual constraints:

1. πC(v.M) = πC(v′.M)
2. πC,N(v.M) = πC,N(v′.M)

Constraint (1) is entailed by (2) and is redundant.

Let LP be the language whose schemas are tree schemas and
mappings are path-morphisms. Although LP has limited expres-
siveness, it can represent schemas and mappings in many practical
change propagation and schema evolution scenarios. Moreover, the
definition of tree schemas and path-morphisms can be easily ex-
tended to XML tree schemas in which XML types correspond to
relational tables and type references play the role of PK-FK depen-
dencies.

Figure 7 illustrates how Rondo can be applied to obtain exe-
cutable mappings. The following proposition states the conditions
under which it is possible. Since Match has no formal semantics,
we assume that Match is used to obtain all morphisms required as
input prior to executing the script:

PROPOSITION 1 If the schemas and morphisms that are inputs to
a script are in LP and are closed under Compose, Confluence, and
Invert, then the mapping expressions generated by the MorphEx
algorithm from the output models and mappings of Rondo satisfy
the state-based semantics of Section 4.
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Figure 7: Using Rondo to compute executable mappings

The closure criterion (see Definition 1) requires that the com-
position and confluence of the input path-morphisms (and their
inverses) be expressible as path-morphisms. It can be effectively
tested by enumerating all compositions and confluences of pairs of
non-inverted and inverted input mappings and checking that each
of them yields a path-morphism. If the closure property holds, the
expressions produced by the MorphEx algorithm are correct and
can be deployed in metadata applications to do constraint checking
or data migration (if the output mappings are functional).

For 1:1 path-morphisms whose only connected keys are root
keys we can make an even stronger claim: whenever the input mor-
phisms fall into this class, we can always compute the correct map-
ping expressions from the results of scripts. It works because in
this case the conjunction of the constraints in the input mappings
does not imply any within-schema constraints, which would not be
expressible as a morphism.

To appreciate the positive results that we presented above for
path-morphisms, consider a simple extension in which we do not
require path-morphisms to connect root keys.

EXAMPLE 10 Let morphisms map12, map23 and their relational
algebra expressions be given as

m1 = �R(A)�, m2 = �S(A,B)�, m3 = �T(B)�

map12 = �〈R.A,S.A〉� = �R = πA(S)�

map23 = �〈S.B,T.B〉� = �T = πB(S)�

Notice that map23 is not a path-morphism. The mapping con-
straints and the primary key constraint on S imply that S is a func-
tion from R onto T. That is, composition map12 ◦ map23 must
specify that R contains at least as many different values as T. This
constraint is not expressible by a path-morphism, nor by any finite
first-order formula.

We found that extending the interpretation of morphisms to cover
more expressive classes of mapping expressions is quite challeng-
ing. It is also rather important, since many scenarios require richer
expressions than path-morphisms. For example, in the motivating
scenario of Section 2, Customer is not a key of s, sm, or s′, so s v,
s sm, and s′ ve are not path-morphisms.

5.2 Moda: a new prototype for model man-
agement

One approach to supporting richer expressions is to represent map-
pings directly as logic formulas, instead of encoding them in mor-
phisms. We therefore implemented a new model management sys-
tem, Moda. In Moda, models are relational schemas, and mappings
are logic formulas that express executable data transformations (as
opposed to the graph schemas and morphisms of Rondo). The core
of Moda is an implementation of the main model management op-
erators: Compose, Extract, Diff, Merge, Confluence, Domain, and
Range. In this section, we describe Moda’s mapping language and
the semantics of its operators.

Currently, Moda supports mapping formulas expressed as em-
bedded dependencies [1, p. 217], i.e., sentences of the form

∀x(ϕ(x) → ∃y(ψ(x,y)))

where x, y are lists of variables and ϕ, ψ are conjunctions of re-
lational or equality atoms. Embedded dependencies include GLAV
constraints of the formQ1 ⊆ Q2, whereQ1,Q2 are select-project-
join queries. In our implementation, dependencies are represented
using data structures that mimic the parse trees of the expressions.

A relational schema is a tuple (σ,Σ), where σ =
{R1,R2, . . . ,Rn} is a schema signature and Σ is a set of embed-
ded dependencies over σ. Typically, Σ contains functional and
inclusion dependencies over the signature. A relational mapping is
a tuple (s1, s2,Σ12), where s1 and s2 are relational schemas and
Σ12 is a set of embedded dependencies over the signatures of s1
and s2. A set of dependencies is interpreted as a conjunction.

