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Abstract: Schema  matching  is  the  process  of  identifying  semantic

correspondences between schemas. COMA++ is a matching prototype which uses

several  characteristics  of  schemas  to  determine  similarities  between  them,  for

example  the  names  and  data  types  of  the  schema  elements  and  structural

information. In this paper we propose two instance-based matchers for COMA++

to gain a further quality improvement. The features of the matchers and first results

are described.

1 Introduction

Schema  matching  is  the  process  of  identifying  semantic  correspondences  between

schemas and the first step for data integration and transformation. Matching can be done

manually but the operation is time consuming, expensive and error-prone. So an (semi-)

automatic match process is needed. There exist many tools but open challenges remain,

e.g. matching large ontologies and schemas.

COMA ([DR02],  [RDM04]) is a generic match system that has been developed at the

University of Leipzig. The prototype provides a large spectrum of matchers that can be

combined in a flexible way. The enhanced version COMA++ ([Au05], [Do06]) supports

matching  of  large  real  world  schemas  as  well  as  ontologies  using  different  match

strategies including reuse of previous results. The graphical interface allows the user to

interact and evaluate match algorithms. 

Most of the matchers use schema-level data to determine a mapping. In case of opaque

names,  unknown  synonyms  and  different  languages  these  matchers  cannot  find  all

correct correspondences.  We augmented COMA++ with two instance-based matchers

that utilize certain constraints and linguistic approaches. As an addition these matchers

apply a propagation algorithm that considers the schema elements for which no instance

data is available. The import parser handles different instance sources and transforms

them into the same generic data representation. Furthermore the outputs of the instance-

based matchers are similarity matrices so they can be combined with other matchers.

These characteristics keep the system generic. 



The paper is  organized as follows.  Section 2 outlines  the concepts of instance-based

matching with COMA++ and Section 3 presents first results.  In Section 4 we discuss

some related work. Finally, we summarize and discuss some future work.

2 Instance Matching with COMA++

In this section we describe the concepts of instance-based matching with COMA++. In

order to realize instance-based matching we had to extend the import to handle instance

data. We then incorporated two different instance-based matchers into COMA++.

Figure  1 illustrates  how  the  instance-based  matchers  can  be  applied  for  schema

matching.  First  schemas  and  the  instance  data  have  to  be  parsed.  Different  parsers

support different sources, e.g. relational databases and XML files. The parsed instance

data is assigned to the generic schema representation. In the following match process

matchers  are  executed.  The  instance-based  matchers  are  a  constraint-based  and  a

content-based matcher. Each matcher generates as result a similarity matrix. This matrix

contains pair-wise similarity values for the schema elements. A propagation algorithm is

applied  on  the  results  of  the  instance-based  matchers  to  transfer  similarities  from

elements to their surrounding elements. Finally the similarity matrices are combined to

derive a mapping. The whole match process including this combination step is described

in detail in [DR02].

After  the  import  of  instance  data  (Subsection  2.1)  we  describe  the  constraint-based

(Subsection 2.2) and the content-based matcher (Subsection 2.3). Finally, we present the

propagation algorithm (Subsection 2.4).

2.1 Import of Instance Data 

First we describe what we use as instance data and how. COMA++ supports multiple

schema types such as XML, relational schemas and ontologies. These different schema

types are parsed into a generic schema representation so that matching between different

sources is possible. To keep this advantage the import of instance data is generic, too.

We extended the schema representation so that each element can contain instance data.

Figure  2 illustrates  the  import  of  instances  from  different  sources  into  the  internal

schema  representation.  In all  three cases  (relational,  XML,  OWL) the schema  graph
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Figure 1: Matching schemas with COMA++



contains three nodes in the shown example: the root  Person and its children firstName

and  lastName.  In  addition  to  schema  meta  data  like  name  and  data  type  the  nodes

contain  instances.  The  element  node  firstName has  the  instances  “Hong  Hai”  and

“Ulrike”.  For OWL files the import assigns the labels given with the optional attribute

rdfs:label to Person.

2.2 Constraint-based Matching

Before the matching the constraint-based matcher determines constraints that describe

characteristics  or  patterns  of  element  values.  The  constraints  are  assigned  to  the

elements. During the match process these constraints are compared and their similarity

determines the similarity of the matched elements. In case of huge sets of instance data

this  approach has  a low effort  because not  the instance  sets  but  their  constraints  are

compared.

We distinguish between three groups of constraints:

� General constraints are constraints that can be determined for every instance

of an element,  e.g.  average length and the used  characters.  We differentiate

between letters, numeral and special characters.

