
Instance Matching with COMA++

Daniel Engmann, Sabine Massmann1

Department of Computer Science

University of Leipzig

Johannisgasse 26

Leipzig 04103, Germany
1massmann@informatik.uni-leipzig.de

Abstract: Schema matching is the process of identifying semantic

correspondences between schemas. COMA++ is a matching prototype which uses

several characteristics of schemas to determine similarities between them, for

example the names and data types of the schema elements and structural

information. In this paper we propose two instance-based matchers for COMA++

to gain a further quality improvement. The features of the matchers and first results

are described.

1 Introduction

Schema matching is the process of identifying semantic correspondences between

schemas and the first step for data integration and transformation. Matching can be done

manually but the operation is time consuming, expensive and error-prone. So an (semi-)

automatic match process is needed. There exist many tools but open challenges remain,

e.g. matching large ontologies and schemas.

COMA ([DR02], [RDM04]) is a generic match system that has been developed at the

University of Leipzig. The prototype provides a large spectrum of matchers that can be

combined in a flexible way. The enhanced version COMA++ ([Au05], [Do06]) supports

matching of large real world schemas as well as ontologies using different match

strategies including reuse of previous results. The graphical interface allows the user to

interact and evaluate match algorithms.

Most of the matchers use schema-level data to determine a mapping. In case of opaque

names, unknown synonyms and different languages these matchers cannot find all

correct correspondences. We augmented COMA++ with two instance-based matchers

that utilize certain constraints and linguistic approaches. As an addition these matchers

apply a propagation algorithm that considers the schema elements for which no instance

data is available. The import parser handles different instance sources and transforms

them into the same generic data representation. Furthermore the outputs of the instance-

based matchers are similarity matrices so they can be combined with other matchers.

These characteristics keep the system generic.

The paper is organized as follows. Section 2 outlines the concepts of instance-based

matching with COMA++ and Section 3 presents first results. In Section 4 we discuss

some related work. Finally, we summarize and discuss some future work.

2 Instance Matching with COMA++

In this section we describe the concepts of instance-based matching with COMA++. In

order to realize instance-based matching we had to extend the import to handle instance

data. We then incorporated two different instance-based matchers into COMA++.

Figure 1 illustrates how the instance-based matchers can be applied for schema

matching. First schemas and the instance data have to be parsed. Different parsers

support different sources, e.g. relational databases and XML files. The parsed instance

data is assigned to the generic schema representation. In the following match process

matchers are executed. The instance-based matchers are a constraint-based and a

content-based matcher. Each matcher generates as result a similarity matrix. This matrix

contains pair-wise similarity values for the schema elements. A propagation algorithm is

applied on the results of the instance-based matchers to transfer similarities from

elements to their surrounding elements. Finally the similarity matrices are combined to

derive a mapping. The whole match process including this combination step is described

in detail in [DR02].

After the import of instance data (Subsection 2.1) we describe the constraint-based

(Subsection 2.2) and the content-based matcher (Subsection 2.3). Finally, we present the

propagation algorithm (Subsection 2.4).

2.1 Import of Instance Data

First we describe what we use as instance data and how. COMA++ supports multiple

schema types such as XML, relational schemas and ontologies. These different schema

types are parsed into a generic schema representation so that matching between different

sources is possible. To keep this advantage the import of instance data is generic, too.

We extended the schema representation so that each element can contain instance data.

Figure 2 illustrates the import of instances from different sources into the internal

schema representation. In all three cases (relational, XML, OWL) the schema graph

Match Iteration

Constraint+Propagation

Content+Propagation

Other matcher
S2

S1

Matcher
Execution

Combining
Match Results

Similarity
Cube

Mapping

Matcher
Library

Combination
Library

Schema Graphs

s11↔s21

s12↔s22

s13↔s23

Parser
Library

Manipulation
Library

Mapping
Pool

Parsing of
Schemas &

Data

Figure 1: Matching schemas with COMA++

contains three nodes in the shown example: the root Person and its children firstName

and lastName. In addition to schema meta data like name and data type the nodes

contain instances. The element node firstName has the instances “Hong Hai” and

“Ulrike”. For OWL files the import assigns the labels given with the optional attribute

rdfs:label to Person.