EXAMPLE 11 In the motivating example, the view s v is given by
the relational algebra expression

πC,N(σ
V=“ACME”(s.O � s.S)) = v.M

In the prototype, it is represented as (s, v,Σ) where Σ is

{∀c∀n∀p(s.O(c, n, p), s.S(p, “ACME”)) → v.M(c, n)),
∀c∀n(v.M(c, n) → ∃p(s.O(c, n, p), s.S(p, “ACME”)))}

Let LR be the language whose expressions are relational
schemas and mappings as defined above. To implement the def-
initions of Section 4, we need to specify the state-based seman-
tics of LR, which is defined as follows. An instance of relational
schema s = ({R1, . . . ,Rn},Σ) is a database x = 〈r1, . . . , rn〉
such that ri is a finite relation of type Ri and x satisfies every de-
pendency in Σ. An instance of relational mapping (s1, s2,Σ12)
is a pair (x, y) of databases such that x = 〈r1, . . . , rn〉 is an
instance of s1, y = 〈t1, . . . , tm〉 is an instance of s2, and the
database 〈r1, . . . , rn, t1, . . . , tm〉 satisfies every dependency in
Σ12. That is, the mapping given by (s1, s2,Σ12) is guaranteed
to satisfy Σ12 and all schema constraints of s1 and s2.

Implementation of operators. To implement the operators
for LR, we need algorithms that take LR models and mappings as
input and produce as output LR models and mappings that satisfy
the definitions of Section 4. It turns out that LR is not closed under
the model-management operators, i.e., some outputs may not be
representable in LR, but only in some higher-order language, such
as existential second-order logic (∃SO). In general, it is undecid-
able whether or not a given ∃SO-formula can be represented by an
equivalent first-order formula [39]. Therefore, our algorithms need
to exploit the properties of the operators and their inputs to com-
pute the outputs under some sufficient conditions. Below we give a
high-level overview of what it takes to implement the operators.

We start with the operator Compose. Letmap12 = (s1, s2,Σ12)
and map23 = (s2, s3,Σ23) be the input mappings, such that s2 =
({R1, . . . ,Rn},Σ2). The LR-result of composition, if it exists, is
given by (s1, s3,Σ13) where Σ13 is equivalent to a ∃SO-formula

∃R1 . . .∃Rn(Σ12 ∧ Σ2 ∧ Σ23)

We present a general algorithm for composing embedded depen-
dencies in [28]. To sketch: First, we skolemize the dependencies
as SO dependencies, as in [16]. Second, we eliminate the existen-
tial predicates of the intermediate schema, obtaining a deductive
closure restricted to source and target predicates. Finally, we elim-
inate existential Skolem functions using a multi-step procedure.
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The operators Domain and Range can be computed using a
similar reduction algorithm [28]. To see that, notice that Do-
main(map12) is given by (σ1,Σ

d
12), where σ1 is the schema sig-

nature of s1 and Σd
12 is an LR-reduction of the ∃SO-formula

∃R1 . . .∃Rn(Σ12 ∧ Σ2)

If the domain and range constraints for mappings map1 and
map2 are Σd

1 , Σr
1 and Σd

2 , Σr
2, respectively, then the result of Con-

fluence is given by

(Σd
1 ∨ Σr

1 → Σ1) ∧ (Σd
2 ∨ Σr

2 → Σ2)

The above formula still needs to be translated to LR if such a re-
duction exists. If map1 and map2 are both total and surjective
then Σd

1 ∨ Σr
1 and Σd

2 ∨ Σr
2 evaluate to true, and confluence can be

computed as a conjunction Σ1 ∧ Σ2 of mapping constraints.
The implementation of Invert is straightforward, since the map-

ping expressions of LR are symmetric with respect to the “left”
and “right” schema. That is, for map = (s1, s2,Σ12) we ob-
tain Invert(map) as (s2, s1,Σ12). Implementing Invert for non-
symmetric languages, such as SQL, is far more challenging.

As we pointed out in Section 4, the outputs of the operators Ex-
tract, Diff, and Merge are not determined uniquely. The optimality
criterion that drives our current implementation is based on the size
of expressions used for schemas and mappings, i.e., it favors com-
pact output schemas and mappings over more verbose ones.