Example: Phone numbers consist of numbers and special characters like “/”, “-”

and “+”.

� Numerical constraints determine if an instance is a number and what kind of

number, e.g. positive or negative, integer or float. Furthermore an average value

of the numbers and standard deviation can be calculated.

Example: Prices are positive floats.

Figure 2: Import of different instance sources into internal schema graph
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� Pattern  constraints search  whether  all  element  instances  follow  a  given

pattern.

Example: Email has the pattern *@*.* where * represents an arbitrary character

string.

For determining  the  constraints  the constraint-based matcher  uses  all  instances of an

element. In the beginning all possible constraints are considered. While going over the

instances the gained knowledge reduces the number of relevant constraints that need to

be checked. For example letters in instances lead to the fact that no numerical constraints

have to be determined. A general pattern search is time-consuming so we restricted the

search to a predefined set that covers often used patters like Email  and URL. To cover

more patterns we currently work on an algorithm that finds patterns based on special

characters, e.g. *-*-* or */*-* where * represents an arbitrary character string.

In  the  match  process  the  constraint-based  matcher  determines  the  similarity  of  two

elements  by  comparing  their  previously  identified  constraints.  The  matcher  uses  a

synonym table specifying the degree of compatibility between numerical  respectively

pattern constraints. Additionally, the similarity increases if the average length is alike. 

2.3 Content-based Matching

The content-based matcher  determines  the  similarity  of two  elements  by executing  a

pair-wise  comparison  of  instance  values  using  a  similarity  function.  The  result  is  a

similarity matrix with each dimension representing the instances of one element. This

matrix is aggregated to one value that defines the similarity of the instance sets and thus

the elements. This aggregation is done applying the following formula  where  n is the

number of instances of  e1 and  m is the number of instances of  e2 and  sim is the used

string similarity function:

The formula uses for every instance of e1 the highest similarity to an instance of e2 and

vice versa. These maxima are added and the number of all instances divides the resulting

sum. 

COMA++ supports many string similarity functions that the content-based matcher can

use, e.g.  trigram, edit distance or soundex.  Contrary to the constraint-based approach

content-based matching involves a much higher effort, because for every match between

two elements up to nxm comparisons have to be performed. The similarity function can

also be as simple as the test of equality. This reduces the costs of matching. 



2.4 Propagation Algorithm

Propagation has already been addressed in previous  research,  e.g.  [DHM05]. We are

using similarity propagation because we have to deal with incomplete instance data, i.e.

not every element has instances. For that reason we apply a propagation algorithm to the

results  of  the  constraint-based  and  content-based  matchers.  The  UpPropagation

algorithm propagates instance similarity from the leaves to their parents. The idea behind

this is that parents that have similar children are similar too. The algorithm propagates

similarity to direct parents because they have the strongest relationship.

The propagated similarity value for the parents is the average of the highest similarity

value for each child. In the scenario of Figure 3 we have Book and Volume that have no

instance  data.  Both  have  two  children  that  somehow correspond  to  each  other.  The

UpPropagation determines the similarity value 0.65 for Book and Volume by calculating

the average of 0.9 for title, 0.3 for extTitle, 0.9 for mainTitle, and 0.5 for subTitle.

The UpPropagation is especially suitable for instance-based matching because normally

only leaves of a schema have instance data. The algorithm is performed bottom-up and

newly  calculated  element  similarities  are  directly  propagated  to  the  parents  of  these

elements.  Other  matchers of COMA++ do not  need such a propagation because they

already take surrounding elements into account, e.g. the Children matcher considers the

child elements  to estimate the similarity between two  inner  elements and the Leaves

matcher uses the leaf elements for it. 

3 Results for the Benchmark OAEI 2006

Ten systems including our prototype COMA++ participated in the OAEI1 contest 2006

[MER06], which includes six tasks and the benchmark is one of them.  The reference

ontology (#101) contains 33 named classes, 24 object properties, 40 data properties, 56

named individuals and 20 anonymous individuals. The benchmark consists of 51 match

problems in which the reference ontology has to be matched to a modified ontology. For

the match problems different difficulties have been included, e.g. suppressed comments,

flattened hierarchies,  names replaced by random strings or suppressed instances.  The

match results can be compared with the provided reference alignments to determine the

1 OAEI: Ontology Alignment Evaluation Initiative is a coordinated international initiative to forge the

consensus of methods for schema matching/ontology integration. http://oaei.ontologymatching.org/

Figure 3: Scenario for similarity propagation
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achieved precision,  recall and f-measure.  For all  problems the same strategy and the

same configuration had to be used. 