2.2 Constraint-based Matching

Before the matching the constraint-based matcher determines constraints that describe

characteristics or patterns of element values. The constraints are assigned to the

elements. During the match process these constraints are compared and their similarity

determines the similarity of the matched elements. In case of huge sets of instance data

this approach has a low effort because not the instance sets but their constraints are

compared.

We distinguish between three groups of constraints:

� General constraints are constraints that can be determined for every instance

of an element, e.g. average length and the used characters. We differentiate

between letters, numeral and special characters.

Example: Phone numbers consist of numbers and special characters like “/”, “-”

and “+”.

� Numerical constraints determine if an instance is a number and what kind of

number, e.g. positive or negative, integer or float. Furthermore an average value

of the numbers and standard deviation can be calculated.

Example: Prices are positive floats.

Figure 2: Import of different instance sources into internal schema graph

OWL

a)

b)

DoHong Hai

Gre inerUlrike

lastNamefirstName

DoHong Hai

Gre inerUlrike

lastNamefirstName

Person

c)

XML

<Person>

<firstName>Hong Hai</firstName>

<lastName>Do</lastName>

</Person>

<Person>

<firstName>Ulrike</firstName>

<lastName>Greiner</lastName>

</Person>

Internal Schema Graph

Internal Schema Graph

Internal Schema Graph

Name: firstName Type : string Instances : {Hong Hai, Ulrike}

Name: lastName Type: string Instances : {Do, Gre iner}

<Person rdf:about="#a123"> <rdfs :label>H.-H. Do</rd fs :label>

<firstName rdf:datatype="...#s tring">Hong Hai</firstName>

<lastName rdf:datatype ="...#s tring">Do</lastName>

</Person>

<Person rdf:about="#a124"> <rdfs :label>U. Gre iner</ rdfs:labe l>

<firstName rdf:datatype="...#s tring">Ulrike</ firstName>

<lastName rdf:datatype="...#string">Gre iner</lastName>

</Person>

Name:Person Type : / Instances : /

Name: firstName Type : string Instances : {Hong Hai, Ulrike}

Name: lastName Type: string Instances : {Do, Gre iner}

Name:Person Type : / Instances : /

Name: firstName Type : string Instances : {Hong Hai, Ulrike}

Name: lastName Type: string Instances : {Do, Gre iner}

Name:Person Type : / Instances : {H.-H. Do , U. Gre iner}

Relational

� Pattern constraints search whether all element instances follow a given

pattern.

Example: Email has the pattern *@*.* where * represents an arbitrary character

string.

For determining the constraints the constraint-based matcher uses all instances of an

element. In the beginning all possible constraints are considered. While going over the

instances the gained knowledge reduces the number of relevant constraints that need to

be checked. For example letters in instances lead to the fact that no numerical constraints

have to be determined. A general pattern search is time-consuming so we restricted the

search to a predefined set that covers often used patters like Email and URL. To cover

more patterns we currently work on an algorithm that finds patterns based on special

characters, e.g. *-*-* or */*-* where * represents an arbitrary character string.

In the match process the constraint-based matcher determines the similarity of two

elements by comparing their previously identified constraints. The matcher uses a

synonym table specifying the degree of compatibility between numerical respectively

pattern constraints. Additionally, the similarity increases if the average length is alike.

2.3 Content-based Matching

The content-based matcher determines the similarity of two elements by executing a

pair-wise comparison of instance values using a similarity function. The result is a

similarity matrix with each dimension representing the instances of one element. This

matrix is aggregated to one value that defines the similarity of the instance sets and thus

the elements. This aggregation is done applying the following formula where n is the

number of instances of e1 and m is the number of instances of e2 and sim is the used

string similarity function:

The formula uses for every instance of e1 the highest similarity to an instance of e2 and

vice versa. These maxima are added and the number of all instances divides the resulting

sum.