Under these assumptions, operator Extract can be implemented
using an algorithm similar to that of [27]. Let 〈sx, s sx〉 =
Extract(s,map), where s = (σ,Σ), sx = (σx,Σx). The output
schema sx is computed by copying into σx all relational symbols
in σ that occur in the mapping map, and inferring all constraints
from Σ that are relevant for σx. (Effectively, schema constraints are
added to mapping constraints before invoking the operator.) For
sx constructed in this fashion, the mapping s sx is given as the
view that populates each relation copied into sx from its respective
source relation in s. Ifmap is a query on s, 〈sx, s sx〉 can be made
more compact: sx can be set to Range(map), and s sx can be set
to map. However, determining that map is indeed a query, i.e., a
functional mapping, requires a non-trivial analysis of the mapping
expression [33].

Analogously to Extract, the operator Diff is computed using an al-
gorithm that picks the relations not occurring in the input mapping.
However, a more optimal solution can be obtained by exploiting the
algorithms developed for computing relational view complements.

In a general case, the solution to Merge can be stated as a
second-order formula, which we omit here for brevity. However,
in some scenarios, such as data exchange [15], mappings are to-
tal and surjective, i.e., do not imply any within-schema constraints
(such mappings are called conservative augmentations in [23]). In
these cases, we can use a simpler strategy. Let s1 = (σ1,Σ1),
s2 = (σ2,Σ2), and map12 = (s1, s2,Σ12) be the inputs to the
computation 〈s, s s1, s s2〉 = Merge(s1, s1,map12). Then, the
output schema s is given as s = (σ1 ∪ σ2,Σ1 ∧ Σ2 ∧ Σ12), where
σ1 ∪σ2 is the union of the schema signatures (with renaming upon
name collisions). The mappings s s1 and s s2 are constructed as
views on s as in the Extract implementation. Typically, the signa-
ture σ1 ∪ σ2 contains substantial redundancy, which can be par-
tially eliminated using equivalence-preserving schema transforma-
tions (e.g., those of [9, 32, 36]). Upon applying such transforma-
tions, the mappings s s1 and s s2 need to be adjusted accordingly
and may become more complex, as illustrated in Example 4.

Architecture. The architecture of our prototype is depicted in
Figure 8. The operators are invoked directly from a C# program and
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Figure 8: Architecture of the prototype

manipulate relational schemas and mappings as in-memory data
structures. The implementation of the operators uses a library of
building blocks that we developed for elementary formula manip-
ulation. The library includes algorithms for unification, resolution,
transforming a formula into implicative normal form, etc.

Currently, the implementation comprises about 12000 lines of
code, about half as much as Rondo’s code base. It is relatively
compact since it supports only the relational case, has no graphi-
cal user interface, and does not store schemas and mappings in a
database system. A parser for mapping expressions is included.

We found that implementing the operators for LR is both chal-
lenging and computationally expensive. Most notably, computing
the composition, which seems to be the most frequently used op-
erator, requires exponential worst-case time in the size of input
mappings [28]. This is not surprising, given that many practical
problems involving mappings are NP-hard (e.g., query optimiza-
tion, query containment, and answering queries using views).

The overall running time of scripts largely depends on the com-
plexity of the schema constraints and mapping expressions, as op-
posed to just their size. Because of that, it is difficult to present
meaningful performance graphs. In our initial experience, scripts
run in seconds only for quite simple mappings, such as the ones in
Figure 2, and may require minutes for more complex ones. Devel-
oping more complete and more efficient algorithms is the subject
of our ongoing work.

As a first application of Moda, we built a data migration tool
to support schema evolution in a data-intensive application. The
tool generates XSL transformations to migrate data from one ver-
sion of the application to the next. The application uses sev-
eral dozen schemas, which exploit inheritance, nesting, and other
object-relational features. The LR-mapping between two subse-
quent versions of the application data is given by over 2500 em-
bedded dependencies, which are translated into XSLT by chasing
canonical instances under constraints. It takes slightly over six min-
utes to generate the final transformation on a 2.8 GHz PC. The
XSLT produced as output comprises over 30K lines.