We  first  want  to  evaluate  the  instance-based  matchers  and  the  UpPropagation  in

comparison to two other propagation algorithms (Subsection 3.1). Then we combine the

instance-based  matchers  with  other  COMA++ matchers  to  get  an  indication  of  how

many new correspondences have been found (Subsection 3.2).

3.1 Instance-based Matchers and Propagation Algorithms

For the evaluation of the instance-based matchers we restrict the tests to the ontologies

that  have at least one instance2.  Additionally,  we omit the ontology 102 because this

ontology  has  no  corresponding  elements.  For  the  remaining  39  match  tasks  2966

correspondences have to be found. Only 1088 of them have instances for both elements,

we call them instance-based correspondences, and thus could be found using instance-

based matching. Regarding this fact we also calculated instance-recall that measures the

found correspondences in relation to the instance-based correspondences. Table 1 shows

precision3, instance-recall, recall4 and f-measure of different match configurations. 

To evaluate the UpPropagation two other propagation strategies have been applied to the

tests.  For  the  InstancePropagation parent  nodes  inherit  the  instance  values  of  their

children and thus have their  own instances.  Then instance-based matchers are able to

detect  correspondences  between  parents  as  well.  The  Similarity  Flooding [MGR02]

takes two graphs as input and as initial mapping we use the result of the constraint-based

or content-based matcher.

Used techniques Precision Recall F-Measure Instance-Recall 

Constraint 0.424 0.075 0.128 0.147

InstancePropagation + Constraint 0.260 0.092 0.136 - 5

Constraint + UpPropagation 0.467 0.091 0.153 0.169

Constraint + Similarity Flooding6 0.479 0.105 0.172 0.151

Content 0.997 0.353 0.521 0.904

InstancePropagation + Content 0.891 0.435 0.585 - 5

Content + UpPropagation 0.914 0.454 0.607 0.904

Content + Similarity Flooding6 0.974 0.412 0.579 0.904

Table 1: Results of the instance-based matchers and different propagation algorithms

2 Ontologies without instance data: 224, 232, 236, 237, 241, 246, 247, 301, 302, 303, 304 
3 The precision is calculated counting all correct found correspondences for all tests and all found ones and

divide correct by all found.
4 The recall is calculated counting all correct found correspondences for all tests and all expected ones and

divide correct by all expected.
5The instance-recall has not been calculated because there are more than 1088 instance-based correspondences.
6We tried all four fixpoint formulas yet listed only the best result (50 iterations, fixpoint formula C).



Looking at the result we see that the constraint-based matcher behaves like a data type

matcher. It finds some correspondences (and 14,7% of the instance-correspondences) but

more than the half is incorrect. The reason is that most instance data contain only letters

so numerical and pattern constraints are not of any use.

The content-based matcher finds 1050 correspondences and almost all are correct. The

instance-recall  of  0.904  shows  that  most  of  the  instance-correspondences  have  been

found. The very good precision of 0.997 depends on the fact that the instances of the

ontologies are mostly equal.

Using the constraint-based matcher together with a similarity propagation algorithm such

as Similarity Flooding or UpPropagation just slightly changes the result.  With a poor

input the output is poor as well. 

Applying propagation to the content-based matcher produces a much better result – for

all three algorithms. The InstancePropagation finds more correct correspondences than

the Similarity  Flooding but  more  incorrect  as well.  Both algorithms  have  almost  the

same f-measure of 0.58. The UpPropagation receives the highest f-measure of 0.607 and

finds  many  correspondences  (423  and  300  are  correct)  -  more  than  the  Similarity

Flooding.  The  reason  for  that  and  the  lower  precision  might  be  a  more  optimistic

propagation of the similarity values.

3.2 Results of COMA++ without and with the Instance-based Matchers

In this section we determine the influence of the instance-based matcher on the quality of

match results of COMA++. We ran the 39 tests of the benchmark used in Subsection 3.1

with all  possible combinations of the eight  most important matchers7 from one to all

matchers. Then we  executed these 255 combination again – this time containing either

the  constraint-based  or  the  content-based  matcher  as  an  additional  matcher.  Both

instance-matcher use the UpPropagation which improves their  result  as shown in the

previous subsection. The average results of the the runs are shown in Table 2.

Combinations of 8 Matcher Precision Recall F-Measure

Without Instance-based Matcher 0.846 0.627 0.716

With Constraint+UpPropagation 0.871 0.620 0.722

With Content+UpPropagation 0.944 0.757 0.839

Table 2: Results of matcher combinations without and with instance-based matcher

The  combinations  without  any  instance-based  matcher  find  in  general  2325

correspondences and 63% of all correct correspondences. Every seventh correspondence

is incorrect. Adding the constraint-based matcher just slightly changes the result. Using

in addition the content-based matcher increases the precision by 10% and the recall by

13% for every matcher combination. 