COMA++ supports many string similarity functions that the content-based matcher can

use, e.g. trigram, edit distance or soundex. Contrary to the constraint-based approach

content-based matching involves a much higher effort, because for every match between

two elements up to nxm comparisons have to be performed. The similarity function can

also be as simple as the test of equality. This reduces the costs of matching.

2.4 Propagation Algorithm

Propagation has already been addressed in previous research, e.g. [DHM05]. We are

using similarity propagation because we have to deal with incomplete instance data, i.e.

not every element has instances. For that reason we apply a propagation algorithm to the

results of the constraint-based and content-based matchers. The UpPropagation

algorithm propagates instance similarity from the leaves to their parents. The idea behind

this is that parents that have similar children are similar too. The algorithm propagates

similarity to direct parents because they have the strongest relationship.

The propagated similarity value for the parents is the average of the highest similarity

value for each child. In the scenario of Figure 3 we have Book and Volume that have no

instance data. Both have two children that somehow correspond to each other. The

UpPropagation determines the similarity value 0.65 for Book and Volume by calculating

the average of 0.9 for title, 0.3 for extTitle, 0.9 for mainTitle, and 0.5 for subTitle.

The UpPropagation is especially suitable for instance-based matching because normally

only leaves of a schema have instance data. The algorithm is performed bottom-up and

newly calculated element similarities are directly propagated to the parents of these

elements. Other matchers of COMA++ do not need such a propagation because they

already take surrounding elements into account, e.g. the Children matcher considers the

child elements to estimate the similarity between two inner elements and the Leaves

matcher uses the leaf elements for it.

3 Results for the Benchmark OAEI 2006

Ten systems including our prototype COMA++ participated in the OAEI1 contest 2006

[MER06], which includes six tasks and the benchmark is one of them. The reference

ontology (#101) contains 33 named classes, 24 object properties, 40 data properties, 56

named individuals and 20 anonymous individuals. The benchmark consists of 51 match

problems in which the reference ontology has to be matched to a modified ontology. For

the match problems different difficulties have been included, e.g. suppressed comments,

flattened hierarchies, names replaced by random strings or suppressed instances. The

match results can be compared with the provided reference alignments to determine the

1 OAEI: Ontology Alignment Evaluation Initiative is a coordinated international initiative to forge the

consensus of methods for schema matching/ontology integration. http://oaei.ontologymatching.org/

Figure 3: Scenario for similarity propagation

0.50.1

0.3

0.65

0.9

UpPropagation

Vo lu meBook

title

e xtTitle

ma inTit le

subTitle
Available similarity

Propagated similarity

(0.9+0.3) + (0.9+0.5)

(2+2)
=0.65

maxtitle(0.9,0.1)+ + maxsubTit le(0.5,0.3)

achieved precision, recall and f-measure. For all problems the same strategy and the

same configuration had to be used.

We first want to evaluate the instance-based matchers and the UpPropagation in

comparison to two other propagation algorithms (Subsection 3.1). Then we combine the

instance-based matchers with other COMA++ matchers to get an indication of how

many new correspondences have been found (Subsection 3.2).

3.1 Instance-based Matchers and Propagation Algorithms

For the evaluation of the instance-based matchers we restrict the tests to the ontologies

that have at least one instance2. Additionally, we omit the ontology 102 because this

ontology has no corresponding elements. For the remaining 39 match tasks 2966

correspondences have to be found. Only 1088 of them have instances for both elements,

we call them instance-based correspondences, and thus could be found using instance-

based matching. Regarding this fact we also calculated instance-recall that measures the

found correspondences in relation to the instance-based correspondences. Table 1 shows

precision3, instance-recall, recall4 and f-measure of different match configurations.

To evaluate the UpPropagation two other propagation strategies have been applied to the

tests. For the InstancePropagation parent nodes inherit the instance values of their

children and thus have their own instances. Then instance-based matchers are able to

detect correspondences between parents as well. The Similarity Flooding [MGR02]

takes two graphs as input and as initial mapping we use the result of the constraint-based

or content-based matcher.