6. SCRIPT REWRITING
Model-management scripts have declarative semantics, as we ex-
plained in Section 3. However, just like relational algebra expres-
sions, a script can be viewed as a specific execution plan. In fact,
in Moda a script is given by a (procedural) C# program. Unsurpris-
ingly, the execution order of the operators may affect the running
time of the script. But more importantly, reordering the operators
may turn a script that fails into an executable one:

EXAMPLE 12 Consider a model-management script
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map = (m1 m2 ◦m2 m3) ◦m3 m4

that is executed on the input mappings (∀-quantifiers omitted)

m1 m2 = �E(a, b) → ∃v(F(a, b),C(a, v))�

m2 m3 = �F(a, b),C(a, u),C(b, v) → D(a, u, v)�

m3 m4 = �D(a, u, v) → H(a, u)�

between the models

m1 = �E(A,B)� m3 = �D(A,U,V)�

m2 = �F(A,B),C(A,V)� m4 = �H(A,U)�

By exploiting [16, Theorem 3.6], it can be shown that the 3-
colorability problem can be reduced to the mapping expression for
(m1 m2 ◦ m2 m3). Therefore, the result of composing m1 m2

and m2 m3 is not expressible in first-order logic (let alone in LR).
Hence, direct execution of the above script fails if the operators
do not support second-order reasoning. However, by rewriting the
script as

map = m1 m2 ◦ (m2 m3 ◦m3 m4)

we can effectively obtain the resulting mapping as

map = �E(a, b),E(b, c) → ∃u(H(a, u))�

Thus, sometimes a script cannot even be executed without first
rewriting it as an equivalent script. In the example, we exploit as-
sociativity of composition to obtain an equivalent executable order
of operators. Script rewriting can also exploit properties of models
and mappings: in the motivating example, we know that s v and
Invert(v v′) are queries that agree on their range, so we can replace
the first three lines by the two lines shown below without changing
the semantics of the script. This rewriting is similar to performing
selection before join in relational query optimization:

1. 〈vd, v
′ vd〉 = Diff(v′, Invert(v v′))

2. s vd = s v ◦ v v′ ◦ v′ vd

Even in the simple example above, determining the equivalence
of scripts is non-trivial and warrants a longer discussion, which is
out of scope of this paper. Below we outline the key idea of our ap-
proach, which is based on equivalence-preserving transformations
of operators. To enable such transformations, we introduce mini-
mality conditions on the operators Merge, Extract, and Diff. To see
why they are needed, notice that the output models in Definitions 2,
3, and 4 can be expanded by adding extra “irrelevant” states without
violating the definitions. For example, if m is a relational schema
produced by Merge, we can add an extra table to m and Defini-
tion 2 would still hold. The minimality conditions eliminate such
irrelevant states and ensure that each output model is capable of
representing just the needed information, and no other information.

For finite models, such as relational schemas with finite attribute
domains, minimal models can be defined as those with the smallest
number of instances. Using this minimality criterion, the defini-
tions can be extended as follows: in Definition 2, m is a minimal
model satisfying (i)-(iii); in Definition 3, mx is a minimal model
satisfying (i) and (ii); in Definition 4, md is minimal.

The minimality conditions allow us to establish important prop-
erties of the operators that are essential for script rewriting, such
as commutativity and associativity, and tell us how to simplify
the scripts when the mappings are functional or total [26]. Fur-
thermore, we can relate the operators directly to some well-known
problems studied in the database literature, as illustrated by the fol-
lowing proposition:

PROPOSITION 2 (VIEW COMPLEMENT) Let m mx be a total
view from m onto mx and let

〈md,m md〉 = Diff(m,m mx).

Then, m can be reconstructed from the views m mx and m md.
That is, the following holds:

〈m,m mx,m md〉 =
Merge(mx,md, Invert(m mx) ◦m md)

In general, if we merge models mx and md obtained by Extract
and Diff from some modelm and mappingmap, we get a (minimal)
model m′ that is isomorphic to m, and the isomorphism can be
expressed using Composition and Confluence.

To study the properties of the operators, we utilize a special
structure called an instance graph. Instance graphs are an analy-
sis tool similar in spirit to canonical databases or rule-goal trees
used for query analysis: properties of sets of models can be veri-
fied on a single representative structure. Specifically, an instance
graph is a directed labeled graph whose nodes represent instances
of models and edges denote pairs of instances that participate in
mappings. For example, in the case of Merge the instance graph
includes nodes for the two input models and the merged model.