7 Name, NameType, NameStat, Children, Leaves, Parents, Siblings, Comment



To see the influence of the instance-based matchers in detail we combine them with the

NameType matcher. NameType uses the name and data type of elements to determine

their similarity. Figure 4 shows the precision and recall of the different combinations of

NameType, the constraint-based and the content-based matcher. 

The  additional  use  of  the  constraint-based  matcher  has  almost  no  effect.  The  same

correct  correspondences  have  been  found  and  some  incorrect  ones  less.  NameType

together with the content-based matcher finds 525 more correct correspondences than

NameType alone due to opaque names. The precision of 0.913 is much higher than the

0.741 of NameType.

We  can  conclude  that  the  content-based  matcher  helps  mainly to  detect  correct

correspondences that otherwise are not found because of e.g. opaque names or different

structures. In addition some elements that are quite similar looking at their names or data

types are identified as different due to their instance data.

4 Related Work

Various approaches have been proposed to perform schema matching ([RB01], [SE05]).

In  the  survey  [RB01] only  three  out  of  seven  approaches  supported  instance-level

matching:  SemInt,  LSD  and  Autoplex.  SemInt  [LC00] is  a  neural  network-based

prototype  that  identifies  attribute  correspondences  in  databases.  It  exploits  up  to  15

constraint-based and 5 content-based matching criteria. At the instance-level it analyses

data patterns,  value distributions and averages. The determination of the similarity of

attributes is learned during the training process directly from the meta data that has been

extracted automatically. LSD [DDH01] is a machine learning approach. At the instance-

level it uses several matchers (learners) that are trained during a preprocessing step. One

matcher uses Whirl and the other Naive Bayes. A third matcher searches a database to

verify  if  a  XML element  is  a  county  name.  Autoplex  [BM01] is  based  on machine

learning,  too, and a Naive Bayesian learner exploits instance characteristics to match

attributes from a relational source to a previously constructed global schema.

Figure 4: Results of the instance-based matchers, NameType and their combinations
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The Glue system [Do04] has been developed to match ontologies and applies machine

learning techniques to create the mappings between them. The Distribution Estimator is

one of the system modules  and uses  base learners that  glean many different  type of

information from training instances, e.g. frequencies of words and value formats.

Instance-based  systems  that  are  based  on  machine  learning  do  not  fully  utilize  the

flexibility offered by the composite approach of COMA++.

An  instance-based  matching  algorithm  has  been  designed  in  the  DUMAS  [BN05]

project. The approach detects duplicates representing the same real world object in two

unaligned  databases.  It  uses  this  information  to  automatically  identify  matching

attributes between their schemas.  The HumMer  [Na06] tool for automatic data fusion

assumes the databases to contain duplicates and uses DUMAS to find them.

In contrast to HumMer the instance-based matchers of COMA++ do not need duplicate

objects.  The constraint-based matcher  determines characteristics and patterns and can

not  recognize  duplicates.  The content-based  matcher  needs  similar  instances  for  two

elements but they can belong to different real world objects.

The two-step schema matching technique in  [KN03] is instance-based and focuses on

the data structure. In the first step the pair-wise attribute correlation is measured and a

dependency graph is constructed. Afterwards, it runs a graph matching algorithm to find

matching node pairs in the graph. This data structure is an aspect none of the instance-

based matchers of COMA++ considers.

The  prototype  Clio  [HMH01] creates  a  mapping  between  two  input  schemas  in  an

interactive fashion using user feedback. The resulting mapping is a view definition over

the target schema that can be executed for data transformation. The translated data can

help the user to refine the mapping and check its correctness but it is not directly used by

the system to do that like COMA++ does it now.

5 Conclusion

In this paper we proposed the extension of COMA++ to use instance-based matching.

We  described  the  approaches  of  constraint-based  and  content-based  techniques.  In

addition we suggested the propagation of similarity values of elements to their parents.

The instance-based matcher and the propagation algorithm have been evaluated with the

benchmark of the OAEI contest '06. The comparison with a matcher that uses element

names and data types showed the difference in the results.

Future  work  on  this  topic  is  the  extension  of  the  constraint-based  component  to

recognize more patterns and of the content-based component to deal with enumerations.

Another possibility is to sample the instances to reduce the huge amount of instance data

in real world applications. Furthermore the instance-based matcher should be evaluated

in other  domains than ontology matching and against  other  instance-based tools,  e.g.

machine learning approaches.
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