Used techniques Precision Recall F-Measure Instance-Recall

Constraint 0.424 0.075 0.128 0.147

InstancePropagation + Constraint 0.260 0.092 0.136 - 5

Constraint + UpPropagation 0.467 0.091 0.153 0.169

Constraint + Similarity Flooding6 0.479 0.105 0.172 0.151

Content 0.997 0.353 0.521 0.904

InstancePropagation + Content 0.891 0.435 0.585 - 5

Content + UpPropagation 0.914 0.454 0.607 0.904

Content + Similarity Flooding6 0.974 0.412 0.579 0.904

Table 1: Results of the instance-based matchers and different propagation algorithms

2 Ontologies without instance data: 224, 232, 236, 237, 241, 246, 247, 301, 302, 303, 304
3 The precision is calculated counting all correct found correspondences for all tests and all found ones and

divide correct by all found.
4 The recall is calculated counting all correct found correspondences for all tests and all expected ones and

divide correct by all expected.
5The instance-recall has not been calculated because there are more than 1088 instance-based correspondences.
6We tried all four fixpoint formulas yet listed only the best result (50 iterations, fixpoint formula C).

Looking at the result we see that the constraint-based matcher behaves like a data type

matcher. It finds some correspondences (and 14,7% of the instance-correspondences) but

more than the half is incorrect. The reason is that most instance data contain only letters

so numerical and pattern constraints are not of any use.

The content-based matcher finds 1050 correspondences and almost all are correct. The

instance-recall of 0.904 shows that most of the instance-correspondences have been

found. The very good precision of 0.997 depends on the fact that the instances of the

ontologies are mostly equal.

Using the constraint-based matcher together with a similarity propagation algorithm such

as Similarity Flooding or UpPropagation just slightly changes the result. With a poor

input the output is poor as well.

Applying propagation to the content-based matcher produces a much better result – for

all three algorithms. The InstancePropagation finds more correct correspondences than

the Similarity Flooding but more incorrect as well. Both algorithms have almost the

same f-measure of 0.58. The UpPropagation receives the highest f-measure of 0.607 and

finds many correspondences (423 and 300 are correct) - more than the Similarity

Flooding. The reason for that and the lower precision might be a more optimistic

propagation of the similarity values.

3.2 Results of COMA++ without and with the Instance-based Matchers

In this section we determine the influence of the instance-based matcher on the quality of

match results of COMA++. We ran the 39 tests of the benchmark used in Subsection 3.1

with all possible combinations of the eight most important matchers7 from one to all

matchers. Then we executed these 255 combination again – this time containing either

the constraint-based or the content-based matcher as an additional matcher. Both

instance-matcher use the UpPropagation which improves their result as shown in the

previous subsection. The average results of the the runs are shown in Table 2.

Combinations of 8 Matcher Precision Recall F-Measure

Without Instance-based Matcher 0.846 0.627 0.716

With Constraint+UpPropagation 0.871 0.620 0.722

With Content+UpPropagation 0.944 0.757 0.839

Table 2: Results of matcher combinations without and with instance-based matcher

The combinations without any instance-based matcher find in general 2325

correspondences and 63% of all correct correspondences. Every seventh correspondence

is incorrect. Adding the constraint-based matcher just slightly changes the result. Using

in addition the content-based matcher increases the precision by 10% and the recall by

13% for every matcher combination.

7 Name, NameType, NameStat, Children, Leaves, Parents, Siblings, Comment

To see the influence of the instance-based matchers in detail we combine them with the

NameType matcher. NameType uses the name and data type of elements to determine

their similarity. Figure 4 shows the precision and recall of the different combinations of

NameType, the constraint-based and the content-based matcher.

The additional use of the constraint-based matcher has almost no effect. The same

correct correspondences have been found and some incorrect ones less. NameType

together with the content-based matcher finds 525 more correct correspondences than

NameType alone due to opaque names. The precision of 0.913 is much higher than the

0.741 of NameType.