In addition to being an analysis vehicle, instance graphs have an
extra benefit as a data structure. To automate script rewriting, ul-
timately we would like to enumerate all useful “execution plans”
for a script, such that the model-management system could pick
the most efficient one – just as a database optimizer enumerates
query execution plans. As a first step, we implemented a tool that
attempts to find a counterexample that proves that two given scripts
are not equivalent. The tool is similar in spirit to a satisfiability
checker for logical formulas: it generates and checks different com-
binations of small, representative instance graphs. The randomized
algorithm used in the tool is sound, but not complete, i.e., in some
cases it may fail to find a counterexample. Finally, instance graphs
could be used to define the minimality criterion for countably infi-
nite models using homomorphisms between instance graphs.

Despite the usefulness of the minimality conditions for script
rewriting, it is often impractical to enforce them on the execution
of a specific operator sequence. In fact, for inputs given in LR, the
minimal outputs of Merge, Extract, and Diff are often not express-
ible in LR at all, are too hard to compute, or have an unnecessarily
verbose representation. Consider the following example:

EXAMPLE 13 (Based on [19], Example 3.6): Suppose that at-
tribute A has a finite integer domain I, and let

m = �R(A,B)�, m′ = �T(A)�

m m′ = �πA(R) = T�

Then, the minimal result for 〈md,m md〉 = Diff(m,m m′) is
given by the minimal view complement

md = �S1(B), . . . , S|I|(B)�

m md = �Si = πB(σA=i(R)) for i ∈ I�

If I is the domain of positive 32-bit integers, then the output
schema would contain over two billion table definitions. Although
the schema is minimal in the information-theoretic sense, it is by no
means syntactically compact. A non-minimal, yet probably more
useful complement is obtained as S = R.

For the reasons outlined above, our implementation does not
guarantee minimal output models, but makes an effort to produce
outputs that are close to the minimal ones. Minimality can be com-
pared to numerical precision: equivalence-preserving rewriting of
arithmetic operations on real numbers helps speed up numeric cal-
culation; however, the actual computation of the rewritten formula
is typically performed on approximations given by floating point
numbers.
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7. RELATED WORK
Nearly all previous work on model management has considered the
behavior of operators on some representations of models and map-
pings, not on data instances related by mappings [6, 7, 8, 27, 30].
One exception is [3], where the operators are defined axiomatically
in terms of other operators using category theory. Another is the re-
cent work [16], which uses the state-based approach to characterize
mapping composition. Uniform representation of heterogeneous
schema and instance data is discussed in [14].

In [27], we suggested simple correctness conditions that char-
acterize the information capacity of the schemas returned by the
operators. Specifically, we required that the schema produced by
Merge be at least as expressive as each of the input schemas, and
the schema delivered by Extract be no more expressive than the in-
put schema. However, these requirements are quite weak and do
not specify what the mappings produced by the operators should
do.

In this paper, we give operator definitions that do work on ex-
ecutable mappings and satisfy the desiderata of well known, but
disparate problems studied in the literature, such as integration of
views [9, 12, 36] and of schemas [3, 10, 20, 22, 30], composition
of queries [34] and of schema mappings [16, 24], view comple-
ment [4, 19], view selection [2, 13, 21, 38], and answering queries
using views [11, 17]. These problems have typically been studied
in isolation and trimmed to specific languages. We distill essential
properties of these problems into language-independent operators.

Operator Compose generalizes query composition. It is equiva-
lent to query composition when m1 m2 and m2 m3 are queries,
i.e., functional mappings. It is well-known how to compose two
relational algebra queries, and that the result is always another re-
lational algebra query [1]. However, if the input mappings are non-
functional or have different directionality, computing composition
can be much harder. A first general definition of mapping compo-
sition was given in [24], where the result of composition is defined
relative to a query language. The language-independent definition
used in this paper was proposed independently in [16] and [25].
The work [16] was the first to demonstrate how to turn a state-based
operator definition into algorithms that manipulate executable map-
pings. Among the negative results, [16] proves that composing
mappings given by source-to-target tuple-generating dependencies
(tgds) may not be definable by any formula of Lω

∞ω logic, and
that composing first-order formulas may produce a non-computable
mapping. Work [28] shows that composition of full tgds that need
not be source-to-target is undecidable. On the positive side, [16]
establishes that full source-to-target tgds and second-order tgds are
closed under composition and are suitable mapping languages for
data exchange [15].