We can conclude that the content-based matcher helps mainly to detect correct

correspondences that otherwise are not found because of e.g. opaque names or different

structures. In addition some elements that are quite similar looking at their names or data

types are identified as different due to their instance data.

4 Related Work

Various approaches have been proposed to perform schema matching ([RB01], [SE05]).

In the survey [RB01] only three out of seven approaches supported instance-level

matching: SemInt, LSD and Autoplex. SemInt [LC00] is a neural network-based

prototype that identifies attribute correspondences in databases. It exploits up to 15

constraint-based and 5 content-based matching criteria. At the instance-level it analyses

data patterns, value distributions and averages. The determination of the similarity of

attributes is learned during the training process directly from the meta data that has been

extracted automatically. LSD [DDH01] is a machine learning approach. At the instance-

level it uses several matchers (learners) that are trained during a preprocessing step. One

matcher uses Whirl and the other Naive Bayes. A third matcher searches a database to

verify if a XML element is a county name. Autoplex [BM01] is based on machine

learning, too, and a Naive Bayesian learner exploits instance characteristics to match

attributes from a relational source to a previously constructed global schema.

Figure 4: Results of the instance-based matchers, NameType and their combinations

Constraint_Prop Content_Prop NameType Constraint_Prop
+ Content_Prop

Constraint_Prop
+ NameType

Content_Prop +
NameType

Constr_Prop +
Cont_Prop +
NameType

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

All Corresp.

Correct Corresp.

The Glue system [Do04] has been developed to match ontologies and applies machine

learning techniques to create the mappings between them. The Distribution Estimator is

one of the system modules and uses base learners that glean many different type of

information from training instances, e.g. frequencies of words and value formats.

Instance-based systems that are based on machine learning do not fully utilize the

flexibility offered by the composite approach of COMA++.

An instance-based matching algorithm has been designed in the DUMAS [BN05]

project. The approach detects duplicates representing the same real world object in two

unaligned databases. It uses this information to automatically identify matching

attributes between their schemas. The HumMer [Na06] tool for automatic data fusion

assumes the databases to contain duplicates and uses DUMAS to find them.

In contrast to HumMer the instance-based matchers of COMA++ do not need duplicate

objects. The constraint-based matcher determines characteristics and patterns and can

not recognize duplicates. The content-based matcher needs similar instances for two

elements but they can belong to different real world objects.

The two-step schema matching technique in [KN03] is instance-based and focuses on

the data structure. In the first step the pair-wise attribute correlation is measured and a

dependency graph is constructed. Afterwards, it runs a graph matching algorithm to find

matching node pairs in the graph. This data structure is an aspect none of the instance-

based matchers of COMA++ considers.

The prototype Clio [HMH01] creates a mapping between two input schemas in an

interactive fashion using user feedback. The resulting mapping is a view definition over

the target schema that can be executed for data transformation. The translated data can

help the user to refine the mapping and check its correctness but it is not directly used by

the system to do that like COMA++ does it now.

5 Conclusion

In this paper we proposed the extension of COMA++ to use instance-based matching.

We described the approaches of constraint-based and content-based techniques. In

addition we suggested the propagation of similarity values of elements to their parents.

The instance-based matcher and the propagation algorithm have been evaluated with the

benchmark of the OAEI contest '06. The comparison with a matcher that uses element

names and data types showed the difference in the results.

Future work on this topic is the extension of the constraint-based component to

recognize more patterns and of the content-based component to deal with enumerations.

Another possibility is to sample the instances to reduce the huge amount of instance data

in real world applications. Furthermore the instance-based matcher should be evaluated

in other domains than ontology matching and against other instance-based tools, e.g.

machine learning approaches.

References

[Au05] Aumüller, D.; Do, H.; Maßmann, S.; Rahm, E.: Schema and Ontology Matching with

COMA++. In Proc. of the 2005 ACM SIGMOD Int. Conference on Management of

Data. ACM Press, New York, NY, USA, 2005; pp. 906-908

[BM01] Berlin, J.; Motro, A.: Autoplex: Automated Discovery of Content forVirtual

Databases. In Proc. of the 9th Int. Conference on Cooperative Information Systems.

Springer-Verlag, London, UK, 2001; pp. 108-122

[BN05] Bilke, A.; Naumann, F.: Schema Matching using Duplicates. In Proc. of the 21st Int.

Conference on Data Engineering (ICDE'05) - Volume 00. IEEE Computer Society,

Washington, DC, USA, 2005; pp. 69-80

[DDH01] Doan, A.; Domingos, P.; Halevy, A.: Reconciling Schemas of Disparate Data

Sources:A Machine-Learning Approach. In Proc. of the 2001 ACM SIGMOD Int.

Conference on Management of Data. ACM Press, New York, NY, USA, 2001; pp.

509-520

[DHM05] Dong, X.; Halevy, A.; Madhavan, J.: Reference Reconciliation in Complex

Information Spaces. In Proc. of the 2005 ACM SIGMOD Int. Conference on

Management of Data. ACM Press, New York, NY, USA, 2005; pp. 85-96

[Do04] Doan, A.; Madhavan, J.; Domingos, P.; Halevy, A.: Ontology Matching: A Machine

Learning Approach. In Handbook on Ontologies in Information Systems. Springer-

Verlag, 2004; pp.

[Do06] Do, H.: Schema Matching and Mapping-based Data Integration. Verlag Dr. Müller

(VDM), 2006

[DR02] Do, H.; Rahm, E.: COMA - A system for flexible combination of schema matching

approaches. In Proc. 28th Int. Conference on VLDB. Springer, 2002; pp. 610-621

[HMH01] Hernández, M.; Miller, R.; Haas, L.: Clio: A Semi-Automatic Tool For Schema

Mapping. In Proc. of the 2001 ACM SIGMOD Int. Conference on Management of

Data. ACM Press, New York, NY, USA, 2001; pp. 607

[KN03] Kang, J.; Naughton, J.: On Schema Matching with Opaque Column Names and Data

Values. In Proc. of the 2003 ACM SIGMOD Int. Conference on Management of Data.

ACM Press, New York, NY, USA, 2003; pp. 205-216

[LC00] Li, W.; Clifton, C.: SEMINT: a tool for identifying attribute correspondences in

heterogeneous databases using neural networks. In Data & Knowledge Engineering

Volume 33, Issue 1. Elsevier Science Publishers B. V., 2000; pp. 49 - 84

[MER06] Massmann, S.; Engmann, D.; Rahm, E.: COMA++: Results for the Ontology

Alignment Contest OAEI 2006. In . Int. Workshop on Ontology Matching, 2006; pp.

107-114

[MGR02] Melnik, S.; Garcia-Molina, H.; Rahm, E.: Similarity Flooding: A Versatile Graph

Matching Algorithm and Its Application to Schema Matching. In . 18th Int.

Conference on Data Engineering, 2002; pp. 117

[Na06] Naumann, F.; Bilke, A.; Bleiholder, J.; Weis, M.: Data Fusion in Three Steps:

Resolving Inconsistencies at Schema-, Tuple-, and Value-level. In Bulletin of the

Technical Committee on Data Engineering, Vol. 29 No. 2. IEEE, 2006; pp. 21-31

[RB01] Rahm, E.; Bernstein, P.: A survey of approaches to automatic schema matching. In

The VLDB Journal Volume 10 , Issue 4. Springer, 2001; pp. 334-350

[RDM04] Rahm, E.; Do, H.; Maßmann, S.: Matching large XML schemas. In ACM SIGMOD

Record Volume 33 , Issue 4. , 2004; pp. 26-31

[SE05] Shvaiko, P.; Euzenat, J.: A Survey of Schema-based Matching Approaches. In Journal

on Data Semantics IV. Springer, 2005; pp. 146-171