Our formalization of Merge builds on the extensive work on
schema and view integration. To our knowledge, Definition 2 is the
first to satisfy the following important desiderata suggested in that
literature. First, the definition is language independent [3, 30]. Sec-
ond, Merge is driven by an input mapping, and the output includes
the mappings between the merged model and the input models [9,
22, 36]. Third, the merged model represents the complete informa-
tion of each input model [12, 30, 36]. Fourth, inconsistent models
can be merged [22]. Finally, Merge is associative and commutative,
satisfying the desiderata of [10].

Our definition of Extract builds on the (materialized) view selec-
tion problem [2, 13, 21, 38], whose objective is to find a set of views
that allows answering a given query workload. If the workload con-
sists of a single query map, the correctness criterion of view selec-
tion is condition (i). Past work on view selection is an example of
where the focus has been on finding the optimal representation of

the result of Extract, where the language for expressing models and
mappings are various subsets of SQL. Condition (i) can also be in-
terpreted as a problem of answering queries using views using an
exact rewriting [11, 17]. That is, given a view m mx, the goal is
to rewrite query map on m into query q = Invert(m mx) ◦map
on mx. Definition 3 covers a general case in which map is an
arbitrary, possibly non-functional mapping. Algorithms for query
reachability (e.g., [18, 37]) can be used to implement Extract when
the mapping language is recursive datalog (and subsets thereof).
The extracted schema is the result of looking at the leaves of the
query tree after the predicates in the query have been applied as
tightly as possible to all nodes in the tree. An implementation of
Extract for SQL can exploit view selection algorithms that are de-
ployed in commercial database systems [2].

Our definition of Diff is based on the view complement problem
[4, 19], yet covers the general case in which the input mapping is
non-functional (i.e., not a view). Two views are complementary if
given the state of each view, there is a unique corresponding state of
the source database. That is, if the two views are materialized then
the database can be reconstructed from the views. View comple-
ments are exploited to guarantee desirable data warehouse proper-
ties such as independence and self-maintainability. The polynomial
algorithm of [19] can be used for computing Diff when the input
map is a relational select-join view. If map contains projections,
the output view may be sensitive to permutation of constants.

The minimality conditions that we discussed in the context of
script rewriting have been suggested for view minimization, find-
ing minimal view complements, or minimizing the output schemas
in view integration. Although they are essential for performing
equivalence-preserving transformations, many authors argued for
approximate solutions to these individual problems. For example,
[21] selects views that are minimal relative to a given set of views,
but not w.r.t. all conceivable views (i.e., non-minimal Extract is
acceptable); [19] argues that the reduced information content of
minimal (vs. non-minimal) view complements may not justify the
increase in their complexity (i.e., non-minimal Diff is acceptable);
[12] describes an algorithm for minimizing the merged schema but
does not guarantee a minimal result due to complexity caused by
schema constraints. Thus, we use the minimality criteria as a foun-
dation for algebraic optimization, but adopt a best-effort policy for
our implementation.

In [29], morphisms are referred to as inter-schema correspon-
dences and are used to generate executable mappings by exhaustive
enumeration of the possible interpretations.

8. CONCLUSIONS
We presented a state-based approach to specifying the semantics
of model-management operators, which is instrumental for build-
ing model-management systems that work with executable map-
pings. A major strength of state-based characterization is its ability
to specify the operators in an abstract fashion, without appealing
to particular schema, constraint, or transformation languages, or
to particular representations of models and mappings. We showed
that our semantics satisfy the desiderata of well known, but dis-
parate problems studied in the literature. We believe that our ap-
proach lays a foundation for a formal treatment of many model-
management problems.

We explored two paths to implementing the operators. First,
we leveraged an existing implementation by generating executable
mappings from the output schemas and morphisms produced by the
Rondo system. To do that, we identified the language LP of tree
schemas and path-morphisms for which Rondo’s outputs respect
our state-based semantics. Second, to overcome the limitations of
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path-morphisms, we built a new prototype Moda that implements
the model-management operators for the language LR of relational
schemas and mappings. We found that representing schemas and
mappings using explicit logical formulas is a more flexible, yet sub-
stantially more challenging approach, which raises deep theoretical
issues. Third, we identified the potential of script rewriting, which
is critical not only for performance reasons but also to ensure that
the script can be executed at all. Finally, we applied Moda to build
a schema evolution tool for a data-intensive application.

Further work is needed to find other interpretations of morphisms
to cover more expressive mappings, to develop efficient algorithms
for implementing model-management operators where mappings
are expressed as logic formulas, and to obtain a deeper understand-
ing of the algebraic and computational properties of the operators.
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